NetBSD/sys/arch/i386/isa/npx.c

698 lines
18 KiB
C

/* $NetBSD: npx.c,v 1.87 2002/10/05 21:28:34 fvdl Exp $ */
/*-
* Copyright (c) 1994, 1995, 1998 Charles M. Hannum. All rights reserved.
* Copyright (c) 1990 William Jolitz.
* Copyright (c) 1991 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)npx.c 7.2 (Berkeley) 5/12/91
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: npx.c,v 1.87 2002/10/05 21:28:34 fvdl Exp $");
#if 0
#define IPRINTF(x) printf x
#else
#define IPRINTF(x)
#endif
#include "opt_cputype.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/vmmeter.h>
#include <uvm/uvm_extern.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/intr.h>
#include <machine/cpufunc.h>
#include <machine/pcb.h>
#include <machine/trap.h>
#include <machine/specialreg.h>
#include <machine/pio.h>
#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>
#include <i386/isa/icu.h>
#include <i386/isa/npxvar.h>
/*
* 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
*
* We do lazy initialization and switching using the TS bit in cr0 and the
* MDP_USEDFPU bit in mdproc.
*
* DNA exceptions are handled like this:
*
* 1) If there is no NPX, return and go to the emulator.
* 2) If someone else has used the NPX, save its state into that process's PCB.
* 3a) If MDP_USEDFPU is not set, set it and initialize the NPX.
* 3b) Otherwise, reload the process's previous NPX state.
*
* When a process is created or exec()s, its saved cr0 image has the TS bit
* set and the MDP_USEDFPU bit clear. The MDP_USEDFPU bit is set when the
* process first gets a DNA and the NPX is initialized. The TS bit is turned
* off when the NPX is used, and turned on again later when the process's NPX
* state is saved.
*/
#define fldcw(addr) __asm("fldcw %0" : : "m" (*addr))
#define fnclex() __asm("fnclex")
#define fninit() __asm("fninit")
#define fnsave(addr) __asm("fnsave %0" : "=m" (*addr))
#define fnstcw(addr) __asm("fnstcw %0" : "=m" (*addr))
#define fnstsw(addr) __asm("fnstsw %0" : "=m" (*addr))
#define fp_divide_by_0() __asm("fldz; fld1; fdiv %st,%st(1); fwait")
#define frstor(addr) __asm("frstor %0" : : "m" (*addr))
#define fwait() __asm("fwait")
#define clts() __asm("clts")
#define stts() lcr0(rcr0() | CR0_TS)
int npxdna(struct cpu_info *);
static int npxdna_notset(struct cpu_info *);
static int npxdna_s87(struct cpu_info *);
#ifdef I686_CPU
static int npxdna_xmm(struct cpu_info *);
#endif /* I686_CPU */
#ifdef I686_CPU
#define fxsave(addr) __asm("fxsave %0" : "=m" (*addr))
#define fxrstor(addr) __asm("fxrstor %0" : : "m" (*addr))
#endif /* I686_CPU */
static enum npx_type npx_type;
volatile u_int npx_intrs_while_probing;
volatile u_int npx_traps_while_probing;
extern int i386_fpu_present;
extern int i386_fpu_exception;
extern int i386_fpu_fdivbug;
struct npx_softc *npx_softc;
static __inline void
fpu_save(union savefpu *addr)
{
#ifdef I686_CPU
if (i386_use_fxsave)
{
fxsave(&addr->sv_xmm);
/* FXSAVE doesn't FNINIT like FNSAVE does -- so do it here. */
fninit();
} else
#endif /* I686_CPU */
fnsave(&addr->sv_87);
}
static int
npxdna_notset(struct cpu_info *ci)
{
panic("npxdna vector not initialized");
}
static int
npxdna_empty(struct cpu_info *ci)
{
/* raise a DNA TRAP, math_emulate would take over eventually */
IPRINTF(("Emul"));
return 0;
}
int (*npxdna_func)(struct cpu_info *) = npxdna_notset;
enum npx_type
npxprobe1(bus_space_tag_t iot, bus_space_handle_t ioh, int irq)
{
struct gate_descriptor save_idt_npxintr;
struct gate_descriptor save_idt_npxtrap;
enum npx_type rv = NPX_NONE;
u_long save_eflags;
unsigned save_imen;
int control;
int status;
save_eflags = read_eflags();
disable_intr();
save_idt_npxintr = idt[NRSVIDT + irq].gd;
save_idt_npxtrap = idt[16].gd;
setgate(&idt[NRSVIDT + irq].gd, probeintr, 0, SDT_SYS386IGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setgate(&idt[16].gd, probetrap, 0, SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
save_imen = imen;
imen = ~((1 << IRQ_SLAVE) | (1 << irq));
SET_ICUS();
/*
* Partially reset the coprocessor, if any. Some BIOS's don't reset
* it after a warm boot.
