NetBSD/sys/dev/sdmmc/sdhc.c

1791 lines
46 KiB
C

/* $NetBSD: sdhc.c,v 1.44 2014/05/24 12:10:32 hkenken Exp $ */
/* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
/*
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* SD Host Controller driver based on the SD Host Controller Standard
* Simplified Specification Version 1.00 (www.sdcard.com).
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.44 2014/05/24 12:10:32 hkenken Exp $");
#ifdef _KERNEL_OPT
#include "opt_sdmmc.h"
#endif
#include <sys/param.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <dev/sdmmc/sdhcreg.h>
#include <dev/sdmmc/sdhcvar.h>
#include <dev/sdmmc/sdmmcchip.h>
#include <dev/sdmmc/sdmmcreg.h>
#include <dev/sdmmc/sdmmcvar.h>
#ifdef SDHC_DEBUG
int sdhcdebug = 1;
#define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
void sdhc_dump_regs(struct sdhc_host *);
#else
#define DPRINTF(n,s) do {} while (0)
#endif
#define SDHC_COMMAND_TIMEOUT hz
#define SDHC_BUFFER_TIMEOUT hz
#define SDHC_TRANSFER_TIMEOUT hz
#define SDHC_DMA_TIMEOUT hz
struct sdhc_host {
struct sdhc_softc *sc; /* host controller device */
bus_space_tag_t iot; /* host register set tag */
bus_space_handle_t ioh; /* host register set handle */
bus_size_t ios; /* host register space size */
bus_dma_tag_t dmat; /* host DMA tag */
device_t sdmmc; /* generic SD/MMC device */
struct kmutex host_mtx;
u_int clkbase; /* base clock frequency in KHz */
int maxblklen; /* maximum block length */
uint32_t ocr; /* OCR value from capabilities */
uint8_t regs[14]; /* host controller state */
uint16_t intr_status; /* soft interrupt status */
uint16_t intr_error_status; /* soft error status */
struct kmutex intr_mtx;
struct kcondvar intr_cv;
int specver; /* spec. version */
uint32_t flags; /* flags for this host */
#define SHF_USE_DMA 0x0001
#define SHF_USE_4BIT_MODE 0x0002
#define SHF_USE_8BIT_MODE 0x0004
};
#define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
static uint8_t
hread1(struct sdhc_host *hp, bus_size_t reg)
{
if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
return bus_space_read_1(hp->iot, hp->ioh, reg);
return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
}
static uint16_t
hread2(struct sdhc_host *hp, bus_size_t reg)
{
if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
return bus_space_read_2(hp->iot, hp->ioh, reg);
return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
}
#define HREAD1(hp, reg) hread1(hp, reg)
#define HREAD2(hp, reg) hread2(hp, reg)
#define HREAD4(hp, reg) \
(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
static void
hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
{
if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
bus_space_write_1(hp->iot, hp->ioh, o, val);
} else {
const size_t shift = 8 * (o & 3);
o &= -4;
uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
tmp = (val << shift) | (tmp & ~(0xff << shift));
bus_space_write_4(hp->iot, hp->ioh, o, tmp);
}
}
static void
hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
{
if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
bus_space_write_2(hp->iot, hp->ioh, o, val);
} else {
const size_t shift = 8 * (o & 2);
o &= -4;
uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
tmp = (val << shift) | (tmp & ~(0xffff << shift));
bus_space_write_4(hp->iot, hp->ioh, o, tmp);
}
}
#define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
#define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
#define HWRITE4(hp, reg, val) \
bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
#define HCLR1(hp, reg, bits) \
do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
#define HCLR2(hp, reg, bits) \
do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
#define HCLR4(hp, reg, bits) \
do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
#define HSET1(hp, reg, bits) \
do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
#define HSET2(hp, reg, bits) \
do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
#define HSET4(hp, reg, bits) \
do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
static int sdhc_host_reset(sdmmc_chipset_handle_t);
static int sdhc_host_reset1(sdmmc_chipset_handle_t);
static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
static int sdhc_card_detect(sdmmc_chipset_handle_t);
static int sdhc_write_protect(sdmmc_chipset_handle_t);
static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
static void sdhc_exec_command(sdmmc_chipset_handle_t,
struct sdmmc_command *);
static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
static int sdhc_soft_reset(struct sdhc_host *, int);
static int sdhc_wait_intr(struct sdhc_host *, int, int);
