NetBSD/sys/kern/kern_lock.c
pooka abf11c212d Define a new lockmgr flag LK_RESURRECT which can be used in
conjunction with LK_DRAIN.  This has the same effect as LK_DRAIN
except it atomically does NOT mark the lock as drained.  This
guarantees that when we got the lock, we were the last one currently
waiting for the lock.

Use LK_DRAIN|LK_RESURRECT in vclean() to make sure there are no
waiters for the lock.  This should fix behaviour theoretized to be
caused by vfs_subr.c 1.289 which caused vclean() to run into
completion and free the vnode before all lock-waiters had been
processed.  Should therefore fix the "simple_lock: unitialized lock"
problems seen recently.

thanks to Juergen Hannken-Illjes for some analysis of the problem
and Erik Bertelsen for testing
2007-07-29 12:40:37 +00:00

1684 lines
42 KiB
C

/* $NetBSD: kern_lock.c,v 1.118 2007/07/29 12:40:37 pooka Exp $ */
/*-
* Copyright (c) 1999, 2000, 2006, 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center, and by Andrew Doran.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Ross Harvey.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1995
* The Regents of the University of California. All rights reserved.
*
* This code contains ideas from software contributed to Berkeley by
* Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
* System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.118 2007/07/29 12:40:37 pooka Exp $");
#include "opt_multiprocessor.h"
#include "opt_ddb.h"
#define __MUTEX_PRIVATE
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/lock.h>
#include <sys/systm.h>
#include <sys/lockdebug.h>
#include <machine/cpu.h>
#include <machine/stdarg.h>
#include <dev/lockstat.h>
#if defined(LOCKDEBUG)
#include <sys/syslog.h>
/*
* note that stdarg.h and the ansi style va_start macro is used for both
* ansi and traditional c compiles.
* XXX: this requires that stdarg.h define: va_alist and va_dcl
*/
#include <machine/stdarg.h>
void lock_printf(const char *fmt, ...)
__attribute__((__format__(__printf__,1,2)));
static int acquire(volatile struct lock **, int *, int, int, int, uintptr_t);
int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
#ifdef DDB
#include <ddb/ddbvar.h>
#include <machine/db_machdep.h>
#include <ddb/db_command.h>
#include <ddb/db_interface.h>
#endif
#endif /* defined(LOCKDEBUG) */
/*
* Locking primitives implementation.
* Locks provide shared/exclusive synchronization.
*/
#if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
#if defined(MULTIPROCESSOR) /* { */
#define COUNT_CPU(cpu_id, x) \
curcpu()->ci_spin_locks += (x)
#else
u_long spin_locks;
#define COUNT_CPU(cpu_id, x) spin_locks += (x)
#endif /* MULTIPROCESSOR */ /* } */
#define COUNT(lkp, l, cpu_id, x) \
do { \
if ((lkp)->lk_flags & LK_SPIN) \
COUNT_CPU((cpu_id), (x)); \
else \
(l)->l_locks += (x); \
} while (/*CONSTCOND*/0)
#else
#define COUNT(lkp, p, cpu_id, x)
#define COUNT_CPU(cpu_id, x)
#endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