*/
/* full reset on some systems, NOP on others */
bus_space_write_1(iot, ioh, 1, 0);
delay(1000);
/* clear BUSY# latch */
bus_space_write_1(iot, ioh, 0, 0);
/*
* We set CR0 in locore to trap all ESC and WAIT instructions.
* We have to turn off the CR0_EM bit temporarily while probing.
*/
lcr0(rcr0() & ~(CR0_EM|CR0_TS));
enable_intr();
/*
* Finish resetting the coprocessor, if any. If there is an error
* pending, then we may get a bogus IRQ13, but probeintr() will handle
* it OK. Bogus halts have never been observed, but we enabled
* IRQ13 and cleared the BUSY# latch early to handle them anyway.
*/
fninit();
delay(1000); /* wait for any IRQ13 (fwait might hang) */
/*
* Check for a status of mostly zero.
*/
status = 0x5a5a;
fnstsw(&status);
if ((status & 0xb8ff) == 0) {
/*
* Good, now check for a proper control word.
*/
control = 0x5a5a;
fnstcw(&control);
if ((control & 0x1f3f) == 0x033f) {
/*
* We have an npx, now divide by 0 to see if exception
* 16 works.
*/
control &= ~(1 << 2); /* enable divide by 0 trap */
fldcw(&control);
npx_traps_while_probing = npx_intrs_while_probing = 0;
fp_divide_by_0();
if (npx_traps_while_probing != 0) {
/*
* Good, exception 16 works.
*/
rv = NPX_EXCEPTION;
i386_fpu_exception = 1;
} else if (npx_intrs_while_probing != 0) {
/*
* Bad, we are stuck with IRQ13.
*/
rv = NPX_INTERRUPT;
} else {
/*
* Worse, even IRQ13 is broken. Use emulator.
*/
rv = NPX_BROKEN;
}
}
}
disable_intr();
lcr0(rcr0() | (CR0_EM|CR0_TS));
imen = save_imen;
SET_ICUS();
idt[NRSVIDT + irq].gd = save_idt_npxintr;
idt[16].gd = save_idt_npxtrap;
write_eflags(save_eflags);
if ((rv == NPX_NONE) || (rv == NPX_BROKEN)) {
/* No FPU. Handle it here, npxattach won't be called */
npxdna_func = npxdna_empty;
}
return (rv);
}
void npxinit(ci)
struct cpu_info *ci;
{
lcr0(rcr0() & ~(CR0_EM|CR0_TS));
fninit();
if (npx586bug1(4195835, 3145727) != 0) {
i386_fpu_fdivbug = 1;
printf("%s: WARNING: Pentium FDIV bug detected!\n",
ci->ci_dev->dv_xname);
}
lcr0(rcr0() | (CR0_TS));
}
/*
* Common attach routine.
*/
void
npxattach(struct npx_softc *sc)
{
npx_softc = sc;
npx_type = sc->sc_type;
npxinit(&cpu_info_primary);
i386_fpu_present = 1;
#ifdef I686_CPU
if (i386_use_fxsave)
npxdna_func = npxdna_xmm;
else
#endif /* I686_CPU */
npxdna_func = npxdna_s87;
}
/*
* Record the FPU state and reinitialize it all except for the control word.