static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
static struct sdmmc_chip_functions sdhc_functions = {
/* host controller reset */
sdhc_host_reset,
/* host controller capabilities */
sdhc_host_ocr,
sdhc_host_maxblklen,
/* card detection */
sdhc_card_detect,
/* write protect */
sdhc_write_protect,
/* bus power, clock frequency and width */
sdhc_bus_power,
sdhc_bus_clock,
sdhc_bus_width,
sdhc_bus_rod,
/* command execution */
sdhc_exec_command,
/* card interrupt */
sdhc_card_enable_intr,
sdhc_card_intr_ack
};
static int
sdhc_cfprint(void *aux, const char *pnp)
{
const struct sdmmcbus_attach_args * const saa = aux;
const struct sdhc_host * const hp = saa->saa_sch;
if (pnp) {
aprint_normal("sdmmc at %s", pnp);
}
for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
if (hp->sc->sc_host[host] == hp) {
aprint_normal(" slot %zu", host);
}
}
return UNCONF;
}
/*
* Called by attachment driver. For each SD card slot there is one SD
* host controller standard register set. (1.3)
*/
int
sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
bus_space_handle_t ioh, bus_size_t iosize)
{
struct sdmmcbus_attach_args saa;
struct sdhc_host *hp;
uint32_t caps;
uint16_t sdhcver;
/* Allocate one more host structure. */
hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
if (hp == NULL) {
aprint_error_dev(sc->sc_dev,
"couldn't alloc memory (sdhc host)\n");
goto err1;
}
sc->sc_host[sc->sc_nhosts++] = hp;
/* Fill in the new host structure. */
hp->sc = sc;
hp->iot = iot;
hp->ioh = ioh;
hp->ios = iosize;
hp->dmat = sc->sc_dmat;
mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
cv_init(&hp->intr_cv, "sdhcintr");
sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
hp->specver = SDHC_SPEC_VERSION(sdhcver);
switch (SDHC_SPEC_VERSION(sdhcver)) {
case SDHC_SPEC_VERS_100:
aprint_normal("1.0");
break;
case SDHC_SPEC_VERS_200:
aprint_normal("2.0");
break;
case SDHC_SPEC_VERS_300:
aprint_normal("3.0");
break;
default:
aprint_normal("unknown version(0x%x)",
SDHC_SPEC_VERSION(sdhcver));
break;
}
aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
/*
* Reset the host controller and enable interrupts.
*/
(void)sdhc_host_reset(hp);
/* Determine host capabilities. */
if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
caps = sc->sc_caps;
} else {
mutex_enter(&hp->host_mtx);
caps = HREAD4(hp, SDHC_CAPABILITIES);
mutex_exit(&hp->host_mtx);
}
/* Use DMA if the host system and the controller support it. */
if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
(ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
ISSET(caps, SDHC_DMA_SUPPORT)))) {
SET(hp->flags, SHF_USE_DMA);
aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
}
/*
* Determine the base clock frequency. (2.2.24)
*/
if (hp->specver == SDHC_SPEC_VERS_300) {
hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
} else {
hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
}
if (hp->clkbase == 0) {
if (sc->sc_clkbase == 0) {
/* The attachment driver must tell us. */
aprint_error_dev(sc->sc_dev,
"unknown base clock frequency\n");
goto err;
}
hp->clkbase = sc->sc_clkbase;
}
if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
/* SDHC 1.0 supports only 10-63 MHz. */
aprint_error_dev(sc->sc_dev,
"base clock frequency out of range: %u MHz\n",
hp->clkbase / 1000);
goto err;
}
DPRINTF(1,("%s: base clock frequency %u MHz\n",
device_xname(sc->sc_dev), hp->clkbase / 1000));
/*
* XXX Set the data timeout counter value according to
* capabilities. (2.2.15)
*/
HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
#if 1
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
#endif
/*
* Determine SD bus voltage levels supported by the controller.
*/
if (ISSET(caps, SDHC_EMBEDDED_SLOT) &&
ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
}
if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
}
if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
}
/*
* Determine the maximum block length supported by the host
* controller. (2.2.24)
*/
switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
case SDHC_MAX_BLK_LEN_512:
hp->maxblklen = 512;
break;
case SDHC_MAX_BLK_LEN_1024:
hp->maxblklen = 1024;
break;
case SDHC_MAX_BLK_LEN_2048:
hp->maxblklen = 2048;
break;
case SDHC_MAX_BLK_LEN_4096:
hp->maxblklen = 4096;
break;
default:
aprint_error_dev(sc->sc_dev, "max block length unknown\n");
goto err;
}
DPRINTF(1, ("%s: max block length %u byte%s\n",
device_xname(sc->sc_dev), hp->maxblklen,
hp->maxblklen > 1 ? "s" : ""));
/*
* Attach the generic SD/MMC bus driver. (The bus driver must
* not invoke any chipset functions before it is attached.)
