NetBSD/sys/ufs/lfs/lfs_segment.c
perseant bc303e52cb Fix errors observed while trying to fill the filesystem with yesterday's
fixes:

- Write copies of bfree and avail in the CLEANERINFO block, so the
  cleaner doesn't have to guess which superblock has the current
  information (if indeed any do).

- Tighten up accounting of lfs_avail (more needs to be done).

- When cleansing indirect blocks of UNWRITTEN, make sure not to mark
  them clean, since they'll need to be rewritten later.
2000-07-04 22:30:37 +00:00

1868 lines
50 KiB
C

/* $NetBSD: lfs_segment.c,v 1.55 2000/07/04 22:30:37 perseant Exp $ */
/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Konrad E. Schroder <perseant@hhhh.org>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
*/
#define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/kernel.h>
#include <sys/resourcevar.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/vnode.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <miscfs/specfs/specdev.h>
#include <miscfs/fifofs/fifo.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/lfs/lfs.h>
#include <ufs/lfs/lfs_extern.h>
extern int count_lock_queue __P((void));
extern struct simplelock vnode_free_list_slock; /* XXX */
/*
* Determine if it's OK to start a partial in this segment, or if we need
* to go on to a new segment.
*/
#define LFS_PARTIAL_FITS(fs) \
((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
1 << (fs)->lfs_fsbtodb)
void lfs_callback __P((struct buf *));
int lfs_gather __P((struct lfs *, struct segment *,
struct vnode *, int (*) __P((struct lfs *, struct buf *))));
int lfs_gatherblock __P((struct segment *, struct buf *, int *));
void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
int lfs_match_fake __P((struct lfs *, struct buf *));
int lfs_match_data __P((struct lfs *, struct buf *));
int lfs_match_dindir __P((struct lfs *, struct buf *));
int lfs_match_indir __P((struct lfs *, struct buf *));
int lfs_match_tindir __P((struct lfs *, struct buf *));
void lfs_newseg __P((struct lfs *));
void lfs_shellsort __P((struct buf **, ufs_daddr_t *, int));
void lfs_supercallback __P((struct buf *));
void lfs_updatemeta __P((struct segment *));
int lfs_vref __P((struct vnode *));
void lfs_vunref __P((struct vnode *));
void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
int lfs_writeseg __P((struct lfs *, struct segment *));
void lfs_writesuper __P((struct lfs *, daddr_t));
int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
struct segment *sp, int dirops));
int lfs_allclean_wakeup; /* Cleaner wakeup address. */
int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
int lfs_dirvcount = 0; /* # active dirops */
/* Statistics Counters */
int lfs_dostats = 1;
struct lfs_stats lfs_stats;
/* op values to lfs_writevnodes */
#define VN_REG 0
#define VN_DIROP 1
#define VN_EMPTY 2
#define VN_CLEAN 3
#define LFS_MAX_ACTIVE 10
/*
* XXX KS - Set modification time on the Ifile, so the cleaner can
* read the fs mod time off of it. We don't set IN_UPDATE here,
* since we don't really need this to be flushed to disk (and in any
* case that wouldn't happen to the Ifile until we checkpoint).
*/
void
lfs_imtime(fs)
struct lfs *fs;
{
struct timespec ts;
struct inode *ip;
TIMEVAL_TO_TIMESPEC(&time, &ts);
ip = VTOI(fs->lfs_ivnode);
ip->i_ffs_mtime = ts.tv_sec;
ip->i_ffs_mtimensec = ts.tv_nsec;
}
/*
* Ifile and meta data blocks are not marked busy, so segment writes MUST be
* single threaded. Currently, there are two paths into lfs_segwrite, sync()
* and getnewbuf(). They both mark the file system busy. Lfs_vflush()
* explicitly marks the file system busy. So lfs_segwrite is safe. I think.
*/
#define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
#define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
#define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
int
lfs_vflush(vp)
struct vnode *vp;
{
struct inode *ip;
struct lfs *fs;
struct segment *sp;
struct buf *bp, *nbp, *tbp, *tnbp;
int error, s;
ip = VTOI(vp);
fs = VFSTOUFS(vp->v_mount)->um_lfs;
if(ip->i_flag & IN_CLEANING) {
#ifdef DEBUG_LFS
ivndebug(vp,"vflush/in_cleaning");
#endif
ip->i_flag &= ~IN_CLEANING;
if(ip->i_flag & (IN_MODIFIED | IN_ACCESSED)) {
fs->lfs_uinodes--;
} else
ip->i_flag |= IN_MODIFIED;
/*
* Toss any cleaning buffers that have real counterparts
* to avoid losing new data
*/
s = splbio();
for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
nbp = bp->b_vnbufs.le_next;
if(bp->b_flags & B_CALL) {
for(tbp=vp->v_dirtyblkhd.lh_first; tbp;
tbp=tnbp)
{
tnbp = tbp->b_vnbufs.le_next;
if(tbp->b_vp == bp->b_vp
&& tbp->b_lblkno == bp->b_lblkno
&& tbp != bp)
{
lfs_freebuf(bp);
}
}
}
}
splx(s);
}
/* If the node is being written, wait until that is done */
if(WRITEINPROG(vp)) {
#ifdef DEBUG_LFS
ivndebug(vp,"vflush/writeinprog");
#endif
tsleep(vp, PRIBIO+1, "lfs_vw", 0);
}
/* Protect against VXLOCK deadlock in vinvalbuf() */
lfs_seglock(fs, SEGM_SYNC);
/* If we're supposed to flush a freed inode, just toss it */
/* XXX - seglock, so these buffers can't be gathered, right? */
if(ip->i_ffs_mode == 0) {
printf("lfs_vflush: ino %d is freed, not flushing\n",
ip->i_number);
s = splbio();
for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
nbp = bp->b_vnbufs.le_next;
/* Copied from lfs_writeseg */
if (bp->b_flags & B_CALL) {
/* if B_CALL, it was created with newbuf */
lfs_freebuf(bp);
} else {
bremfree(bp);
bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