* Then generate a SIGFPE.
*
* Reinitializing the state allows naive SIGFPE handlers to longjmp without
* doing any fixups.
*
* XXX there is currently no way to pass the full error state to signal
* handlers, and if this is a nested interrupt there is no way to pass even
* a status code! So there is no way to have a non-naive SIGFPE handler. At
* best a handler could do an fninit followed by an fldcw of a static value.
* fnclex would be of little use because it would leave junk on the FPU stack.
* Returning from the handler would be even less safe than usual because
* IRQ13 exception handling makes exceptions even less precise than usual.
*/
int
npxintr(void *arg)
{
struct cpu_info *ci = curcpu();
struct proc *p = ci->ci_fpcurproc;
union savefpu *addr;
struct intrframe *frame = arg;
struct npx_softc *sc;
int code;
sc = npx_softc;
uvmexp.traps++;
IPRINTF(("%s: fp intr\n", ci->ci_dev->dv_xname));
/*
* Clear the interrupt latch.
*/
bus_space_write_1(sc->sc_iot, sc->sc_ioh, 0, 0);
/*
* If we're saving, ignore the interrupt. The FPU will generate
* another one when we restore the state later.
*/
if (ci->ci_fpsaving)
return (1);
if (p == 0 || npx_type == NPX_NONE) {
printf("npxintr: p = %p, curproc = %p, npx_type = %d\n",
p, curproc, npx_type);
printf("npxintr: came from nowhere");
return 1;
}
#ifdef DIAGNOSTIC
/*
* At this point, fpcurproc should be curproc. If it wasn't, the TS
* bit should be set, and we should have gotten a DNA exception.
*/
if (p != curproc)
panic("npxintr: wrong process");
#endif
/*
* Find the address of fpcurproc's saved FPU state. (Given the
* invariant above, this is always the one in curpcb.)
*/
addr = &p->p_addr->u_pcb.pcb_savefpu;
/*
* Save state. This does an implied fninit. It had better not halt
* the cpu or we'll hang.
*/
fpu_save(addr);
fwait();
if (i386_use_fxsave) {
fldcw(&addr->sv_xmm.sv_env.en_cw);
/*
* FNINIT doesn't affect MXCSR or the XMM registers;
* no need to re-load MXCSR here.
*/
} else
fldcw(&addr->sv_87.sv_env.en_cw);
fwait();
/*
* Remember the exception status word and tag word. The current
* (almost fninit'ed) fpu state is in the fpu and the exception
* state just saved will soon be junk. However, the implied fninit
* doesn't change the error pointers or register contents, and we
* preserved the control word and will copy the status and tag
* words, so the complete exception state can be recovered.
*/
if (i386_use_fxsave) {
addr->sv_xmm.sv_ex_sw = addr->sv_xmm.sv_env.en_sw;
addr->sv_xmm.sv_ex_tw = addr->sv_xmm.sv_env.en_tw;
} else {
addr->sv_87.sv_ex_sw = addr->sv_87.sv_env.en_sw;
addr->sv_87.sv_ex_tw = addr->sv_87.sv_env.en_tw;
}
/*
* Pass exception to process.
*/
if (USERMODE(frame->if_cs, frame->if_eflags)) {
/*
* Interrupt is essentially a trap, so we can afford to call
* the SIGFPE handler (if any) as soon as the interrupt
* returns.
*
* XXX little or nothing is gained from this, and plenty is
* lost - the interrupt frame has to contain the trap frame
* (this is otherwise only necessary for the rescheduling trap
* in doreti, and the frame for that could easily be set up
* just before it is used).
*/
p->p_md.md_regs = (struct trapframe *)&frame->if_gs;
#ifdef notyet
/*
* Encode the appropriate code for detailed information on
* this exception.
*/
code = XXX_ENCODE(addr->sv_ex_sw);
#else
code = 0; /* XXX */
#endif
trapsignal(p, SIGFPE, code);
} else {
/*
* This is a nested interrupt. This should only happen when
* an IRQ13 occurs at the same time as a higher-priority
* interrupt.