*/
memset(&saa, 0, sizeof(saa));
saa.saa_busname = "sdmmc";
saa.saa_sct = &sdhc_functions;
saa.saa_sch = hp;
saa.saa_dmat = hp->dmat;
saa.saa_clkmax = hp->clkbase;
if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
saa.saa_clkmin = hp->clkbase / 256 / 2046;
else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
saa.saa_clkmin = hp->clkbase / 256 / 16;
else if (hp->sc->sc_clkmsk != 0)
saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
(ffs(hp->sc->sc_clkmsk) - 1));
else if (hp->specver == SDHC_SPEC_VERS_300)
saa.saa_clkmin = hp->clkbase / 0x3ff;
else
saa.saa_clkmin = hp->clkbase / 256;
saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
saa.saa_caps |= SMC_CAPS_8BIT_MODE;
if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
if (ISSET(hp->flags, SHF_USE_DMA)) {
saa.saa_caps |= SMC_CAPS_DMA | SMC_CAPS_MULTI_SEG_DMA;
}
if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
return 0;
err:
cv_destroy(&hp->intr_cv);
mutex_destroy(&hp->intr_mtx);
mutex_destroy(&hp->host_mtx);
free(hp, M_DEVBUF);
sc->sc_host[--sc->sc_nhosts] = NULL;
err1:
return 1;
}
int
sdhc_detach(struct sdhc_softc *sc, int flags)
{
struct sdhc_host *hp;
int rv = 0;
for (size_t n = 0; n < sc->sc_nhosts; n++) {
hp = sc->sc_host[n];
if (hp == NULL)
continue;
if (hp->sdmmc != NULL) {
rv = config_detach(hp->sdmmc, flags);
if (rv)
break;
hp->sdmmc = NULL;
}
/* disable interrupts */
if ((flags & DETACH_FORCE) == 0) {
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
} else {
HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
}
sdhc_soft_reset(hp, SDHC_RESET_ALL);
}
cv_destroy(&hp->intr_cv);
mutex_destroy(&hp->intr_mtx);
mutex_destroy(&hp->host_mtx);
if (hp->ios > 0) {
bus_space_unmap(hp->iot, hp->ioh, hp->ios);
hp->ios = 0;
}
free(hp, M_DEVBUF);
sc->sc_host[n] = NULL;
}
return rv;
}
bool
sdhc_suspend(device_t dev, const pmf_qual_t *qual)
{
struct sdhc_softc *sc = device_private(dev);
struct sdhc_host *hp;
size_t i;
/* XXX poll for command completion or suspend command
* in progress */
/* Save the host controller state. */
for (size_t n = 0; n < sc->sc_nhosts; n++) {
hp = sc->sc_host[n];
if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
for (i = 0; i < sizeof hp->regs; i += 4) {
uint32_t v = HREAD4(hp, i);
hp->regs[i + 0] = (v >> 0);
hp->regs[i + 1] = (v >> 8);
if (i + 3 < sizeof hp->regs) {
hp->regs[i + 2] = (v >> 16);
hp->regs[i + 3] = (v >> 24);
}
}
} else {
for (i = 0; i < sizeof hp->regs; i++) {
hp->regs[i] = HREAD1(hp, i);
}
}
}
return true;
}
bool
sdhc_resume(device_t dev, const pmf_qual_t *qual)
{
struct sdhc_softc *sc = device_private(dev);
struct sdhc_host *hp;
size_t i;
/* Restore the host controller state. */
for (size_t n = 0; n < sc->sc_nhosts; n++) {
hp = sc->sc_host[n];
(void)sdhc_host_reset(hp);
if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
for (i = 0; i < sizeof hp->regs; i += 4) {
if (i + 3 < sizeof hp->regs) {
HWRITE4(hp, i,
(hp->regs[i + 0] << 0)
| (hp->regs[i + 1] << 8)
| (hp->regs[i + 2] << 16)
| (hp->regs[i + 3] << 24));
} else {
HWRITE4(hp, i,
(hp->regs[i + 0] << 0)
| (hp->regs[i + 1] << 8));
}
}
} else {
for (i = 0; i < sizeof hp->regs; i++) {
HWRITE1(hp, i, hp->regs[i]);
}
}
}
return true;
}
bool
sdhc_shutdown(device_t dev, int flags)
{
struct sdhc_softc *sc = device_private(dev);
struct sdhc_host *hp;
/* XXX chip locks up if we don't disable it before reboot. */
for (size_t i = 0; i < sc->sc_nhosts; i++) {
hp = sc->sc_host[i];
(void)sdhc_host_reset(hp);
}
return true;
}
/*
* Reset the host controller. Called during initialization, when
* cards are removed, upon resume, and during error recovery.
*/
static int
sdhc_host_reset1(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
uint32_t sdhcimask;
int error;
/* Don't lock. */
/* Disable all interrupts. */
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
} else {
HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
}
/*
* Reset the entire host controller and wait up to 100ms for
* the controller to clear the reset bit.
