308 lines
8.8 KiB
C
308 lines
8.8 KiB
C
/* $NetBSD: nbperf-bdz.c,v 1.8 2013/03/01 18:26:10 joerg Exp $ */
|
|
/*-
|
|
* Copyright (c) 2009, 2012 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Joerg Sonnenberger.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#if HAVE_NBTOOL_CONFIG_H
|
|
#include "nbtool_config.h"
|
|
#endif
|
|
|
|
#include <sys/cdefs.h>
|
|
__RCSID("$NetBSD: nbperf-bdz.c,v 1.8 2013/03/01 18:26:10 joerg Exp $");
|
|
|
|
#include <err.h>
|
|
#include <inttypes.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "nbperf.h"
|
|
|
|
/*
|
|
* A full description of the algorithm can be found in:
|
|
* "Simple and Space-Efficient Minimal Perfect Hash Functions"
|
|
* by Botelho, Pagh and Ziviani, proceeedings of WADS 2007.
|
|
*/
|
|
|
|
/*
|
|
* The algorithm is based on random, acyclic 3-graphs.
|
|
*
|
|
* Each edge in the represents a key. The vertices are the reminder of
|
|
* the hash function mod n. n = cm with c > 1.23. This ensures that
|
|
* an acyclic graph can be found with a very high probality.
|
|
*
|
|
* An acyclic graph has an edge order, where at least one vertex of
|
|
* each edge hasn't been seen before. It is declares the first unvisited
|
|
* vertex as authoritive for the edge and assigns a 2bit value to unvisited
|
|
* vertices, so that the sum of all vertices of the edge modulo 4 is
|
|
* the index of the authoritive vertex.
|
|
*/
|
|
|
|
#include "graph3.h"
|
|
|
|
struct state {
|
|
struct graph3 graph;
|
|
uint32_t *visited;
|
|
uint32_t *holes64k;
|
|
uint16_t *holes64;
|
|
uint8_t *g;
|
|
uint32_t *result_map;
|
|
};
|
|
|
|
static void
|
|
assign_nodes(struct state *state)
|
|
{
|
|
struct edge3 *e;
|
|
size_t i, j;
|
|
uint32_t t, r, holes;
|
|
|
|
for (i = 0; i < state->graph.v; ++i)
|
|
state->g[i] = 3;
|
|
|
|
for (i = 0; i < state->graph.e; ++i) {
|
|
j = state->graph.output_order[i];
|
|
e = &state->graph.edges[j];
|
|
if (!state->visited[e->left]) {
|
|
r = 0;
|
|
t = e->left;
|
|
} else if (!state->visited[e->middle]) {
|
|
r = 1;
|
|
t = e->middle;
|
|
} else {
|
|
if (state->visited[e->right])
|
|
abort();
|
|
r = 2;
|
|
t = e->right;
|
|
}
|
|
|
|
state->visited[t] = 2 + j;
|
|
if (state->visited[e->left] == 0)
|
|
state->visited[e->left] = 1;
|
|
if (state->visited[e->middle] == 0)
|
|
state->visited[e->middle] = 1;
|
|
if (state->visited[e->right] == 0)
|
|
state->visited[e->right] = 1;
|
|
|
|
state->g[t] = (9 + r - state->g[e->left] - state->g[e->middle]
|
|
- state->g[e->right]) % 3;
|
|
}
|
|
|
|
holes = 0;
|
|
for (i = 0; i < state->graph.v; ++i) {
|
|
if (i % 65536 == 0)
|
|
state->holes64k[i >> 16] = holes;
|
|
|
|
if (i % 64 == 0)
|
|
state->holes64[i >> 6] = holes - state->holes64k[i >> 16];
|
|
|
|