#define INTERLOCK_ACQUIRE(lkp, flags, s) \
do { \
if ((flags) & LK_SPIN) \
s = splhigh(); \
simple_lock(&(lkp)->lk_interlock); \
} while (/*CONSTCOND*/ 0)
#define INTERLOCK_RELEASE(lkp, flags, s) \
do { \
simple_unlock(&(lkp)->lk_interlock); \
if ((flags) & LK_SPIN) \
splx(s); \
} while (/*CONSTCOND*/ 0)
#ifdef DDB /* { */
#if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
int simple_lock_debugger = 1; /* more serious on MP */
#else
int simple_lock_debugger = 0;
#endif
#define SLOCK_DEBUGGER() if (simple_lock_debugger && db_onpanic) Debugger()
#define SLOCK_TRACE() \
db_stack_trace_print((db_expr_t)__builtin_frame_address(0), \
true, 65535, "", lock_printf);
#else
#define SLOCK_DEBUGGER() /* nothing */
#define SLOCK_TRACE() /* nothing */
#endif /* } */
#if defined(LOCKDEBUG)
#if defined(DDB)
#define SPINLOCK_SPINCHECK_DEBUGGER if (db_onpanic) Debugger()
#else
#define SPINLOCK_SPINCHECK_DEBUGGER /* nothing */
#endif
#define SPINLOCK_SPINCHECK_DECL \
/* 32-bits of count -- wrap constitutes a "spinout" */ \
uint32_t __spinc = 0
#define SPINLOCK_SPINCHECK \
do { \
if (++__spinc == 0) { \
lock_printf("LK_SPIN spinout, excl %d, share %d\n", \
lkp->lk_exclusivecount, lkp->lk_sharecount); \
if (lkp->lk_exclusivecount) \
lock_printf("held by CPU %lu\n", \
(u_long) lkp->lk_cpu); \
if (lkp->lk_lock_file) \
lock_printf("last locked at %s:%d\n", \
lkp->lk_lock_file, lkp->lk_lock_line); \
if (lkp->lk_unlock_file) \
lock_printf("last unlocked at %s:%d\n", \
lkp->lk_unlock_file, lkp->lk_unlock_line); \
SLOCK_TRACE(); \
SPINLOCK_SPINCHECK_DEBUGGER; \
} \
} while (/*CONSTCOND*/ 0)
#else
#define SPINLOCK_SPINCHECK_DECL /* nothing */
#define SPINLOCK_SPINCHECK /* nothing */
#endif /* LOCKDEBUG && DDB */
#define RETURN_ADDRESS ((uintptr_t)__builtin_return_address(0))
/*
* Acquire a resource.
*/
static int
acquire(volatile struct lock **lkpp, int *s, int extflags,
int drain, int wanted, uintptr_t ra)
{
int error;
volatile struct lock *lkp = *lkpp;
LOCKSTAT_TIMER(slptime);
LOCKSTAT_FLAG(lsflag);
KASSERT(drain || (wanted & LK_WAIT_NONZERO) == 0);
if (extflags & LK_SPIN) {
int interlocked;
SPINLOCK_SPINCHECK_DECL;
if (!drain) {
lkp->lk_waitcount++;
lkp->lk_flags |= LK_WAIT_NONZERO;
}
for (interlocked = 1;;) {
SPINLOCK_SPINCHECK;
if ((lkp->lk_flags & wanted) != 0) {
if (interlocked) {
INTERLOCK_RELEASE(lkp, LK_SPIN, *s);
interlocked = 0;
}
SPINLOCK_SPIN_HOOK;
} else if (interlocked) {
break;
} else {
INTERLOCK_ACQUIRE(lkp, LK_SPIN, *s);
interlocked = 1;
}
}
if (!drain) {
lkp->lk_waitcount--;
if (lkp->lk_waitcount == 0)
lkp->lk_flags &= ~LK_WAIT_NONZERO;
}
KASSERT((lkp->lk_flags & wanted) == 0);
error = 0; /* sanity */
} else {
LOCKSTAT_ENTER(lsflag);
for (error = 0; (lkp->lk_flags & wanted) != 0; ) {
if (drain)
lkp->lk_flags |= LK_WAITDRAIN;
else {
lkp->lk_waitcount++;
lkp->lk_flags |= LK_WAIT_NONZERO;
}
/* XXX Cast away volatile. */
LOCKSTAT_START_TIMER(lsflag, slptime);
error = ltsleep(drain ?