*/
error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
if (error)
goto out;
/* Set data timeout counter value to max for now. */
HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
#if 1
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
#endif
/* Enable interrupts. */
mutex_enter(&hp->intr_mtx);
sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
sdhcimask ^=
(SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
} else {
HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
}
mutex_exit(&hp->intr_mtx);
out:
return error;
}
static int
sdhc_host_reset(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
int error;
mutex_enter(&hp->host_mtx);
error = sdhc_host_reset1(sch);
mutex_exit(&hp->host_mtx);
return error;
}
static uint32_t
sdhc_host_ocr(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
return hp->ocr;
}
static int
sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
return hp->maxblklen;
}
/*
* Return non-zero if the card is currently inserted.
*/
static int
sdhc_card_detect(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
int r;
if (hp->sc->sc_vendor_card_detect)
return (*hp->sc->sc_vendor_card_detect)(hp->sc);
mutex_enter(&hp->host_mtx);
r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
mutex_exit(&hp->host_mtx);
return r ? 1 : 0;
}
/*
* Return non-zero if the card is currently write-protected.
*/
static int
sdhc_write_protect(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
int r;
if (hp->sc->sc_vendor_write_protect)
return (*hp->sc->sc_vendor_write_protect)(hp->sc);
mutex_enter(&hp->host_mtx);
r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
mutex_exit(&hp->host_mtx);
return r ? 0 : 1;
}
/*
* Set or change SD bus voltage and enable or disable SD bus power.
* Return zero on success.
*/
static int
sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
uint8_t vdd;
int error = 0;
const uint32_t pcmask =
~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
mutex_enter(&hp->host_mtx);
/*
* Disable bus power before voltage change.
*/
if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
&& !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
HWRITE1(hp, SDHC_POWER_CTL, 0);
/* If power is disabled, reset the host and return now. */
if (ocr == 0) {
(void)sdhc_host_reset1(hp);
goto out;
}
/*
* Select the lowest voltage according to capabilities.
*/
ocr &= hp->ocr;
if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
vdd = SDHC_VOLTAGE_1_8V;
} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
vdd = SDHC_VOLTAGE_3_0V;
} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
vdd = SDHC_VOLTAGE_3_3V;
} else {
/* Unsupported voltage level requested. */
error = EINVAL;
goto out;
}
if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
/*
* Enable bus power. Wait at least 1 ms (or 74 clocks) plus
* voltage ramp until power rises.
*/
HWRITE1(hp, SDHC_POWER_CTL,
HREAD1(hp, SDHC_POWER_CTL) & pcmask);
sdmmc_delay(1);
HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT));
sdmmc_delay(1);
HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
sdmmc_delay(10000);
/*
* The host system may not power the bus due to battery low,
* etc. In that case, the host controller should clear the
* bus power bit.
*/
if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
error = ENXIO;
goto out;
}
}
out:
mutex_exit(&hp->host_mtx);
return error;
}
/*
* Return the smallest possible base clock frequency divisor value
* for the CLOCK_CTL register to produce `freq' (KHz).
*/
static bool
sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
{
u_int div;
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
if ((hp->clkbase / div) <= freq) {
*divp = SDHC_SDCLK_CGM
| ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
| ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
//freq = hp->clkbase / div;
return true;
}
}
/* No divisor found. */
return false;
}
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
u_int dvs = (hp->clkbase + freq - 1) / freq;
u_int roundup = dvs & 1;
for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
if (dvs + roundup <= 16) {
dvs += roundup - 1;
*divp = (div << SDHC_SDCLK_DIV_SHIFT)
| (dvs << SDHC_SDCLK_DVS_SHIFT);
DPRINTF(2,
("%s: divisor for freq %u is %u * %u\n",
HDEVNAME(hp), freq, div * 2, dvs + 1));
//freq = hp->clkbase / (div * 2) * (dvs + 1);
return true;
}
/*
* If we drop bits, we need to round up the divisor.
*/
roundup |= dvs & 1;
}
/* No divisor found. */
return false;
}
if (hp->sc->sc_clkmsk != 0) {
div = howmany(hp->clkbase, freq);
if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
return false;
*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
//freq = hp->clkbase / div;
return true;
}
if (hp->specver == SDHC_SPEC_VERS_300) {
div = howmany(hp->clkbase, freq);
if (div > 0x3ff)
return false;
*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
<< SDHC_SDCLK_XDIV_SHIFT) |
(((div >> 0) & SDHC_SDCLK_DIV_MASK)
<< SDHC_SDCLK_DIV_SHIFT);
//freq = hp->clkbase / div;
return true;
} else {
for (div = 1; div <= 256; div *= 2) {
if ((hp->clkbase / div) <= freq) {
*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
//freq = hp->clkbase / div;
return true;
}
}
/* No divisor found. */
return false;
}
/* No divisor found. */
return false;
}
/*
* Set or change SDCLK frequency or disable the SD clock.
