512 lines
15 KiB
C
512 lines
15 KiB
C
/* $NetBSD: alpha_reloc.c,v 1.29 2005/12/24 20:59:30 perry Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2001 Wasabi Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the NetBSD Project by
|
|
* Wasabi Systems, Inc.
|
|
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright 1996, 1997, 1998, 1999 John D. Polstra.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#ifndef lint
|
|
__RCSID("$NetBSD: alpha_reloc.c,v 1.29 2005/12/24 20:59:30 perry Exp $");
|
|
#endif /* not lint */
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <string.h>
|
|
|
|
#include "rtld.h"
|
|
#include "debug.h"
|
|
|
|
#ifdef RTLD_DEBUG_ALPHA
|
|
#define adbg(x) xprintf x
|
|
#else
|
|
#define adbg(x) /* nothing */
|
|
#endif
|
|
|
|
void _rtld_bind_start(void);
|
|
void _rtld_bind_start_old(void);
|
|
void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
|
|
caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
|
|
static inline int _rtld_relocate_plt_object(const Obj_Entry *,
|
|
const Elf_Rela *, Elf_Addr *);
|
|
|
|
void
|
|
_rtld_setup_pltgot(const Obj_Entry *obj)
|
|
{
|
|
uint32_t word0;
|
|
|
|
/*
|
|
* The PLTGOT on the Alpha looks like this:
|
|
*
|
|
* PLT HEADER
|
|
* .
|
|
* . 32 bytes
|
|
* .
|
|
* PLT ENTRY #0
|
|
* .
|
|
* . 12 bytes
|
|
* .
|
|
* PLT ENTRY #1
|
|
* .
|
|
* . 12 bytes
|
|
* .
|
|
* etc.
|
|
*
|
|
* The old-format entries look like (displacements filled in
|
|
* by the linker):
|
|
*
|
|
* ldah $28, 0($31) # 0x279f0000
|
|
* lda $28, 0($28) # 0x239c0000
|
|
* br $31, plt0 # 0xc3e00000
|
|
*
|
|
* The new-format entries look like:
|
|
*
|
|
* br $28, plt0 # 0xc3800000
|
|
* # 0x00000000
|
|
* # 0x00000000
|
|
*
|
|
* What we do is fetch the first PLT entry and check to
|
|
* see the first word of it matches the first word of the
|
|
* old format. If so, we use a binding routine that can
|
|
* handle the old format, otherwise we use a binding routine
|
|
* that handles the new format.
|
|
*
|
|
* Note that this is done on a per-object basis, we can mix
|
|
* and match shared objects build with both the old and new
|
|
* linker.
|
|
*/
|
|
word0 = *(uint32_t *)(((char *) obj->pltgot) + 32);
|
|
if ((word0 & 0xffff0000) == 0x279f0000) {
|
|
/* Old PLT entry format. */
|
|
adbg(("ALPHA: object %p has old PLT format\n", obj));
|
|
obj->pltgot[2] = (Elf_Addr) &_rtld_bind_start_old;
|
|
obj->pltgot[3] = (Elf_Addr) obj;
|
|
} else {
|
|
/* New PLT entry format. */
|
|
adbg(("ALPHA: object %p has new PLT format\n", obj));
|
|
obj->pltgot[2] = (Elf_Addr) &_rtld_bind_start;
|
|
obj->pltgot[3] = (Elf_Addr) obj;
|
|
}
|
|
|
|
__asm volatile("imb");
|
|
}
|
|
|
|
/*
|
|
* It is possible for the compiler to emit relocations for unaligned data.
|
|
* We handle this situation with these inlines.