(volatile const void *)&lkp->lk_flags :
(volatile const void *)lkp, lkp->lk_prio,
lkp->lk_wmesg, lkp->lk_timo, &lkp->lk_interlock);
LOCKSTAT_STOP_TIMER(lsflag, slptime);
LOCKSTAT_EVENT_RA(lsflag, (void *)(uintptr_t)lkp,
LB_LOCKMGR | LB_SLEEP1, 1, slptime, ra);
if (!drain) {
lkp->lk_waitcount--;
if (lkp->lk_waitcount == 0)
lkp->lk_flags &= ~LK_WAIT_NONZERO;
}
if (error)
break;
if (extflags & LK_SLEEPFAIL) {
error = ENOLCK;
break;
}
if (lkp->lk_newlock != NULL) {
simple_lock(&lkp->lk_newlock->lk_interlock);
simple_unlock(&lkp->lk_interlock);
if (lkp->lk_waitcount == 0)
wakeup(&lkp->lk_newlock);
*lkpp = lkp = lkp->lk_newlock;
}
}
LOCKSTAT_EXIT(lsflag);
}
return error;
}
#define SETHOLDER(lkp, pid, lid, cpu_id) \
do { \
if ((lkp)->lk_flags & LK_SPIN) \
(lkp)->lk_cpu = cpu_id; \
else { \
(lkp)->lk_lockholder = pid; \
(lkp)->lk_locklwp = lid; \
} \
} while (/*CONSTCOND*/0)
#define WEHOLDIT(lkp, pid, lid, cpu_id) \
(((lkp)->lk_flags & LK_SPIN) != 0 ? \
((lkp)->lk_cpu == (cpu_id)) : \
((lkp)->lk_lockholder == (pid) && (lkp)->lk_locklwp == (lid)))
#define WAKEUP_WAITER(lkp) \
do { \
if (((lkp)->lk_flags & (LK_SPIN | LK_WAIT_NONZERO)) == \
LK_WAIT_NONZERO) { \
wakeup((lkp)); \
} \
} while (/*CONSTCOND*/0)
#if defined(LOCKDEBUG) /* { */
#if defined(MULTIPROCESSOR) /* { */
struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
#define SPINLOCK_LIST_LOCK() \
__cpu_simple_lock(&spinlock_list_slock.lock_data)
#define SPINLOCK_LIST_UNLOCK() \
__cpu_simple_unlock(&spinlock_list_slock.lock_data)
#else
#define SPINLOCK_LIST_LOCK() /* nothing */
#define SPINLOCK_LIST_UNLOCK() /* nothing */
#endif /* MULTIPROCESSOR */ /* } */
_TAILQ_HEAD(, struct lock, volatile) spinlock_list =
TAILQ_HEAD_INITIALIZER(spinlock_list);
#define HAVEIT(lkp) \
do { \
if ((lkp)->lk_flags & LK_SPIN) { \
int sp = splhigh(); \
SPINLOCK_LIST_LOCK(); \
TAILQ_INSERT_TAIL(&spinlock_list, (lkp), lk_list); \
SPINLOCK_LIST_UNLOCK(); \
splx(sp); \
} \
} while (/*CONSTCOND*/0)
#define DONTHAVEIT(lkp) \
do { \
if ((lkp)->lk_flags & LK_SPIN) { \
int sp = splhigh(); \
SPINLOCK_LIST_LOCK(); \
TAILQ_REMOVE(&spinlock_list, (lkp), lk_list); \
SPINLOCK_LIST_UNLOCK(); \
splx(sp); \
} \
} while (/*CONSTCOND*/0)
#else
#define HAVEIT(lkp) /* nothing */
#define DONTHAVEIT(lkp) /* nothing */
#endif /* LOCKDEBUG */ /* } */
#if defined(LOCKDEBUG)
/*
* Lock debug printing routine; can be configured to print to console
* or log to syslog.
*/
void
lock_printf(const char *fmt, ...)
{
char b[150];
va_list ap;
va_start(ap, fmt);
if (lock_debug_syslog)
vlog(LOG_DEBUG, fmt, ap);
else {
vsnprintf(b, sizeof(b), fmt, ap);
printf_nolog("%s", b);
}
va_end(ap);
}
#endif /* LOCKDEBUG */
static void
lockpanic(volatile struct lock *lkp, const char *fmt, ...)