B_LOCKED | B_GATHERED);
bp->b_flags |= B_DONE;
reassignbuf(bp, vp);
brelse(bp);
}
}
splx(s);
if(ip->i_flag & IN_CLEANING)
fs->lfs_uinodes--;
if(ip->i_flag & (IN_MODIFIED | IN_ACCESSED))
fs->lfs_uinodes--;
ip->i_flag &= ~IN_ALLMOD;
printf("lfs_vflush: done not flushing ino %d\n",
ip->i_number);
lfs_segunlock(fs);
return 0;
}
SET_FLUSHING(fs,vp);
if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
CLR_FLUSHING(fs,vp);
lfs_segunlock(fs);
return error;
}
sp = fs->lfs_sp;
if (vp->v_dirtyblkhd.lh_first == NULL) {
lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
} else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
#ifdef DEBUG_LFS
ivndebug(vp,"vflush/clean");
#endif
lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
}
else if(lfs_dostats) {
if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & IN_ALLMOD))
++lfs_stats.vflush_invoked;
#ifdef DEBUG_LFS
ivndebug(vp,"vflush");
#endif
}
#ifdef DIAGNOSTIC
/* XXX KS This actually can happen right now, though it shouldn't(?) */
if(vp->v_flag & VDIROP) {
printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
/* panic("VDIROP being flushed...this can\'t happen"); */
}
if(vp->v_usecount<0) {
printf("usecount=%ld\n",vp->v_usecount);
panic("lfs_vflush: usecount<0");
}
#endif
do {
do {
if (vp->v_dirtyblkhd.lh_first != NULL)
lfs_writefile(fs, sp, vp);
} while (lfs_writeinode(fs, sp, ip));
} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
if(lfs_dostats) {
++lfs_stats.nwrites;
if (sp->seg_flags & SEGM_SYNC)
++lfs_stats.nsync_writes;
if (sp->seg_flags & SEGM_CKP)
++lfs_stats.ncheckpoints;
}
lfs_segunlock(fs);
CLR_FLUSHING(fs,vp);
return (0);
}
#ifdef DEBUG_LFS_VERBOSE
# define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
#else
# define vndebug(vp,str)
#endif
int
lfs_writevnodes(fs, mp, sp, op)
struct lfs *fs;
struct mount *mp;
struct segment *sp;
int op;
{
struct inode *ip;
struct vnode *vp;
int inodes_written=0, only_cleaning;
int needs_unlock;
#ifndef LFS_NO_BACKVP_HACK
/* BEGIN HACK */
#define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
#define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
#define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
/* Find last vnode. */
loop: for (vp = mp->mnt_vnodelist.lh_first;
vp && vp->v_mntvnodes.le_next != NULL;
vp = vp->v_mntvnodes.le_next);
for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
#else
loop:
for (vp = mp->mnt_vnodelist.lh_first;
vp != NULL;
vp = vp->v_mntvnodes.le_next) {
#endif
/*
* If the vnode that we are about to sync is no longer
* associated with this mount point, start over.
*/
if (vp->v_mount != mp)
goto loop;
ip = VTOI(vp);
if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
(op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
vndebug(vp,"dirop");
continue;
}
if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
vndebug(vp,"empty");
continue;
}
if (vp->v_type == VNON) {
continue;
}
if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
&& vp != fs->lfs_flushvp
&& !(ip->i_flag & IN_CLEANING)) {
vndebug(vp,"cleaning");
continue;
}
if (lfs_vref(vp)) {
vndebug(vp,"vref");
continue;
}
needs_unlock = 0;
if (VOP_ISLOCKED(vp)) {
if (vp != fs->lfs_ivnode &&
vp->v_lock.lk_lockholder != curproc->p_pid) {
#ifdef DEBUG_LFS
printf("lfs_writevnodes: not writing ino %d, locked by pid %d\n",
VTOI(vp)->i_number,
vp->v_lock.lk_lockholder);
#endif
lfs_vunref(vp);
continue;
}
} else if (vp != fs->lfs_ivnode) {
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
needs_unlock = 1;
}
only_cleaning = 0;
/*
* Write the inode/file if dirty and it's not the IFILE.
*/
if ((ip->i_flag & IN_ALLMOD) ||
(vp->v_dirtyblkhd.lh_first != NULL))
{
only_cleaning = ((ip->i_flag & IN_ALLMOD)==IN_CLEANING);
if(ip->i_number != LFS_IFILE_INUM
&& vp->v_dirtyblkhd.lh_first != NULL)
{
lfs_writefile(fs, sp, vp);
}
if(vp->v_dirtyblkhd.lh_first != NULL) {
if(WRITEINPROG(vp)) {
#ifdef DEBUG_LFS
ivndebug(vp,"writevnodes/write2");
#endif
} else if(!(ip->i_flag & IN_ALLMOD)) {
#ifdef DEBUG_LFS
printf("<%d>",ip->i_number);
#endif
ip->i_flag |= IN_MODIFIED;
++fs->lfs_uinodes;
}
}
(void) lfs_writeinode(fs, sp, ip);
inodes_written++;
}
if (needs_unlock)
VOP_UNLOCK(vp, 0);
if (lfs_clean_vnhead && only_cleaning)
lfs_vunref_head(vp);
else
lfs_vunref(vp);
}
return inodes_written;
}
int
lfs_segwrite(mp, flags)
struct mount *mp;
int flags; /* Do a checkpoint. */
{
struct buf *bp;
struct inode *ip;
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
SEGUSE *segusep;
CLEANERINFO *cip;
ufs_daddr_t ibno;
int do_ckp, error, i;
int writer_set = 0;
fs = VFSTOUFS(mp)->um_lfs;
if (fs->lfs_ronly)
return EROFS;
lfs_imtime(fs);
/*
* If we are not the cleaner, and we have fewer than lfs_minfreeseg
* clean segments, wait until cleaner writes.
*/
if(!(flags & SEGM_CLEAN)
&& (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
{
do {
if (fs->lfs_nclean <= fs->lfs_minfreeseg ||
fs->lfs_avail <= 0)
{
wakeup(&lfs_allclean_wakeup);
wakeup(&fs->lfs_nextseg);
error = tsleep(&fs->lfs_avail, PRIBIO + 1,
"lfs_avail", 0);
if (error) {
return (error);
}
}
} while (fs->lfs_nclean <= fs->lfs_minfreeseg ||
fs->lfs_avail <= 0);
}
/*
* Synchronize cleaner information
*/
LFS_CLEANERINFO(cip, fs, bp);
cip->bfree = fs->lfs_bfree;
cip->avail = fs->lfs_avail;
(void) VOP_BWRITE(bp);
/*
* Allocate a segment structure and enough space to hold pointers to
* the maximum possible number of buffers which can be described in a
* single summary block.