*
* XXX
* Currently, we treat this like an asynchronous interrupt, but
* this has disadvantages.
*/
psignal(p, SIGFPE);
}
return (1);
}
/*
* Implement device not available (DNA) exception
*
* Save the previous state, if necessary, and restore our last
* saved state.
* XXX If we were the last process to use the FPU, we should be able
* to simply return.
*/
#ifdef I686_CPU
static int
npxdna_xmm(struct cpu_info *ci)
{
struct proc *p;
int s;
KDASSERT(i386_use_fxsave == 1);
if (ci->ci_fpsaving) {
printf("recursive npx trap; cr0=%x\n", rcr0());
return (0);
}
s = splipi(); /* lock out IPI's while we clean house.. */
#ifdef MULTIPROCESSOR
p = ci->ci_curproc;
#else
p = curproc;
#endif
/*
* XXX should have a fast-path here when no save/restore is necessary
*/
/*
* Initialize the FPU state to clear any exceptions. If someone else
* was using the FPU, save their state (which does an implicit
* initialization).
*/
if (ci->ci_fpcurproc != NULL) {
IPRINTF(("Save"));
npxsave_cpu(ci, 1);
} else {
clts();
IPRINTF(("Init"));
fninit();
fwait();
stts();
}
splx(s);
KDASSERT(ci->ci_fpcurproc == NULL);
#ifndef MULTIPROCESSOR
KDASSERT(p->p_addr->u_pcb.pcb_fpcpu == NULL);
#else
if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
npxsave_proc(p, 1);
#endif
p->p_addr->u_pcb.pcb_cr0 &= ~CR0_TS;
clts();
s = splipi();
ci->ci_fpcurproc = p;
p->p_addr->u_pcb.pcb_fpcpu = ci;
splx(s);
if ((p->p_md.md_flags & MDP_USEDFPU) == 0) {
fldcw(&p->p_addr->u_pcb.pcb_savefpu.sv_xmm.sv_env.en_cw);
p->p_md.md_flags |= MDP_USEDFPU;
} else {
fxrstor(&p->p_addr->u_pcb.pcb_savefpu.sv_xmm);
}
return (1);
}
#endif /* I686_CPU */
static int
npxdna_s87(struct cpu_info *ci)
{
struct proc *p;
int s;
KDASSERT(i386_use_fxsave == 0);
if (ci->ci_fpsaving) {
printf("recursive npx trap; cr0=%x\n", rcr0());
return (0);
}
s = splipi(); /* lock out IPI's while we clean house.. */
#ifdef MULTIPROCESSOR
p = ci->ci_curproc;
#else
p = curproc;
#endif
IPRINTF(("%s: dna for %p\n", ci->ci_dev->dv_xname, p));
/*
* If someone else was using our FPU, save their state (which does an
* implicit initialization); otherwise, initialize the FPU state to
* clear any exceptions.
*/
if (ci->ci_fpcurproc != NULL)
npxsave_cpu(ci, 1);
else {
clts();
IPRINTF(("%s: fp init\n", ci->ci_dev->dv_xname));
fninit();
fwait();
stts();
}
splx(s);
IPRINTF(("%s: done saving\n", ci->ci_dev->dv_xname));
KDASSERT(ci->ci_fpcurproc == NULL);
#ifndef MULTIPROCESSOR
KDASSERT(p->p_addr->u_pcb.pcb_fpcpu == NULL);
#else
if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
npxsave_proc(p, 1);
#endif
p->p_addr->u_pcb.pcb_cr0 &= ~CR0_TS;
clts();
s = splipi();
ci->ci_fpcurproc = p;
p->p_addr->u_pcb.pcb_fpcpu = ci;
splx(s);
if ((p->p_md.md_flags & MDP_USEDFPU) == 0) {
fldcw(&p->p_addr->u_pcb.pcb_savefpu.sv_87.sv_env.en_cw);
p->p_md.md_flags |= MDP_USEDFPU;
} else {
/*
* The following frstor may cause an IRQ13 when the state being
* restored has a pending error. The error will appear to have
* been triggered by the current (npx) user instruction even
* when that instruction is a no-wait instruction that should
* not trigger an error (e.g., fnclex). On at least one 486
* system all of the no-wait instructions are broken the same
* as frstor, so our treatment does not amplify the breakage.