{
char s[150], b[150];
#ifdef LOCKDEBUG
static const char *locktype[] = {
"*0*", "shared", "exclusive", "upgrade", "exclupgrade",
"downgrade", "release", "drain", "exclother", "*9*",
"*10*", "*11*", "*12*", "*13*", "*14*", "*15*"
};
#endif
va_list ap;
va_start(ap, fmt);
vsnprintf(s, sizeof(s), fmt, ap);
va_end(ap);
bitmask_snprintf(lkp->lk_flags, __LK_FLAG_BITS, b, sizeof(b));
panic("%s ("
#ifdef LOCKDEBUG
"type %s "
#endif
"flags %s, sharecount %d, exclusivecount %d, "
"recurselevel %d, waitcount %d, wmesg %s"
#ifdef LOCKDEBUG
", lock_file %s, unlock_file %s, lock_line %d, unlock_line %d"
#endif
")\n",
s,
#ifdef LOCKDEBUG
locktype[lkp->lk_flags & LK_TYPE_MASK],
#endif
b, lkp->lk_sharecount, lkp->lk_exclusivecount,
lkp->lk_recurselevel, lkp->lk_waitcount, lkp->lk_wmesg
#ifdef LOCKDEBUG
, lkp->lk_lock_file, lkp->lk_unlock_file, lkp->lk_lock_line,
lkp->lk_unlock_line
#endif
);
}
/*
* Transfer any waiting processes from one lock to another.
*/
void
transferlockers(struct lock *from, struct lock *to)
{
KASSERT(from != to);
KASSERT((from->lk_flags & LK_WAITDRAIN) == 0);
if (from->lk_waitcount == 0)
return;
from->lk_newlock = to;
wakeup((void *)from);
tsleep((void *)&from->lk_newlock, from->lk_prio, "lkxfer", 0);
from->lk_newlock = NULL;
from->lk_flags &= ~(LK_WANT_EXCL | LK_WANT_UPGRADE);
KASSERT(from->lk_waitcount == 0);
}
/*
* Initialize a lock; required before use.
*/
void
lockinit(struct lock *lkp, pri_t prio, const char *wmesg, int timo, int flags)
{
memset(lkp, 0, sizeof(struct lock));
simple_lock_init(&lkp->lk_interlock);
lkp->lk_flags = flags & LK_EXTFLG_MASK;
if (flags & LK_SPIN)
lkp->lk_cpu = LK_NOCPU;
else {
lkp->lk_lockholder = LK_NOPROC;
lkp->lk_newlock = NULL;
lkp->lk_prio = prio;
lkp->lk_timo = timo;
}
lkp->lk_wmesg = wmesg; /* just a name for spin locks */
#if defined(LOCKDEBUG)
lkp->lk_lock_file = NULL;
lkp->lk_unlock_file = NULL;
#endif
}
/*
* Determine the status of a lock.
*/
int
lockstatus(struct lock *lkp)
{
int s = 0; /* XXX: gcc */
int lock_type = 0;
struct lwp *l = curlwp; /* XXX */
pid_t pid;
lwpid_t lid;
cpuid_t cpu_num;
if ((lkp->lk_flags & LK_SPIN) || l == NULL) {
cpu_num = cpu_number();
pid = LK_KERNPROC;
lid = 0;
} else {
cpu_num = LK_NOCPU;
pid = l->l_proc->p_pid;
lid = l->l_lid;
}
INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
if (lkp->lk_exclusivecount != 0) {
if (WEHOLDIT(lkp, pid, lid, cpu_num))
lock_type = LK_EXCLUSIVE;
else
lock_type = LK_EXCLOTHER;
} else if (lkp->lk_sharecount != 0)
lock_type = LK_SHARED;
else if (lkp->lk_flags & (LK_WANT_EXCL | LK_WANT_UPGRADE))
lock_type = LK_EXCLOTHER;
INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
return (lock_type);
}
#if defined(LOCKDEBUG)
/*
* Make sure no spin locks are held by a CPU that is about
* to context switch.
*/
void
spinlock_switchcheck(void)
{
u_long cnt;
int s;
if (panicstr != NULL)
return;
s = splhigh();
#if defined(MULTIPROCESSOR)
cnt = curcpu()->ci_spin_locks;
#else
cnt = spin_locks;
#endif
splx(s);
if (cnt != 0)
panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
(u_long) cpu_number(), cnt);
}
#endif /* LOCKDEBUG */
/*
* Locks and IPLs (interrupt priority levels):
*
* Locks which may be taken from interrupt context must be handled
* very carefully; you must spl to the highest IPL where the lock
* is needed before acquiring the lock.