* Return zero on success.
*/
static int
sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
u_int div;
u_int timo;
int16_t reg;
int error = 0;
#ifdef DIAGNOSTIC
bool present;
mutex_enter(&hp->host_mtx);
present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
mutex_exit(&hp->host_mtx);
/* Must not stop the clock if commands are in progress. */
if (present && sdhc_card_detect(hp)) {
aprint_normal_dev(hp->sc->sc_dev,
"%s: command in progress\n", __func__);
}
#endif
mutex_enter(&hp->host_mtx);
if (hp->sc->sc_vendor_bus_clock) {
error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
if (error != 0)
goto out;
}
/*
* Stop SD clock before changing the frequency.
*/
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
if (freq == SDMMC_SDCLK_OFF) {
HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
goto out;
}
} else {
HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
if (freq == SDMMC_SDCLK_OFF)
goto out;
}
/*
* Set the minimum base clock frequency divisor.
*/
if (!sdhc_clock_divisor(hp, freq, &div)) {
/* Invalid base clock frequency or `freq' value. */
error = EINVAL;
goto out;
}
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
HWRITE4(hp, SDHC_CLOCK_CTL,
div | (SDHC_TIMEOUT_MAX << 16));
} else {
reg = HREAD2(hp, SDHC_CLOCK_CTL);
reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
}
/*
* Start internal clock. Wait 10ms for stabilization.
*/
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
sdmmc_delay(10000);
HSET4(hp, SDHC_CLOCK_CTL,
8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
} else {
HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
for (timo = 1000; timo > 0; timo--) {
if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
SDHC_INTCLK_STABLE))
break;
sdmmc_delay(10);
}
if (timo == 0) {
error = ETIMEDOUT;
goto out;
}
}
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
/*
* Sending 80 clocks at 400kHz takes 200us.
* So delay for that time + slop and then
* check a few times for completion.
*/
sdmmc_delay(210);
for (timo = 10; timo > 0; timo--) {
if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
SDHC_INIT_ACTIVE))
break;
sdmmc_delay(10);
}
DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
/*
* Enable SD clock.
*/
HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
} else {
/*
* Enable SD clock.
*/
HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
if (freq > 25000 &&
!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
else
HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
}
out:
mutex_exit(&hp->host_mtx);
return error;
}
static int
sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
int reg;
switch (width) {
case 1:
case 4:
break;
case 8:
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
break;
/* FALLTHROUGH */
default:
DPRINTF(0,("%s: unsupported bus width (%d)\n",
HDEVNAME(hp), width));
return 1;
}
mutex_enter(&hp->host_mtx);
reg = HREAD1(hp, SDHC_HOST_CTL);
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
if (width == 4)
reg |= SDHC_4BIT_MODE;
else if (width == 8)
reg |= SDHC_ESDHC_8BIT_MODE;
} else {
reg &= ~SDHC_4BIT_MODE;
if (width == 4)
reg |= SDHC_4BIT_MODE;
}
HWRITE1(hp, SDHC_HOST_CTL, reg);
mutex_exit(&hp->host_mtx);
return 0;
}
static int
sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
if (hp->sc->sc_vendor_rod)
return (*hp->sc->sc_vendor_rod)(hp->sc, on);
return 0;
}
static void
sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
mutex_enter(&hp->intr_mtx);
if (enable) {
HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
} else {
HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
}
mutex_exit(&hp->intr_mtx);
}
}
static void
sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
mutex_enter(&hp->intr_mtx);
HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
mutex_exit(&hp->intr_mtx);
}
}
static int
sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
{
uint32_t state;
int timeout;
for (timeout = 10; timeout > 0; timeout--) {
if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
return 0;
sdmmc_delay(10000);
}
DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
value, state));
return ETIMEDOUT;
}
static void
sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
int error;
if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
mutex_enter(&hp->intr_mtx);
if (ISSET(hp->flags, SHF_USE_DMA)) {
HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
} else {
HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
}
mutex_exit(&hp->intr_mtx);
}
/*
* Start the MMC command, or mark `cmd' as failed and return.
*/
error = sdhc_start_command(hp, cmd);
if (error) {
cmd->c_error = error;
goto out;
}
/*
* Wait until the command phase is done, or until the command
* is marked done for any other reason.
*/
if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
cmd->c_error = ETIMEDOUT;
goto out;
}
/*
* The host controller removes bits [0:7] from the response
* data (CRC) and we pass the data up unchanged to the bus
* driver (without padding).