*/
do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
sp = fs->lfs_sp;
/*
* If lfs_flushvp is non-NULL, we are called from lfs_vflush,
* in which case we have to flush *all* buffers off of this vnode.
* We don't care about other nodes, but write any non-dirop nodes
* anyway in anticipation of another getnewvnode().
*
* If we're cleaning we only write cleaning and ifile blocks, and
* no dirops, since otherwise we'd risk corruption in a crash.
*/
if(sp->seg_flags & SEGM_CLEAN)
lfs_writevnodes(fs, mp, sp, VN_CLEAN);
else {
lfs_writevnodes(fs, mp, sp, VN_REG);
if(!fs->lfs_dirops || !fs->lfs_flushvp) {
while(fs->lfs_dirops)
if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
"lfs writer", 0)))
{
free(sp->bpp, M_SEGMENT);
free(sp, M_SEGMENT);
return (error);
}
fs->lfs_writer++;
writer_set=1;
lfs_writevnodes(fs, mp, sp, VN_DIROP);
((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
}
}
/*
* If we are doing a checkpoint, mark everything since the
* last checkpoint as no longer ACTIVE.
*/
if (do_ckp) {
for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
--ibno >= fs->lfs_cleansz; ) {
if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
panic("lfs_segwrite: ifile read");
segusep = (SEGUSE *)bp->b_data;
for (i = fs->lfs_sepb; i--; segusep++)
segusep->su_flags &= ~SEGUSE_ACTIVE;
/* But the current segment is still ACTIVE */
segusep = (SEGUSE *)bp->b_data;
if (datosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
(ibno-fs->lfs_cleansz))
segusep[datosn(fs, fs->lfs_curseg) %
fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
error = VOP_BWRITE(bp);
}
}
if (do_ckp || fs->lfs_doifile) {
redo:
vp = fs->lfs_ivnode;
vget(vp, LK_EXCLUSIVE | LK_CANRECURSE | LK_RETRY);
ip = VTOI(vp);
if (vp->v_dirtyblkhd.lh_first != NULL)
lfs_writefile(fs, sp, vp);
(void)lfs_writeinode(fs, sp, ip);
vput(vp);
if (lfs_writeseg(fs, sp) && do_ckp)
goto redo;
} else {
(void) lfs_writeseg(fs, sp);
}
/*
* If the I/O count is non-zero, sleep until it reaches zero.
* At the moment, the user's process hangs around so we can
* sleep.
*/
fs->lfs_doifile = 0;
if(writer_set && --fs->lfs_writer==0)
wakeup(&fs->lfs_dirops);
if(lfs_dostats) {
++lfs_stats.nwrites;
if (sp->seg_flags & SEGM_SYNC)
++lfs_stats.nsync_writes;
if (sp->seg_flags & SEGM_CKP)
++lfs_stats.ncheckpoints;
}
lfs_segunlock(fs);
return (0);
}
/*
* Write the dirty blocks associated with a vnode.
*/
void
lfs_writefile(fs, sp, vp)
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
{
struct buf *bp;
struct finfo *fip;
IFILE *ifp;
if (sp->seg_bytes_left < fs->lfs_bsize ||
sp->sum_bytes_left < sizeof(struct finfo))
(void) lfs_writeseg(fs, sp);
sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
if(vp->v_flag & VDIROP)
((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
fip = sp->fip;
fip->fi_nblocks = 0;
fip->fi_ino = VTOI(vp)->i_number;
LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
fip->fi_version = ifp->if_version;
brelse(bp);
if(sp->seg_flags & SEGM_CLEAN)
{
lfs_gather(fs, sp, vp, lfs_match_fake);
/*
* For a file being flushed, we need to write *all* blocks.
* This means writing the cleaning blocks first, and then
* immediately following with any non-cleaning blocks.
* The same is true of the Ifile since checkpoints assume
* that all valid Ifile blocks are written.
*/
if(IS_FLUSHING(fs,vp) || VTOI(vp)->i_number == LFS_IFILE_INUM)
lfs_gather(fs, sp, vp, lfs_match_data);
} else
lfs_gather(fs, sp, vp, lfs_match_data);
/*
* It may not be necessary to write the meta-data blocks at this point,
* as the roll-forward recovery code should be able to reconstruct the
* list.
*
* We have to write them anyway, though, under two conditions: (1) the
* vnode is being flushed (for reuse by vinvalbuf); or (2) we are
* checkpointing.
*/
if(lfs_writeindir
|| IS_FLUSHING(fs,vp)
|| (sp->seg_flags & SEGM_CKP))
{
lfs_gather(fs, sp, vp, lfs_match_indir);
lfs_gather(fs, sp, vp, lfs_match_dindir);
lfs_gather(fs, sp, vp, lfs_match_tindir);
}
fip = sp->fip;
if (fip->fi_nblocks != 0) {
sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
sp->start_lbp = &sp->fip->fi_blocks[0];
} else {
sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
--((SEGSUM *)(sp->segsum))->ss_nfinfo;
}
}
int
lfs_writeinode(fs, sp, ip)
struct lfs *fs;
struct segment *sp;
struct inode *ip;
{
struct buf *bp, *ibp;
struct dinode *cdp;
IFILE *ifp;
SEGUSE *sup;
ufs_daddr_t daddr;
daddr_t *daddrp;
ino_t ino;
int error, i, ndx;
int redo_ifile = 0;
struct timespec ts;
int gotblk=0;
if (!(ip->i_flag & IN_ALLMOD))
return(0);
/* Allocate a new inode block if necessary. */
if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
/* Allocate a new segment if necessary. */
if (sp->seg_bytes_left < fs->lfs_bsize ||
sp->sum_bytes_left < sizeof(ufs_daddr_t))
(void) lfs_writeseg(fs, sp);
/* Get next inode block. */
daddr = fs->lfs_offset;
fs->lfs_offset += fsbtodb(fs, 1);
sp->ibp = *sp->cbpp++ =
getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
gotblk++;
/* Zero out inode numbers */
for (i = 0; i < INOPB(fs); ++i)
((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
++sp->start_bpp;
fs->lfs_avail -= fsbtodb(fs, 1);
/* Set remaining space counters. */
sp->seg_bytes_left -= fs->lfs_bsize;
sp->sum_bytes_left -= sizeof(ufs_daddr_t);
ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
sp->ninodes / INOPB(fs) - 1;
((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
}
/* Update the inode times and copy the inode onto the inode page. */
if (ip->i_flag & (IN_CLEANING | IN_MODIFIED | IN_ACCESSED))
--fs->lfs_uinodes;
TIMEVAL_TO_TIMESPEC(&time, &ts);
LFS_ITIMES(ip, &ts, &ts, &ts);
/*
* If this is the Ifile, and we've already written the Ifile in this
* partial segment, just overwrite it (it's not on disk yet) and
* continue.