if (state->visited[i] > 1) {
|
|
j = state->visited[i] - 2;
|
|
state->result_map[j] = i - holes;
|
|
}
|
|
|
|
if (state->g[i] == 3)
|
|
++holes;
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_hash(struct nbperf *nbperf, struct state *state)
|
|
{
|
|
uint64_t sum;
|
|
size_t i;
|
|
|
|
fprintf(nbperf->output, "#include <stdlib.h>\n");
|
|
fprintf(nbperf->output, "#include <strings.h>\n\n");
|
|
|
|
fprintf(nbperf->output, "%suint32_t\n",
|
|
nbperf->static_hash ? "static " : "");
|
|
fprintf(nbperf->output,
|
|
"%s(const void * __restrict key, size_t keylen)\n",
|
|
nbperf->hash_name);
|
|
fprintf(nbperf->output, "{\n");
|
|
|
|
fprintf(nbperf->output,
|
|
"\tstatic const uint64_t g1[%" PRId32 "] = {\n",
|
|
(state->graph.v + 63) / 64);
|
|
sum = 0;
|
|
for (i = 0; i < state->graph.v; ++i) {
|
|
sum |= ((uint64_t)state->g[i] & 1) << (i & 63);
|
|
if (i % 64 == 63) {
|
|
fprintf(nbperf->output, "%s0x%016" PRIx64 "ULL,%s",
|
|
(i / 64 % 2 == 0 ? "\t " : " "),
|
|
sum,
|
|
(i / 64 % 2 == 1 ? "\n" : ""));
|
|
sum = 0;
|
|
}
|
|
}
|
|
if (i % 64 != 0) {
|
|
fprintf(nbperf->output, "%s0x%016" PRIx64 "ULL,%s",
|
|
(i / 64 % 2 == 0 ? "\t " : " "),
|
|
sum,
|
|
(i / 64 % 2 == 1 ? "\n" : ""));
|
|
}
|
|
fprintf(nbperf->output, "%s\t};\n", (i % 2 ? "\n" : ""));
|
|
|
|
fprintf(nbperf->output,
|
|
"\tstatic const uint64_t g2[%" PRId32 "] = {\n",
|
|
(state->graph.v + 63) / 64);
|
|
sum = 0;
|
|
for (i = 0; i < state->graph.v; ++i) {
|
|
sum |= (((uint64_t)state->g[i] & 2) >> 1) << (i & 63);
|
|
if (i % 64 == 63) {
|
|
fprintf(nbperf->output, "%s0x%016" PRIx64 "ULL,%s",
|
|
(i / 64 % 2 == 0 ? "\t " : " "),
|
|
sum,
|
|
(i / 64 % 2 == 1 ? "\n" : ""));
|
|
sum = 0;
|
|
}
|
|
}
|
|
if (i % 64 != 0) {
|
|
fprintf(nbperf->output, "%s0x%016" PRIx64 "ULL,%s",
|
|
(i / 64 % 2 == 0 ? "\t " : " "),
|
|
sum,
|
|
(i / 64 % 2 == 1 ? "\n" : ""));
|
|
}
|
|
fprintf(nbperf->output, "%s\t};\n", (i % 2 ? "\n" : ""));
|
|
|
|
fprintf(nbperf->output,
|
|
"\tstatic const uint32_t holes64k[%" PRId32 "] = {\n",
|
|
(state->graph.v + 65535) / 65536);
|
|
for (i = 0; i < state->graph.v; i += 65536)
|
|
fprintf(nbperf->output, "%s0x%08" PRIx32 ",%s",
|
|
(i / 65536 % 4 == 0 ? "\t " : " "),
|
|
state->holes64k[i >> 16],
|
|
(i / 65536 % 4 == 3 ? "\n" : ""));
|
|
fprintf(nbperf->output, "%s\t};\n", (i / 65536 % 4 ? "\n" : ""));
|
|
|
|
fprintf(nbperf->output,
|
|
"\tstatic const uint16_t holes64[%" PRId32 "] = {\n",
|
|
(state->graph.v + 63) / 64);
|
|
for (i = 0; i < state->graph.v; i += 64)
|
|
fprintf(nbperf->output, "%s0x%04" PRIx32 ",%s",
|
|
(i / 64 % 4 == 0 ? "\t " : " "),
|
|
state->holes64[i >> 6],
|
|
(i / 64 % 4 == 3 ? "\n" : ""));
|
|
fprintf(nbperf->output, "%s\t};\n", (i / 64 % 4 ? "\n" : ""));
|
|
|
|