* On at least one 386/Cyrix 387 system, fnclex works correctly
* while frstor and fnsave are broken, so our treatment breaks
* fnclex if it is the first FPU instruction after a context
* switch.
*/
frstor(&p->p_addr->u_pcb.pcb_savefpu.sv_87);
}
return (1);
}
void
npxsave_cpu (struct cpu_info *ci, int save)
{
struct proc *p;
int s;
KDASSERT(ci == curcpu());
p = ci->ci_fpcurproc;
if (p == NULL)
return;
IPRINTF(("%s: fp cpu %s %p\n", ci->ci_dev->dv_xname,
save? "save" : "flush", p));
if (save) {
#ifdef DIAGNOSTIC
if (ci->ci_fpsaving != 0)
panic("npxsave_cpu: recursive save!");
#endif
/*
* Set ci->ci_fpsaving, so that any pending exception will be
* thrown away. (It will be caught again if/when the FPU
* state is restored.)
*
* XXX on i386 and earlier, this routine should always be
* called at spl0; if it might called with the NPX interrupt
* masked, it would be necessary to forcibly unmask the NPX
* interrupt so that it could succeed.
* XXX this is irrelevant on 486 and above (systems
* which report FP failures via traps rather than irq13).
* XXX punting for now..
*/
clts();
ci->ci_fpsaving = 1;
fpu_save(&p->p_addr->u_pcb.pcb_savefpu);
ci->ci_fpsaving = 0;
}
/*
* We set the TS bit in the saved CR0 for this process, so that it
* will get a DNA exception on any FPU instruction and force a reload.
*/
stts();
p->p_addr->u_pcb.pcb_cr0 |= CR0_TS;
s = splipi();
p->p_addr->u_pcb.pcb_fpcpu = NULL;
ci->ci_fpcurproc = NULL;
splx(s);
}
/*
* Save p's FPU state, which may be on this processor or another processor.
*
* The FNSAVE instruction clears the FPU state. Rather than reloading the FPU
* immediately, we clear fpcurproc and turn on CR0_TS to force a DNA and a
* reload of the FPU state the next time we try to use it. This routine
* is only called when forking, core dumping, or debugging, or swapping,
* so the lazy reload at worst forces us to trap once per fork(), and at best
* saves us a reload once per fork().
*/
void
npxsave_proc(struct proc *p, int save)
{
struct cpu_info *ci = curcpu();
struct cpu_info *oci;
KDASSERT(p->p_addr != NULL);
KDASSERT(p->p_flag & P_INMEM);
oci = p->p_addr->u_pcb.pcb_fpcpu;
if (oci == NULL)
return;
IPRINTF(("%s: fp proc %s %p\n", ci->ci_dev->dv_xname,
save? "save" : "flush", p));
#if defined(MULTIPROCESSOR)
if (oci == ci) {
int s = splipi();
npxsave_cpu(ci, save);
splx(s);
} else {
int spincount;
IPRINTF(("%s: fp ipi to %s %s %p\n",
ci->ci_dev->dv_xname,
oci->ci_dev->dv_xname,
save? "save" : "flush", p));
i386_send_ipi(oci,
save ? I386_IPI_SYNCH_FPU : I386_IPI_FLUSH_FPU);
spincount = 0;
while (p->p_addr->u_pcb.pcb_fpcpu != NULL)
{
spincount++;
delay(1000); /* XXX */
if (spincount > 10000) {
panic("fp_save ipi didn't");
}
}
}
#else
KASSERT(ci->ci_fpcurproc == p);
npxsave_cpu(ci, save);
#endif
}