*
* XXX we know that the bp that we get the second time around has
* already been gathered.
*/
if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
*(sp->idp) = ip->i_din.ffs_din;
return 0;
}
bp = sp->ibp;
cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
*cdp = ip->i_din.ffs_din;
/*
* If we are cleaning, ensure that we don't write UNWRITTEN disk
* addresses to disk.
*/
if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
#ifdef DEBUG_LFS
printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
#endif
for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
daddrp++) {
if (*daddrp == UNWRITTEN) {
#ifdef DEBUG_LFS
printf("lfs_writeinode: wiping UNWRITTEN\n");
#endif
*daddrp = 0;
}
}
}
/* XXX IN_ALLMOD */
if(ip->i_flag & IN_CLEANING)
ip->i_flag &= ~IN_CLEANING;
else {
ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE |
IN_ACCESSED);
if (ip->i_lfs_effnblks == ip->i_ffs_blocks) {
ip->i_flag &= ~IN_MODIFIED;
} else if (ip->i_flag & IN_MODIFIED)
fs->lfs_uinodes++;
}
if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
sp->idp = ((struct dinode *)bp->b_data) +
(sp->ninodes % INOPB(fs));
if(gotblk) {
bp->b_flags |= B_LOCKED;
brelse(bp);
}
/* Increment inode count in segment summary block. */
++((SEGSUM *)(sp->segsum))->ss_ninos;
/* If this page is full, set flag to allocate a new page. */
if (++sp->ninodes % INOPB(fs) == 0)
sp->ibp = NULL;
/*
* If updating the ifile, update the super-block. Update the disk
* address and access times for this inode in the ifile.
*/
ino = ip->i_number;
if (ino == LFS_IFILE_INUM) {
daddr = fs->lfs_idaddr;
fs->lfs_idaddr = bp->b_blkno;
} else {
LFS_IENTRY(ifp, fs, ino, ibp);
daddr = ifp->if_daddr;
ifp->if_daddr = bp->b_blkno;
#ifdef LFS_DEBUG_NEXTFREE
if(ino > 3 && ifp->if_nextfree) {
vprint("lfs_writeinode",ITOV(ip));
printf("lfs_writeinode: updating free ino %d\n",
ip->i_number);
}
#endif
error = VOP_BWRITE(ibp);
}
/*
* No need to update segment usage if there was no former inode
* address or if the last inode address is in the current
* partial segment.
*/
if (daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)
printf("lfs_writeinode: last inode addr in current pseg "
"(ino %d daddr 0x%x)\n", ino, daddr);
if (daddr != LFS_UNUSED_DADDR) {
LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
#ifdef DIAGNOSTIC
if (sup->su_nbytes < DINODE_SIZE) {
printf("lfs_writeinode: negative bytes "
"(segment %d short by %d)\n",
datosn(fs, daddr),
(int)DINODE_SIZE - sup->su_nbytes);
panic("lfs_writeinode: negative bytes");
sup->su_nbytes = DINODE_SIZE;
}
#endif
sup->su_nbytes -= DINODE_SIZE;
redo_ifile =
(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
error = VOP_BWRITE(bp);
}
return (redo_ifile);
}
int
lfs_gatherblock(sp, bp, sptr)
struct segment *sp;
struct buf *bp;
int *sptr;
{
struct lfs *fs;
int version;
/*
* If full, finish this segment. We may be doing I/O, so
* release and reacquire the splbio().
*/
#ifdef DIAGNOSTIC
if (sp->vp == NULL)
panic ("lfs_gatherblock: Null vp in segment");
#endif
fs = sp->fs;
if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
sp->seg_bytes_left < bp->b_bcount) {
if (sptr)
splx(*sptr);
lfs_updatemeta(sp);
version = sp->fip->fi_version;
(void) lfs_writeseg(fs, sp);
sp->fip->fi_version = version;
sp->fip->fi_ino = VTOI(sp->vp)->i_number;
/* Add the current file to the segment summary. */
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
sp->sum_bytes_left -=
sizeof(struct finfo) - sizeof(ufs_daddr_t);
if (sptr)
*sptr = splbio();
return(1);
}
#ifdef DEBUG
if(bp->b_flags & B_GATHERED) {
printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
sp->fip->fi_ino, bp->b_lblkno);
return(0);
}
#endif
/* Insert into the buffer list, update the FINFO block. */
bp->b_flags |= B_GATHERED;
*sp->cbpp++ = bp;
sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
sp->sum_bytes_left -= sizeof(ufs_daddr_t);
sp->seg_bytes_left -= bp->b_bcount;
return(0);
}
int
lfs_gather(fs, sp, vp, match)
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
int (*match) __P((struct lfs *, struct buf *));
{
struct buf *bp;
int s, count=0;
sp->vp = vp;
s = splbio();
#ifndef LFS_NO_BACKBUF_HACK
loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
#else /* LFS_NO_BACKBUF_HACK */
/* This is a hack to see if ordering the blocks in LFS makes a difference. */
# define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
# define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
# define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
/* Find last buffer. */
loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
bp = bp->b_vnbufs.le_next);
for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
#endif /* LFS_NO_BACKBUF_HACK */
if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
continue;
if(vp->v_type == VBLK) {
/* For block devices, just write the blocks. */
/* XXX Do we really need to even do this? */
#ifdef DEBUG_LFS
if(count==0)
printf("BLK(");
printf(".");
#endif
/* Get the block before bwrite, so we don't corrupt the free list */
bp->b_flags |= B_BUSY;
bremfree(bp);
bwrite(bp);
} else {
#ifdef DIAGNOSTIC
if ((bp->b_flags & (B_CALL|B_INVAL))==B_INVAL) {
printf("lfs_gather: lbn %d is B_INVAL\n",
bp->b_lblkno);
VOP_PRINT(bp->b_vp);
}
if (!(bp->b_flags & B_DELWRI))
panic("lfs_gather: bp not B_DELWRI");
if (!(bp->b_flags & B_LOCKED)) {
printf("lfs_gather: lbn %d blk %d not B_LOCKED\n", bp->b_lblkno, bp->b_blkno);
VOP_PRINT(bp->b_vp);
panic("lfs_gather: bp not B_LOCKED");
}
#endif
if (lfs_gatherblock(sp, bp, &s)) {
goto loop;
}
}
count++;
}
splx(s);
#ifdef DEBUG_LFS
if(vp->v_type == VBLK && count)
printf(")\n");
#endif
lfs_updatemeta(sp);
sp->vp = NULL;
return count;
}
/*
* Update the metadata that points to the blocks listed in the FINFO
* array.