|
|
*/
|
|
#define RELOC_ALIGNED_P(x) \
|
|
(((uintptr_t)(x) & (sizeof(void *) - 1)) == 0)
|
|
|
|
static inline Elf_Addr
|
|
load_ptr(void *where)
|
|
{
|
|
Elf_Addr res;
|
|
|
|
memcpy(&res, where, sizeof(res));
|
|
|
|
return (res);
|
|
}
|
|
|
|
static inline void
|
|
store_ptr(void *where, Elf_Addr val)
|
|
{
|
|
|
|
memcpy(where, &val, sizeof(val));
|
|
}
|
|
|
|
void
|
|
_rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
|
|
{
|
|
const Elf_Rela *rela = 0, *relalim;
|
|
Elf_Addr relasz = 0;
|
|
Elf_Addr *where;
|
|
|
|
for (; dynp->d_tag != DT_NULL; dynp++) {
|
|
switch (dynp->d_tag) {
|
|
case DT_RELA:
|
|
rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
|
|
break;
|
|
case DT_RELASZ:
|
|
relasz = dynp->d_un.d_val;
|
|
break;
|
|
}
|
|
}
|
|
relalim = (const Elf_Rela *)((caddr_t)rela + relasz);
|
|
for (; rela < relalim; rela++) {
|
|
where = (Elf_Addr *)(relocbase + rela->r_offset);
|
|
/* XXX For some reason I see a few GLOB_DAT relocs here. */
|
|
*where += (Elf_Addr)relocbase;
|
|
}
|
|
}
|
|
|
|
int
|
|
_rtld_relocate_nonplt_objects(const Obj_Entry *obj)
|
|
{
|
|
const Elf_Rela *rela;
|
|
#define COMBRELOC
|
|
#ifdef COMBRELOC
|
|
unsigned long lastsym = -1;
|
|
#endif
|
|
Elf_Addr target = -1;
|
|
|
|
for (rela = obj->rela; rela < obj->relalim; rela++) {
|
|
Elf_Addr *where;
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
Elf_Addr tmp;
|
|
unsigned long symnum;
|
|
|
|
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
|
|
symnum = ELF_R_SYM(rela->r_info);
|
|
|
|
switch (ELF_R_TYPE(rela->r_info)) {
|
|
case R_TYPE(NONE):
|
|
break;
|
|
|
|
case R_TYPE(REFQUAD):
|
|
case R_TYPE(GLOB_DAT):
|
|
#ifdef COMBRELOC
|
|
if (symnum != lastsym) {
|
|
#endif
|
|
def = _rtld_find_symdef(symnum, obj, &defobj,
|
|
false);
|
|
if (def == NULL)
|
|
return -1;
|
|
target = (Elf_Addr)(defobj->relocbase +
|
|
def->st_value);
|
|
#ifdef COMBRELOC
|
|
lastsym = symnum;
|
|
}
|
|
#endif
|
|
|
|
tmp = target + rela->r_addend;
|
|
if (__predict_true(RELOC_ALIGNED_P(where))) {
|
|
if (*where != tmp)
|
|
*where = tmp;
|
|
} else {
|
|
if (load_ptr(where) != tmp)
|
|
store_ptr(where, tmp);
|
|
}
|
|
rdbg(("REFQUAD/GLOB_DAT %s in %s --> %p in %s",
|
|
obj->strtab + obj->symtab[symnum].st_name,
|
|
obj->path, (void *)tmp, defobj->path));
|
|
break;
|
|
|
|
case R_TYPE(RELATIVE):
|
|
if (__predict_true(RELOC_ALIGNED_P(where)))
|
|
*where += (Elf_Addr)obj->relocbase;
|
|
else
|
|
store_ptr(where,
|
|
load_ptr(where) + (Elf_Addr)obj->relocbase);
|
|
rdbg(("RELATIVE in %s --> %p", obj->path,
|
|
(void *)*where));
|
|
break;
|
|
|
|
case R_TYPE(COPY):
|
|
/*
|
|
* These are deferred until all other relocations have
|
|
* been done. All we do here is make sure that the
|
|
* COPY relocation is not in a shared library. They
|
|
* are allowed only in executable files.