*/
mutex_enter(&hp->host_mtx);
if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
if (ISSET(cmd->c_flags, SCF_RSP_136)) {
cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
(cmd->c_resp[1] << 24);
cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
(cmd->c_resp[2] << 24);
cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
(cmd->c_resp[3] << 24);
cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
}
}
}
mutex_exit(&hp->host_mtx);
DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
/*
* If the command has data to transfer in any direction,
* execute the transfer now.
*/
if (cmd->c_error == 0 && cmd->c_data != NULL)
sdhc_transfer_data(hp, cmd);
else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
cmd->c_error = ETIMEDOUT;
goto out;
}
}
out:
if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
&& !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
mutex_enter(&hp->host_mtx);
/* Turn off the LED. */
HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
mutex_exit(&hp->host_mtx);
}
SET(cmd->c_flags, SCF_ITSDONE);
DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
cmd->c_flags, cmd->c_error));
}
static int
sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
{
struct sdhc_softc * const sc = hp->sc;
uint16_t blksize = 0;
uint16_t blkcount = 0;
uint16_t mode;
uint16_t command;
int error;
DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
/*
* The maximum block length for commands should be the minimum
* of the host buffer size and the card buffer size. (1.7.2)
*/
/* Fragment the data into proper blocks. */
if (cmd->c_datalen > 0) {
blksize = MIN(cmd->c_datalen, cmd->c_blklen);
blkcount = cmd->c_datalen / blksize;
if (cmd->c_datalen % blksize > 0) {
/* XXX: Split this command. (1.7.4) */
aprint_error_dev(sc->sc_dev,
"data not a multiple of %u bytes\n", blksize);
return EINVAL;
}
}
/* Check limit imposed by 9-bit block count. (1.7.2) */
if (blkcount > SDHC_BLOCK_COUNT_MAX) {
aprint_error_dev(sc->sc_dev, "too much data\n");
return EINVAL;
}
/* Prepare transfer mode register value. (2.2.5) */
mode = SDHC_BLOCK_COUNT_ENABLE;
if (ISSET(cmd->c_flags, SCF_CMD_READ))
mode |= SDHC_READ_MODE;
if (blkcount > 1) {
mode |= SDHC_MULTI_BLOCK_MODE;
/* XXX only for memory commands? */
mode |= SDHC_AUTO_CMD12_ENABLE;
}
if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
mode |= SDHC_DMA_ENABLE;
}
/*
* Prepare command register value. (2.2.6)
*/
command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
if (ISSET(cmd->c_flags, SCF_RSP_CRC))
command |= SDHC_CRC_CHECK_ENABLE;
if (ISSET(cmd->c_flags, SCF_RSP_IDX))
command |= SDHC_INDEX_CHECK_ENABLE;
if (cmd->c_data != NULL)
command |= SDHC_DATA_PRESENT_SELECT;
if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
command |= SDHC_NO_RESPONSE;
else if (ISSET(cmd->c_flags, SCF_RSP_136))
command |= SDHC_RESP_LEN_136;
else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
command |= SDHC_RESP_LEN_48_CHK_BUSY;
else
command |= SDHC_RESP_LEN_48;
/* Wait until command and data inhibit bits are clear. (1.5) */
error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
if (error)
return error;
DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
HDEVNAME(hp), blksize, blkcount, mode, command));
if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
}
mutex_enter(&hp->host_mtx);
if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
/* Alert the user not to remove the card. */
HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
}
/* Set DMA start address. */
if (ISSET(mode, SDHC_DMA_ENABLE))
HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
/*
* Start a CPU data transfer. Writing to the high order byte
* of the SDHC_COMMAND register triggers the SD command. (1.5)
*/
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
} else {
HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
HWRITE2(hp, SDHC_COMMAND, command);
}
mutex_exit(&hp->host_mtx);
return 0;
}
static void
sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
{
int error;
DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
MMC_R1(cmd->c_resp), cmd->c_datalen));
#ifdef SDHC_DEBUG
/* XXX I forgot why I wanted to know when this happens :-( */
if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
aprint_error_dev(hp->sc->sc_dev,
"CMD52/53 error response flags %#x\n",
MMC_R1(cmd->c_resp) & 0xff00);
}
#endif
if (cmd->c_dmamap != NULL)
error = sdhc_transfer_data_dma(hp, cmd);
else
error = sdhc_transfer_data_pio(hp, cmd);
if (error)
cmd->c_error = error;
SET(cmd->c_flags, SCF_ITSDONE);
DPRINTF(1,("%s: data transfer done (error=%d)\n",
HDEVNAME(hp), cmd->c_error));
}
static int
sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
{
bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
bus_addr_t posaddr;
bus_addr_t segaddr;
bus_size_t seglen;
u_int seg = 0;
int error = 0;
int status;
KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
for (;;) {
status = sdhc_wait_intr(hp,
SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
SDHC_DMA_TIMEOUT);
if (status & SDHC_TRANSFER_COMPLETE) {
break;
}
if (!status) {
error = ETIMEDOUT;
break;
}