*/
void
lfs_updatemeta(sp)
struct segment *sp;
{
SEGUSE *sup;
struct buf *bp;
struct lfs *fs;
struct vnode *vp;
struct indir a[NIADDR + 2], *ap;
struct inode *ip;
ufs_daddr_t daddr, lbn, off;
daddr_t ooff;
int error, i, nblocks, num;
int bb;
vp = sp->vp;
nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
if (nblocks < 0)
panic("This is a bad thing\n");
if (vp == NULL || nblocks == 0)
return;
/* Sort the blocks. */
/*
* XXX KS - We have to sort even if the blocks come from the
* cleaner, because there might be other pending blocks on the
* same inode...and if we don't sort, and there are fragments
* present, blocks may be written in the wrong place.
*/
/* if (!(sp->seg_flags & SEGM_CLEAN)) */
lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
/*
* Record the length of the last block in case it's a fragment.
* If there are indirect blocks present, they sort last. An
* indirect block will be lfs_bsize and its presence indicates
* that you cannot have fragments.
*/
sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
/*
* Assign disk addresses, and update references to the logical
* block and the segment usage information.
*/
fs = sp->fs;
for (i = nblocks; i--; ++sp->start_bpp) {
lbn = *sp->start_lbp++;
(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
}
bb = fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
fs->lfs_offset += bb;
error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
if (error)
panic("lfs_updatemeta: ufs_bmaparray %d", error);
ip = VTOI(vp);
switch (num) {
case 0:
ooff = ip->i_ffs_db[lbn];
#ifdef DEBUG
if (ooff == 0) {
printf("lfs_updatemeta[1]: warning: writing "
"ino %d lbn %d at 0x%x, was 0x0\n",
ip->i_number, lbn, off);
}
#endif
if (ooff == UNWRITTEN)
ip->i_ffs_blocks += bb;
ip->i_ffs_db[lbn] = off;
break;
case 1:
ooff = ip->i_ffs_ib[a[0].in_off];
#ifdef DEBUG
if (ooff == 0) {
printf("lfs_updatemeta[2]: warning: writing "
"ino %d lbn %d at 0x%x, was 0x0\n",
ip->i_number, lbn, off);
}
#endif
if (ooff == UNWRITTEN)
ip->i_ffs_blocks += bb;
ip->i_ffs_ib[a[0].in_off] = off;
break;
default:
ap = &a[num - 1];
if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
panic("lfs_updatemeta: bread bno %d",
ap->in_lbn);
ooff = ((ufs_daddr_t *)bp->b_data)[ap->in_off];
#if DEBUG
if (ooff == 0) {
printf("lfs_updatemeta[3]: warning: writing "
"ino %d lbn %d at 0x%x, was 0x0\n",
ip->i_number, lbn, off);
}
#endif
if (ooff == UNWRITTEN)
ip->i_ffs_blocks += bb;
((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
VOP_BWRITE(bp);
}
#ifdef DEBUG
if (daddr >= fs->lfs_lastpseg && daddr <= off) {
printf("lfs_updatemeta: ino %d, lbn %d, addr = %x "
"in same pseg\n", VTOI(sp->vp)->i_number,
(*sp->start_bpp)->b_lblkno, daddr);
}
#endif
/* Update segment usage information. */
if (daddr > 0) {
LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
#ifdef DIAGNOSTIC
if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
/* XXX -- Change to a panic. */
printf("lfs_updatemeta: negative bytes "
"(segment %d short by %ld)\n",
datosn(fs, daddr),
(*sp->start_bpp)->b_bcount -
sup->su_nbytes);
printf("lfs_updatemeta: ino %d, lbn %d, "
"addr = %x\n", VTOI(sp->vp)->i_number,
(*sp->start_bpp)->b_lblkno, daddr);
panic("lfs_updatemeta: negative bytes");
sup->su_nbytes = (*sp->start_bpp)->b_bcount;
}
#endif
sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
error = VOP_BWRITE(bp);
}
}
}
/*
* Start a new segment.
*/
int
lfs_initseg(fs)
struct lfs *fs;
{
struct segment *sp;
SEGUSE *sup;
SEGSUM *ssp;
struct buf *bp;
int repeat;
sp = fs->lfs_sp;
repeat = 0;
/* Advance to the next segment. */
if (!LFS_PARTIAL_FITS(fs)) {
/* lfs_avail eats the remaining space */
fs->lfs_avail -= fs->lfs_dbpseg - (fs->lfs_offset -
fs->lfs_curseg);
/* Wake up any cleaning procs waiting on this file system. */
wakeup(&lfs_allclean_wakeup);
wakeup(&fs->lfs_nextseg);
lfs_newseg(fs);
repeat = 1;
fs->lfs_offset = fs->lfs_curseg;
sp->seg_number = datosn(fs, fs->lfs_curseg);
sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
/*
* If the segment contains a superblock, update the offset
* and summary address to skip over it.