|
|
*/
|
|
if (obj->isdynamic) {
|
|
_rtld_error(
|
|
"%s: Unexpected R_COPY relocation in shared library",
|
|
obj->path);
|
|
return -1;
|
|
}
|
|
rdbg(("COPY (avoid in main)"));
|
|
break;
|
|
|
|
default:
|
|
rdbg(("sym = %lu, type = %lu, offset = %p, "
|
|
"addend = %p, contents = %p, symbol = %s",
|
|
symnum, (u_long)ELF_R_TYPE(rela->r_info),
|
|
(void *)rela->r_offset, (void *)rela->r_addend,
|
|
(void *)load_ptr(where),
|
|
obj->strtab + obj->symtab[symnum].st_name));
|
|
_rtld_error("%s: Unsupported relocation type %ld "
|
|
"in non-PLT relocations\n",
|
|
obj->path, (u_long) ELF_R_TYPE(rela->r_info));
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
_rtld_relocate_plt_lazy(const Obj_Entry *obj)
|
|
{
|
|
const Elf_Rela *rela;
|
|
|
|
if (!obj->relocbase)
|
|
return 0;
|
|
|
|
for (rela = obj->pltrela; rela < obj->pltrelalim; rela++) {
|
|
Elf_Addr *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
|
|
|
|
assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
|
|
|
|
/* Just relocate the GOT slots pointing into the PLT */
|
|
*where += (Elf_Addr)obj->relocbase;
|
|
rdbg(("fixup !main in %s --> %p", obj->path, (void *)*where));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
_rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela, Elf_Addr *tp)
|
|
{
|
|
Elf_Addr *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
|
|
Elf_Addr new_value;
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
Elf_Addr stubaddr;
|
|
|
|
assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
|
|
|
|
def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true);
|
|
if (def == NULL)
|
|
return -1;
|
|
|
|
new_value = (Elf_Addr)(defobj->relocbase + def->st_value);
|
|
rdbg(("bind now/fixup in %s --> old=%p new=%p",
|
|
defobj->strtab + def->st_name, (void *)*where, (void *)new_value));
|
|
|
|
if ((stubaddr = *where) != new_value) {
|
|
int64_t delta, idisp;
|
|
uint32_t insn[3], *stubptr;
|
|
int insncnt;
|
|
Elf_Addr pc;
|
|
|
|
/* Point this GOT entry at the target. */
|
|
*where = new_value;
|
|
|
|
/*
|
|
* Alpha shared objects may have multiple GOTs, each
|
|
* of which may point to this entry in the PLT. But,
|
|
* we only have a reference to the first GOT entry which
|
|
* points to this PLT entry. In order to avoid having to
|
|
* re-bind this call every time a non-first GOT entry is
|
|
* used, we will attempt to patch up the PLT entry to
|
|
* reference the target, rather than the binder.
|
|
*
|
|
* When the PLT stub gets control, PV contains the address
|
|
* of the PLT entry. Each PLT entry has room for 3 insns.
|
|
* If the displacement of the target from PV fits in a signed
|
|
* 32-bit integer, we can simply add it to PV. Otherwise,
|
|
* we must load the GOT entry itself into PV.
|
|
*
|
|
* Note if the shared object uses the old PLT format, then
|
|
* we cannot patch up the PLT safely, and so we skip it
|
|
* in that case[*].
|
|
*
|
|
* [*] Actually, if we're not doing lazy-binding, then
|
|
* we *can* (and do) patch up this PLT entry; the PLTGOT
|
|
* thunk won't yet point to any binder entry point, and
|
|
* so this test will fail as it would for the new PLT
|
|
* entry format.
|
|
*/
|
|
if (obj->pltgot[2] == (Elf_Addr) &_rtld_bind_start_old) {
|
|
rdbg((" old PLT format"));
|
|
goto out;
|
|
}
|
|
|
|
delta = new_value - stubaddr;
|
|
rdbg((" stubaddr=%p, where-stubaddr=%ld, delta=%ld",
|
|
(void *)stubaddr, (long)where - (long)stubaddr,
|
|
(long)delta));
|
|
insncnt = 0;
|
|
if ((int32_t)delta == delta) {
|
|
/*
|
|
* We can adjust PV with an LDA, LDAH sequence.
|
|
*
|
|
* First, build an LDA insn to adjust the low 16
|
|
* bits.
|
|
*/
|
|
insn[insncnt++] = 0x08 << 26 | 27 << 21 | 27 << 16 |
|
|
(delta & 0xffff);
|
|
rdbg((" LDA $27,%d($27)", (int16_t)delta));
|
|
/*
|
|
* Adjust the delta to account for the effects of
|
|
* the LDA, including sign-extension.
|
|
*/
|
|
delta -= (int16_t)delta;
|
|
if (delta != 0) {
|
|
/*
|
|
* Build an LDAH instruction to adjust the
|
|
* high 16 bits.