if ((status & SDHC_DMA_INTERRUPT) == 0) {
continue;
}
/* DMA Interrupt (boundary crossing) */
segaddr = dm_segs[seg].ds_addr;
seglen = dm_segs[seg].ds_len;
mutex_enter(&hp->host_mtx);
posaddr = HREAD4(hp, SDHC_DMA_ADDR);
mutex_exit(&hp->host_mtx);
if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
continue;
}
mutex_enter(&hp->host_mtx);
if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
mutex_exit(&hp->host_mtx);
KASSERT(seg < cmd->c_dmamap->dm_nsegs);
}
return error;
}
static int
sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
{
uint8_t *data = cmd->c_data;
void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
u_int len, datalen;
u_int imask;
u_int pmask;
int error = 0;
if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
imask = SDHC_BUFFER_READ_READY;
pmask = SDHC_BUFFER_READ_ENABLE;
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
pio_func = esdhc_read_data_pio;
} else {
pio_func = sdhc_read_data_pio;
}
} else {
imask = SDHC_BUFFER_WRITE_READY;
pmask = SDHC_BUFFER_WRITE_ENABLE;
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
pio_func = esdhc_write_data_pio;
} else {
pio_func = sdhc_write_data_pio;
}
}
datalen = cmd->c_datalen;
KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
while (datalen > 0) {
if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
mutex_enter(&hp->intr_mtx);
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
} else {
HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
}
mutex_exit(&hp->intr_mtx);
if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
error = ETIMEDOUT;
break;
}
error = sdhc_wait_state(hp, pmask, pmask);
if (error)
break;
}
len = MIN(datalen, cmd->c_blklen);
(*pio_func)(hp, data, len);
DPRINTF(2,("%s: pio data transfer %u @ %p\n",
HDEVNAME(hp), len, data));
data += len;
datalen -= len;
}
if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
SDHC_TRANSFER_TIMEOUT))
error = ETIMEDOUT;
return error;
}
static void
sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
{
if (((__uintptr_t)data & 3) == 0) {
while (datalen > 3) {
*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
data += 4;
datalen -= 4;
}
if (datalen > 1) {
*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
data += 2;
datalen -= 2;
}
if (datalen > 0) {
*data = HREAD1(hp, SDHC_DATA);
data += 1;
datalen -= 1;
}
} else if (((__uintptr_t)data & 1) == 0) {
while (datalen > 1) {
*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
data += 2;
datalen -= 2;
}
if (datalen > 0) {
*data = HREAD1(hp, SDHC_DATA);
data += 1;
datalen -= 1;
}
} else {
while (datalen > 0) {
*data = HREAD1(hp, SDHC_DATA);
data += 1;
datalen -= 1;
}
}
}
static void
sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
{
if (((__uintptr_t)data & 3) == 0) {
while (datalen > 3) {
HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
data += 4;
datalen -= 4;
}
if (datalen > 1) {
HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
data += 2;
datalen -= 2;
}
if (datalen > 0) {
HWRITE1(hp, SDHC_DATA, *data);
data += 1;
datalen -= 1;
}
} else if (((__uintptr_t)data & 1) == 0) {
while (datalen > 1) {
HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
data += 2;
datalen -= 2;
}
if (datalen > 0) {
HWRITE1(hp, SDHC_DATA, *data);
data += 1;
datalen -= 1;
}
} else {
while (datalen > 0) {
HWRITE1(hp, SDHC_DATA, *data);
data += 1;
datalen -= 1;
}
}
}
static void
esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
{
uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
uint32_t v;
const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
size_t count = 0;
while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
if (count == 0) {
/*
* If we've drained "watermark" words, we need to wait
* a little bit so the read FIFO can refill.
*/
sdmmc_delay(10);
count = watermark;
}
v = HREAD4(hp, SDHC_DATA);
v = le32toh(v);
*(uint32_t *)data = v;
data += 4;
datalen -= 4;
status = HREAD2(hp, SDHC_NINTR_STATUS);
count--;
}
if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
if (count == 0) {
sdmmc_delay(10);
}
v = HREAD4(hp, SDHC_DATA);
v = le32toh(v);
do {
*data++ = v;
v >>= 8;
} while (--datalen > 0);
}
}
static void
esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
{
uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
uint32_t v;
const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
size_t count = watermark;
while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
if (count == 0) {
sdmmc_delay(10);
count = watermark;
}
v = *(uint32_t *)data;
v = htole32(v);
HWRITE4(hp, SDHC_DATA, v);
data += 4;
datalen -= 4;
status = HREAD2(hp, SDHC_NINTR_STATUS);
count--;
}
if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
if (count == 0) {
sdmmc_delay(10);
}
v = *(uint32_t *)data;
v = htole32(v);
HWRITE4(hp, SDHC_DATA, v);
}
}
/* Prepare for another command. */
static int
sdhc_soft_reset(struct sdhc_host *hp, int mask)
{
int timo;
DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
/* Request the reset. */
HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
/*
* If necessary, wait for the controller to set the bits to
* acknowledge the reset.