*/
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
if (sup->su_flags & SEGUSE_SUPERBLOCK) {
fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
sp->seg_bytes_left -= LFS_SBPAD;
}
brelse(bp);
} else {
sp->seg_number = datosn(fs, fs->lfs_curseg);
sp->seg_bytes_left = (fs->lfs_dbpseg -
(fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
}
fs->lfs_lastpseg = fs->lfs_offset;
sp->fs = fs;
sp->ibp = NULL;
sp->idp = NULL;
sp->ninodes = 0;
/* Get a new buffer for SEGSUM and enter it into the buffer list. */
sp->cbpp = sp->bpp;
*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
fs->lfs_offset, LFS_SUMMARY_SIZE);
sp->segsum = (*sp->cbpp)->b_data;
bzero(sp->segsum, LFS_SUMMARY_SIZE);
sp->start_bpp = ++sp->cbpp;
fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
/* Set point to SEGSUM, initialize it. */
ssp = sp->segsum;
ssp->ss_next = fs->lfs_nextseg;
ssp->ss_nfinfo = ssp->ss_ninos = 0;
ssp->ss_magic = SS_MAGIC;
/* Set pointer to first FINFO, initialize it. */
sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
sp->fip->fi_nblocks = 0;
sp->start_lbp = &sp->fip->fi_blocks[0];
sp->fip->fi_lastlength = 0;
sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
return(repeat);
}
/*
* Return the next segment to write.
*/
void
lfs_newseg(fs)
struct lfs *fs;
{
CLEANERINFO *cip;
SEGUSE *sup;
struct buf *bp;
int curseg, isdirty, sn;
LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
sup->su_nbytes = 0;
sup->su_nsums = 0;
sup->su_ninos = 0;
(void) VOP_BWRITE(bp);
LFS_CLEANERINFO(cip, fs, bp);
--cip->clean;
++cip->dirty;
fs->lfs_nclean = cip->clean;
(void) VOP_BWRITE(bp);
fs->lfs_lastseg = fs->lfs_curseg;
fs->lfs_curseg = fs->lfs_nextseg;
for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
sn = (sn + 1) % fs->lfs_nseg;
if (sn == curseg)
panic("lfs_nextseg: no clean segments");
LFS_SEGENTRY(sup, fs, sn, bp);
isdirty = sup->su_flags & SEGUSE_DIRTY;
brelse(bp);
if (!isdirty)
break;
}
++fs->lfs_nactive;
fs->lfs_nextseg = sntoda(fs, sn);
if(lfs_dostats) {
++lfs_stats.segsused;
}
}
int
lfs_writeseg(fs, sp)
struct lfs *fs;
struct segment *sp;
{
extern int locked_queue_count;
extern long locked_queue_bytes;
struct buf **bpp, *bp, *cbp, *newbp;
SEGUSE *sup;
SEGSUM *ssp;
dev_t i_dev;
u_long *datap, *dp;
int do_again, i, nblocks, s;
#ifdef LFS_TRACK_IOS
int j;
#endif
int (*strategy)__P((void *));
struct vop_strategy_args vop_strategy_a;
u_short ninos;
struct vnode *devvp;
char *p;
struct vnode *vn;
struct inode *ip;
daddr_t *daddrp;
int changed;
#if defined(DEBUG) && defined(LFS_PROPELLER)
static int propeller;
char propstring[4] = "-\\|/";
printf("%c\b",propstring[propeller++]);
if(propeller==4)
propeller = 0;
#endif
/*
* If there are no buffers other than the segment summary to write
* and it is not a checkpoint, don't do anything. On a checkpoint,
* even if there aren't any buffers, you need to write the superblock.
*/
if ((nblocks = sp->cbpp - sp->bpp) == 1)
return (0);
i_dev = VTOI(fs->lfs_ivnode)->i_dev;
devvp = VTOI(fs->lfs_ivnode)->i_devvp;
/* Update the segment usage information. */
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
/* Loop through all blocks, except the segment summary. */
for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
if((*bpp)->b_vp != devvp)
sup->su_nbytes += (*bpp)->b_bcount;
}
ssp = (SEGSUM *)sp->segsum;
ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
/* sup->su_nbytes += LFS_SUMMARY_SIZE; */
sup->su_lastmod = time.tv_sec;
sup->su_ninos += ninos;
++sup->su_nsums;
fs->lfs_dmeta += (btodb(LFS_SUMMARY_SIZE) + fsbtodb(fs, ninos));
fs->lfs_avail -= btodb(LFS_SUMMARY_SIZE);
do_again = !(bp->b_flags & B_GATHERED);
(void)VOP_BWRITE(bp);
/*
* Mark blocks B_BUSY, to prevent then from being changed between
* the checksum computation and the actual write.
*
* If we are cleaning, check indirect blocks for UNWRITTEN, and if
* there are any, replace them with copies that have UNASSIGNED
* instead.
*/
for (bpp = sp->bpp, i = nblocks - 1; i--;) {
++bpp;
if((*bpp)->b_flags & B_CALL)
continue;
bp = *bpp;
again:
s = splbio();
if(bp->b_flags & B_BUSY) {
#ifdef DEBUG
printf("lfs_writeseg: avoiding potential data "
"summary corruption for ino %d, lbn %d\n",
VTOI(bp->b_vp)->i_number, bp->b_lblkno);
#endif
bp->b_flags |= B_WANTED;
tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
splx(s);
goto again;
}
bp->b_flags |= B_BUSY;
splx(s);
/* Check and replace indirect block UNWRITTEN bogosity */
if(bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
VTOI(bp->b_vp)->i_ffs_blocks !=
VTOI(bp->b_vp)->i_lfs_effnblks) {
#ifdef DEBUG_LFS
printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
VTOI(bp->b_vp)->i_number,
VTOI(bp->b_vp)->i_lfs_effnblks,
VTOI(bp->b_vp)->i_ffs_blocks);
#endif
/* Make a copy we'll make changes to */
newbp = lfs_newbuf(bp->b_vp, bp->b_lblkno,
bp->b_bcount);
newbp->b_blkno = bp->b_blkno;
memcpy(newbp->b_data, bp->b_data,
newbp->b_bcount);
*bpp = newbp;
changed = 0;
for (daddrp = (daddr_t *)(newbp->b_data);
daddrp < (daddr_t *)(newbp->b_data +
newbp->b_bcount); daddrp++) {
if (*daddrp == UNWRITTEN) {
++changed;
#ifdef DEBUG_LFS
printf("lfs_writeseg: replacing UNWRITTEN\n");
#endif
*daddrp = 0;
}
}
/*
* Get rid of the old buffer. Don't mark it clean,
* though, if it still has dirty data on it.
*/
if (changed) {
bp->b_flags &= ~(B_ERROR | B_GATHERED);
if (bp->b_flags & B_CALL)
lfs_freebuf(bp);
else
brelse(bp);
} else {
bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
B_LOCKED | B_GATHERED);
if (bp->b_flags & B_CALL)
lfs_freebuf(bp);
else {
bremfree(bp);
bp->b_flags |= B_DONE;
reassignbuf(bp, bp->b_vp);
brelse(bp);
}
}
}
}
/*
* Compute checksum across data and then across summary; the first
* block (the summary block) is skipped. Set the create time here
* so that it's guaranteed to be later than the inode mod times.