fprintf(nbperf->output, "\tuint64_t m;\n");
|
|
fprintf(nbperf->output, "\tuint32_t idx, i, idx2;\n");
|
|
fprintf(nbperf->output, "\tuint32_t h[%zu];\n\n", nbperf->hash_size);
|
|
|
|
(*nbperf->print_hash)(nbperf, "\t", "key", "keylen", "h");
|
|
|
|
fprintf(nbperf->output, "\n\th[0] = h[0] %% %" PRIu32 ";\n",
|
|
state->graph.v);
|
|
fprintf(nbperf->output, "\th[1] = h[1] %% %" PRIu32 ";\n",
|
|
state->graph.v);
|
|
fprintf(nbperf->output, "\th[2] = h[2] %% %" PRIu32 ";\n",
|
|
state->graph.v);
|
|
|
|
fprintf(nbperf->output,
|
|
"\tidx = 9 + ((g1[h[0] >> 6] >> (h[0] & 63)) &1)\n"
|
|
"\t + ((g1[h[1] >> 6] >> (h[1] & 63)) & 1)\n"
|
|
"\t + ((g1[h[2] >> 6] >> (h[2] & 63)) & 1)\n"
|
|
"\t - ((g2[h[0] >> 6] >> (h[0] & 63)) & 1)\n"
|
|
"\t - ((g2[h[1] >> 6] >> (h[1] & 63)) & 1)\n"
|
|
"\t - ((g2[h[2] >> 6] >> (h[2] & 63)) & 1);\n"
|
|
);
|
|
|
|
fprintf(nbperf->output,
|
|
"\tidx = h[idx %% 3];\n");
|
|
fprintf(nbperf->output,
|
|
"\tidx2 = idx - holes64[idx >> 6] - holes64k[idx >> 16];\n"
|
|
"\tidx2 -= popcount64(g1[idx >> 6] & g2[idx >> 6]\n"
|
|
"\t & (((uint64_t)1 << idx) - 1));\n"
|
|
"\treturn idx2;\n");
|
|
|
|
fprintf(nbperf->output, "}\n");
|
|
|
|
if (nbperf->map_output != NULL) {
|
|
for (i = 0; i < state->graph.e; ++i)
|
|
fprintf(nbperf->map_output, "%" PRIu32 "\n",
|
|
state->result_map[i]);
|
|
}
|
|
}
|
|
|
|
int
|
|
bpz_compute(struct nbperf *nbperf)
|
|
{
|
|
struct state state;
|
|
int retval = -1;
|
|
uint32_t v, e;
|
|
|
|
if (nbperf->c == 0)
|
|
nbperf->c = 1.24;
|
|
if (nbperf->c < 1.24)
|
|
errx(1, "The argument for option -c must be at least 1.24");
|
|
if (nbperf->hash_size < 3)
|
|
errx(1, "The hash function must generate at least 3 values");
|
|
|
|
(*nbperf->seed_hash)(nbperf);
|
|
e = nbperf->n;
|
|
v = nbperf->c * nbperf->n;
|
|
if (1.24 * nbperf->n > v)
|
|
++v;
|
|
if (v < 10)
|
|
v = 10;
|
|
|
|
graph3_setup(&state.graph, v, e);
|
|
|
|
state.holes64k = calloc(sizeof(uint32_t), (v + 65535) / 65536);
|
|
state.holes64 = calloc(sizeof(uint16_t), (v + 63) / 64 );
|
|
state.g = calloc(sizeof(uint32_t), v | 63);
|
|
state.visited = calloc(sizeof(uint32_t), v);
|
|
state.result_map = calloc(sizeof(uint32_t), e);
|
|
|
|
if (state.holes64k == NULL || state.holes64 == NULL ||
|
|
state.g == NULL || state.visited == NULL ||
|
|
state.result_map == NULL)
|
|
err(1, "malloc failed");
|
|
|
|
if (graph3_hash(nbperf, &state.graph))
|
|
goto failed;
|
|
if (graph3_output_order(&state.graph))
|
|
goto failed;
|
|
assign_nodes(&state);
|
|
print_hash(nbperf, &state);
|
|
|
|
retval = 0;
|
|
|
|
failed:
|
|
graph3_free(&state.graph);
|
|
free(state.visited);
|
|
free(state.g);
|
|
free(state.holes64k);
|
|
free(state.holes64);
|
|
free(state.result_map);
|
|
return retval;
|
|
}
|