*/
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
for (timo = 10000; timo > 0; timo--) {
if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
break;
/* Short delay because I worry we may miss it... */
sdmmc_delay(1);
}
if (timo == 0)
return ETIMEDOUT;
}
/*
* Wait for the controller to clear the bits to indicate that
* the reset has completed.
*/
for (timo = 10; timo > 0; timo--) {
if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
break;
sdmmc_delay(10000);
}
if (timo == 0) {
DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
HREAD1(hp, SDHC_SOFTWARE_RESET)));
return ETIMEDOUT;
}
if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
}
return 0;
}
static int
sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
{
int status;
mask |= SDHC_ERROR_INTERRUPT;
mutex_enter(&hp->intr_mtx);
status = hp->intr_status & mask;
while (status == 0) {
if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
== EWOULDBLOCK) {
status |= SDHC_ERROR_INTERRUPT;
break;
}
status = hp->intr_status & mask;
}
hp->intr_status &= ~status;
DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
hp->intr_error_status));
/* Command timeout has higher priority than command complete. */
if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
hp->intr_error_status = 0;
hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
(void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
}
status = 0;
}
mutex_exit(&hp->intr_mtx);
return status;
}
/*
* Established by attachment driver at interrupt priority IPL_SDMMC.
*/
int
sdhc_intr(void *arg)
{
struct sdhc_softc *sc = (struct sdhc_softc *)arg;
struct sdhc_host *hp;
int done = 0;
uint16_t status;
uint16_t error;
/* We got an interrupt, but we don't know from which slot. */
for (size_t host = 0; host < sc->sc_nhosts; host++) {
hp = sc->sc_host[host];
if (hp == NULL)
continue;
if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
/* Find out which interrupts are pending. */
uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
status = xstatus;
error = xstatus >> 16;
if (error)
xstatus |= SDHC_ERROR_INTERRUPT;
else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
continue; /* no interrupt for us */
/* Acknowledge the interrupts we are about to handle. */
HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
} else {
/* Find out which interrupts are pending. */
error = 0;
status = HREAD2(hp, SDHC_NINTR_STATUS);
if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
continue; /* no interrupt for us */
/* Acknowledge the interrupts we are about to handle. */
HWRITE2(hp, SDHC_NINTR_STATUS, status);
if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
/* Acknowledge error interrupts. */
error = HREAD2(hp, SDHC_EINTR_STATUS);
HWRITE2(hp, SDHC_EINTR_STATUS, error);
}
}
DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
status, error));
mutex_enter(&hp->intr_mtx);
/* Claim this interrupt. */
done = 1;
/*
* Service error interrupts.
*/
if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
SDHC_DATA_TIMEOUT_ERROR)) {
hp->intr_error_status |= error;
hp->intr_status |= status;
cv_broadcast(&hp->intr_cv);
}
/*
* Wake up the sdmmc event thread to scan for cards.
*/
if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
sdmmc_needs_discover(hp->sdmmc);
if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
HCLR4(hp, SDHC_NINTR_STATUS_EN,
status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
}
}
/*
* Wake up the blocking process to service command
* related interrupt(s).
*/
if (ISSET(status, SDHC_COMMAND_COMPLETE|
SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
hp->intr_status |= status;
if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
}
cv_broadcast(&hp->intr_cv);
}
/*
* Service SD card interrupts.
*/
if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
&& ISSET(status, SDHC_CARD_INTERRUPT)) {
DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
sdmmc_card_intr(hp->sdmmc);
}
mutex_exit(&hp->intr_mtx);
}
return done;
}
#ifdef SDHC_DEBUG
void
sdhc_dump_regs(struct sdhc_host *hp)
{
printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
HREAD4(hp, SDHC_PRESENT_STATE));
if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
HREAD1(hp, SDHC_POWER_CTL));
printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
HREAD2(hp, SDHC_NINTR_STATUS));
printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
HREAD2(hp, SDHC_EINTR_STATUS));
printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
HREAD2(hp, SDHC_NINTR_STATUS_EN));
printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
HREAD2(hp, SDHC_EINTR_STATUS_EN));
printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
HREAD4(hp, SDHC_CAPABILITIES));
printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
HREAD4(hp, SDHC_MAX_CAPABILITIES));
}
#endif