*
* XXX
* Fix this to do it inline, instead of malloc/copy.
*/
datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
for (bpp = sp->bpp, i = nblocks - 1; i--;) {
if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
panic("lfs_writeseg: copyin failed [1]: "
"ino %d blk %d",
VTOI((*bpp)->b_vp)->i_number,
(*bpp)->b_lblkno);
} else
*dp++ = ((u_long *)(*bpp)->b_data)[0];
}
ssp->ss_create = time.tv_sec;
ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
ssp->ss_sumsum =
cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
free(datap, M_SEGMENT);
fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
strategy = devvp->v_op[VOFFSET(vop_strategy)];
/*
* When we simply write the blocks we lose a rotation for every block
* written. To avoid this problem, we allocate memory in chunks, copy
* the buffers into the chunk and write the chunk. CHUNKSIZE is the
* largest size I/O devices can handle.
* When the data is copied to the chunk, turn off the B_LOCKED bit
* and brelse the buffer (which will move them to the LRU list). Add
* the B_CALL flag to the buffer header so we can count I/O's for the
* checkpoints and so we can release the allocated memory.
*
* XXX
* This should be removed if the new virtual memory system allows us to
* easily make the buffers contiguous in kernel memory and if that's
* fast enough.
*/
#define CHUNKSIZE MAXPHYS
if(devvp==NULL)
panic("devvp is NULL");
for (bpp = sp->bpp,i = nblocks; i;) {
cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
cbp->b_dev = i_dev;
cbp->b_flags |= B_ASYNC | B_BUSY;
cbp->b_bcount = 0;
#ifdef DIAGNOSTIC
if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEV_BSIZE) != datosn(fs,cbp->b_blkno)) {
panic("lfs_writeseg: Segment overwrite");
}
#endif
s = splbio();
if(fs->lfs_iocount >= LFS_THROTTLE) {
tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
}
++fs->lfs_iocount;
#ifdef LFS_TRACK_IOS
for(j=0;j<LFS_THROTTLE;j++) {
if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
fs->lfs_pending[j] = cbp->b_blkno;
break;
}
}
#endif /* LFS_TRACK_IOS */
for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
bp = *bpp;
if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
break;
/*
* Fake buffers from the cleaner are marked as B_INVAL.
* We need to copy the data from user space rather than
* from the buffer indicated.
* XXX == what do I do on an error?
*/
if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
if (copyin(bp->b_saveaddr, p, bp->b_bcount))
panic("lfs_writeseg: copyin failed [2]");
} else
bcopy(bp->b_data, p, bp->b_bcount);
p += bp->b_bcount;
cbp->b_bcount += bp->b_bcount;
if (bp->b_flags & B_LOCKED) {
--locked_queue_count;
locked_queue_bytes -= bp->b_bufsize;
}
bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
B_LOCKED | B_GATHERED);
vn = bp->b_vp;
if (bp->b_flags & B_CALL) {
/* if B_CALL, it was created with newbuf */
lfs_freebuf(bp);
} else {
bremfree(bp);
bp->b_flags |= B_DONE;
if(vn)
reassignbuf(bp, vn);
brelse(bp);
}
if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
bp->b_flags &= ~B_NEEDCOMMIT;
wakeup(bp);
}
bpp++;
/*
* If this is the last block for this vnode, but
* there are other blocks on its dirty list,
* set IN_MODIFIED/IN_CLEANING depending on what
* sort of block. Only do this for our mount point,
* not for, e.g., inode blocks that are attached to
* the devvp.
*/
if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
&& (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
vn->v_mount == fs->lfs_ivnode->v_mount)
{
ip = VTOI(vn);
#ifdef DEBUG_LFS
printf("lfs_writeseg: marking ino %d\n",ip->i_number);
#endif
if(!(ip->i_flag & (IN_CLEANING | IN_MODIFIED |
IN_ACCESSED))) {
fs->lfs_uinodes++;
if(bp->b_flags & B_CALL)
ip->i_flag |= IN_CLEANING;
else
ip->i_flag |= IN_MODIFIED;
}
}
/* if(vn->v_dirtyblkhd.lh_first == NULL) */
wakeup(vn);
}
++cbp->b_vp->v_numoutput;
splx(s);
/*
* XXXX This is a gross and disgusting hack. Since these
* buffers are physically addressed, they hang off the
* device vnode (devvp). As a result, they have no way
* of getting to the LFS superblock or lfs structure to
* keep track of the number of I/O's pending. So, I am
* going to stuff the fs into the saveaddr field of
* the buffer (yuk).
*/
cbp->b_saveaddr = (caddr_t)fs;
vop_strategy_a.a_desc = VDESC(vop_strategy);
vop_strategy_a.a_bp = cbp;
(strategy)(&vop_strategy_a);
}
/*
* XXX
* Vinvalbuf can move locked buffers off the locked queue
* and we have no way of knowing about this. So, after
* doing a big write, we recalculate how many buffers are
* really still left on the locked queue.
*/
lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
wakeup(&locked_queue_count);
if(lfs_dostats) {
++lfs_stats.psegwrites;
lfs_stats.blocktot += nblocks - 1;
if (fs->lfs_sp->seg_flags & SEGM_SYNC)
++lfs_stats.psyncwrites;
if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
++lfs_stats.pcleanwrites;
lfs_stats.cleanblocks += nblocks - 1;
}
}
return (lfs_initseg(fs) || do_again);
}
void
lfs_writesuper(fs, daddr)
struct lfs *fs;
daddr_t daddr;
{
struct buf *bp;
dev_t i_dev;
int (*strategy) __P((void *));
int s;
struct vop_strategy_args vop_strategy_a;
#ifdef LFS_CANNOT_ROLLFW
/*
* If we can write one superblock while another is in
* progress, we risk not having a complete checkpoint if we crash.
* So, block here if a superblock write is in progress.