|
|
*/
|
|
insn[insncnt++] = 0x09 << 26 | 27 << 21 |
|
|
27 << 16 | ((delta >> 16) & 0xffff);
|
|
rdbg((" LDAH $27,%d($27)",
|
|
(int16_t)(delta >> 16)));
|
|
}
|
|
} else {
|
|
int64_t dhigh;
|
|
|
|
/* We must load the GOT entry. */
|
|
delta = (Elf_Addr)where - stubaddr;
|
|
|
|
/*
|
|
* If the GOT entry is too far away from the PLT
|
|
* entry, then we can't patch up the PLT entry.
|
|
* This PLT entry will have to be bound for each
|
|
* GOT entry except for the first one. This program
|
|
* will still run, albeit very slowly. It is very
|
|
* unlikely that this case will ever happen in
|
|
* practice.
|
|
*/
|
|
if ((int32_t)delta != delta) {
|
|
rdbg((" PLT stub too far from GOT to relocate"));
|
|
goto out;
|
|
}
|
|
dhigh = delta - (int16_t)delta;
|
|
if (dhigh != 0) {
|
|
/*
|
|
* Build an LDAH instruction to adjust the
|
|
* high 16 bits.
|
|
*/
|
|
insn[insncnt++] = 0x09 << 26 | 27 << 21 |
|
|
27 << 16 | ((dhigh >> 16) & 0xffff);
|
|
rdbg((" LDAH $27,%d($27)",
|
|
(int16_t)(dhigh >> 16)));
|
|
}
|
|
/* Build an LDQ to load the GOT entry. */
|
|
insn[insncnt++] = 0x29 << 26 | 27 << 21 |
|
|
27 << 16 | (delta & 0xffff);
|
|
rdbg((" LDQ $27,%d($27)",
|
|
(int16_t)delta));
|
|
}
|
|
|
|
/*
|
|
* Now, build a JMP or BR insn to jump to the target. If
|
|
* the displacement fits in a sign-extended 21-bit field,
|
|
* we can use the more efficient BR insn. Otherwise, we
|
|
* have to jump indirect through PV.
|
|
*/
|
|
pc = stubaddr + (4 * (insncnt + 1));
|
|
idisp = (int64_t)(new_value - pc) >> 2;
|
|
if (-0x100000 <= idisp && idisp < 0x100000) {
|
|
insn[insncnt++] = 0x30 << 26 | 31 << 21 |
|
|
(idisp & 0x1fffff);
|
|
rdbg((" BR $31,%p", (void *)new_value));
|
|
} else {
|
|
insn[insncnt++] = 0x1a << 26 | 31 << 21 |
|
|
27 << 16 | (idisp & 0x3fff);
|
|
rdbg((" JMP $31,($27),%d",
|
|
(int)(idisp & 0x3fff)));
|
|
}
|
|
|
|
/*
|
|
* Fill in the tail of the PLT entry first, for reentrancy.
|
|
* Until we have overwritten the first insn (an unconditional
|
|
* branch), the remaining insns have no effect.
|
|
*/
|
|
stubptr = (uint32_t *)stubaddr;
|
|
while (insncnt > 1) {
|
|
insncnt--;
|
|
stubptr[insncnt] = insn[insncnt];
|
|
}
|
|
/*
|
|
* Commit the tail of the insn sequence to memory
|
|
* before overwriting the first insn.
|
|
*/
|
|
__asm volatile("wmb" ::: "memory");
|
|
stubptr[0] = insn[0];
|
|
/*
|
|
* I-stream will be sync'd when we either return from
|
|
* the binder (lazy bind case) or when the PLTGOT thunk
|
|
* is patched up (bind-now case).
|
|
*/
|
|
}
|
|
out:
|
|
if (tp)
|
|
*tp = new_value;
|
|
|
|
return 0;
|
|
}
|
|
|
|
caddr_t
|
|
_rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
|
|
{
|
|
const Elf_Rela *rela = (const Elf_Rela *)((caddr_t)obj->pltrela + reloff);
|
|
Elf_Addr result;
|
|
int err;
|
|
|
|
err = _rtld_relocate_plt_object(obj, rela, &result);
|
|
if (err)
|
|
_rtld_die();
|
|
|
|
return (caddr_t)result;
|
|
}
|
|
|
|
int
|
|
_rtld_relocate_plt_objects(const Obj_Entry *obj)
|
|
{
|
|
const Elf_Rela *rela;
|
|
|
|
for (rela = obj->pltrela; rela < obj->pltrelalim; rela++)
|
|
if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|