*/
s = splbio();
while(fs->lfs_sbactive) {
tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
}
fs->lfs_sbactive = daddr;
splx(s);
#endif
i_dev = VTOI(fs->lfs_ivnode)->i_dev;
strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
/* Set timestamp of this version of the superblock */
fs->lfs_tstamp = time.tv_sec;
/* Checksum the superblock and copy it into a buffer. */
fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
bp->b_dev = i_dev;
bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
bp->b_iodone = lfs_supercallback;
/* XXX KS - same nasty hack as above */
bp->b_saveaddr = (caddr_t)fs;
vop_strategy_a.a_desc = VDESC(vop_strategy);
vop_strategy_a.a_bp = bp;
s = splbio();
++bp->b_vp->v_numoutput;
++fs->lfs_iocount;
splx(s);
(strategy)(&vop_strategy_a);
}
/*
* Logical block number match routines used when traversing the dirty block
* chain.
*/
int
lfs_match_fake(fs, bp)
struct lfs *fs;
struct buf *bp;
{
return (bp->b_flags & B_CALL);
}
int
lfs_match_data(fs, bp)
struct lfs *fs;
struct buf *bp;
{
return (bp->b_lblkno >= 0);
}
int
lfs_match_indir(fs, bp)
struct lfs *fs;
struct buf *bp;
{
int lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
}
int
lfs_match_dindir(fs, bp)
struct lfs *fs;
struct buf *bp;
{
int lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
}
int
lfs_match_tindir(fs, bp)
struct lfs *fs;
struct buf *bp;
{
int lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
}
/*
* XXX - The only buffers that are going to hit these functions are the
* segment write blocks, or the segment summaries, or the superblocks.
*
* All of the above are created by lfs_newbuf, and so do not need to be
* released via brelse.
*/
void
lfs_callback(bp)
struct buf *bp;
{
struct lfs *fs;
#ifdef LFS_TRACK_IOS
int j;
#endif
fs = (struct lfs *)bp->b_saveaddr;
#ifdef DIAGNOSTIC
if (fs->lfs_iocount == 0)
panic("lfs_callback: zero iocount\n");
#endif
if (--fs->lfs_iocount < LFS_THROTTLE)
wakeup(&fs->lfs_iocount);
#ifdef LFS_TRACK_IOS
for(j=0;j<LFS_THROTTLE;j++) {
if(fs->lfs_pending[j]==bp->b_blkno) {
fs->lfs_pending[j] = LFS_UNUSED_DADDR;
wakeup(&(fs->lfs_pending[j]));
break;
}
}
#endif /* LFS_TRACK_IOS */
lfs_freebuf(bp);
}
void
lfs_supercallback(bp)
struct buf *bp;
{
struct lfs *fs;
fs = (struct lfs *)bp->b_saveaddr;
#ifdef LFS_CANNOT_ROLLFW
fs->lfs_sbactive = 0;
wakeup(&fs->lfs_sbactive);
#endif
if (--fs->lfs_iocount < LFS_THROTTLE)
wakeup(&fs->lfs_iocount);
lfs_freebuf(bp);
}
/*
* Shellsort (diminishing increment sort) from Data Structures and
* Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
* see also Knuth Vol. 3, page 84. The increments are selected from
* formula (8), page 95. Roughly O(N^3/2).
*/
/*
* This is our own private copy of shellsort because we want to sort
* two parallel arrays (the array of buffer pointers and the array of
* logical block numbers) simultaneously. Note that we cast the array
* of logical block numbers to a unsigned in this routine so that the
* negative block numbers (meta data blocks) sort AFTER the data blocks.
*/
void
lfs_shellsort(bp_array, lb_array, nmemb)
struct buf **bp_array;
ufs_daddr_t *lb_array;
int nmemb;
{
static int __rsshell_increments[] = { 4, 1, 0 };
int incr, *incrp, t1, t2;
struct buf *bp_temp;
u_long lb_temp;
for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
for (t1 = incr; t1 < nmemb; ++t1)
for (t2 = t1 - incr; t2 >= 0;)
if (lb_array[t2] > lb_array[t2 + incr]) {
lb_temp = lb_array[t2];
lb_array[t2] = lb_array[t2 + incr];
lb_array[t2 + incr] = lb_temp;
bp_temp = bp_array[t2];
bp_array[t2] = bp_array[t2 + incr];
bp_array[t2 + incr] = bp_temp;
t2 -= incr;
} else
break;
}
/*
* Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
*/
int
lfs_vref(vp)
struct vnode *vp;
{
/*
* If we return 1 here during a flush, we risk vinvalbuf() not
* being able to flush all of the pages from this vnode, which
* will cause it to panic. So, return 0 if a flush is in progress.
*/
if (vp->v_flag & VXLOCK) {
if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
return 0;
}
return(1);
}
return (vget(vp, 0));
}
/*
* This is vrele except that we do not want to VOP_INACTIVE this vnode. We
* inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
*/
void
lfs_vunref(vp)
struct vnode *vp;
{
/*
* Analogous to lfs_vref, if the node is flushing, fake it.
*/
if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
return;
}
simple_lock(&vp->v_interlock);
#ifdef DIAGNOSTIC
if(vp->v_usecount<=0) {
printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
panic("lfs_vunref: v_usecount<0");
}
#endif
vp->v_usecount--;
if (vp->v_usecount > 0) {
simple_unlock(&vp->v_interlock);
return;
}
/*
* insert at tail of LRU list
*/
simple_lock(&vnode_free_list_slock);
if (vp->v_holdcnt > 0)
TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
else
TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
simple_unlock(&vnode_free_list_slock);
simple_unlock(&vp->v_interlock);
}
/*
* We use this when we have vnodes that were loaded in solely for cleaning.
* There is no reason to believe that these vnodes will be referenced again
* soon, since the cleaning process is unrelated to normal filesystem
* activity. Putting cleaned vnodes at the tail of the list has the effect
* of flushing the vnode LRU. So, put vnodes that were loaded only for
* cleaning at the head of the list, instead.
*/
void
lfs_vunref_head(vp)
struct vnode *vp;
{
simple_lock(&vp->v_interlock);
#ifdef DIAGNOSTIC
if(vp->v_usecount==0) {
panic("lfs_vunref: v_usecount<0");
}
#endif
vp->v_usecount--;
if (vp->v_usecount > 0) {
simple_unlock(&vp->v_interlock);
return;
}
/*
* insert at head of LRU list
*/
simple_lock(&vnode_free_list_slock);
TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
simple_unlock(&vnode_free_list_slock);
simple_unlock(&vp->v_interlock);
}