*
* It is also important to avoid deadlock, since certain (very high
* priority) interrupts are often needed to keep the system as a whole
* from deadlocking, and must not be blocked while you are spinning
* waiting for a lower-priority lock.
*
* In addition, the lock-debugging hooks themselves need to use locks!
*
* A raw __cpu_simple_lock may be used from interrupts are long as it
* is acquired and held at a single IPL.
*/
/*
* XXX XXX kludge around another kludge..
*
* vfs_shutdown() may be called from interrupt context, either as a result
* of a panic, or from the debugger. It proceeds to call
* sys_sync(&proc0, ...), pretending its running on behalf of proc0
*
* We would like to make an attempt to sync the filesystems in this case, so
* if this happens, we treat attempts to acquire locks specially.
* All locks are acquired on behalf of proc0.
*
* If we've already paniced, we don't block waiting for locks, but
* just barge right ahead since we're already going down in flames.
*/
/*
* Set, change, or release a lock.
*
* Shared requests increment the shared count. Exclusive requests set the
* LK_WANT_EXCL flag (preventing further shared locks), and wait for already
* accepted shared locks and shared-to-exclusive upgrades to go away.
*/
int
#if defined(LOCKDEBUG)
_lockmgr(volatile struct lock *lkp, u_int flags,
struct simplelock *interlkp, const char *file, int line)
#else
lockmgr(volatile struct lock *lkp, u_int flags,
struct simplelock *interlkp)
#endif
{
int error;
pid_t pid;
lwpid_t lid;
int extflags;
cpuid_t cpu_num;
struct lwp *l = curlwp;
int lock_shutdown_noblock = 0;
int s = 0;
error = 0;
/* LK_RETRY is for vn_lock, not for lockmgr. */
KASSERT((flags & LK_RETRY) == 0);
INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
if (flags & LK_INTERLOCK)
simple_unlock(interlkp);
extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
#ifdef DIAGNOSTIC /* { */
/*
* Don't allow spins on sleep locks and don't allow sleeps
* on spin locks.
*/
if ((flags ^ lkp->lk_flags) & LK_SPIN)
lockpanic(lkp, "lockmgr: sleep/spin mismatch");
#endif /* } */
if (extflags & LK_SPIN) {
pid = LK_KERNPROC;
lid = 0;
} else {
if (l == NULL) {
if (!doing_shutdown) {
panic("lockmgr: no context");
} else {
l = &lwp0;
if (panicstr && (!(flags & LK_NOWAIT))) {
flags |= LK_NOWAIT;
lock_shutdown_noblock = 1;
}
}
}
lid = l->l_lid;
pid = l->l_proc->p_pid;
}
cpu_num = cpu_number();
/*
* Once a lock has drained, the LK_DRAINING flag is set and an
* exclusive lock is returned. The only valid operation thereafter
* is a single release of that exclusive lock. This final release
* clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
* further requests of any sort will result in a panic. The bits
* selected for these two flags are chosen so that they will be set
* in memory that is freed (freed memory is filled with 0xdeadbeef).
* The final release is permitted to give a new lease on life to
* the lock by specifying LK_REENABLE.
*/
if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
#ifdef DIAGNOSTIC /* { */
if (lkp->lk_flags & LK_DRAINED)
lockpanic(lkp, "lockmgr: using decommissioned lock");
if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
WEHOLDIT(lkp, pid, lid, cpu_num) == 0)
lockpanic(lkp, "lockmgr: non-release on draining lock: %d",
flags & LK_TYPE_MASK);
#endif /* DIAGNOSTIC */ /* } */
lkp->lk_flags &= ~LK_DRAINING;
if ((flags & LK_REENABLE) == 0)
lkp->lk_flags |= LK_DRAINED;
}
switch (flags & LK_TYPE_MASK) {
case LK_SHARED:
if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0) {
/*
* If just polling, check to see if we will block.
*/
if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
(LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
error = EBUSY;
break;
}
/*
* Wait for exclusive locks and upgrades to clear.
*/
error = acquire(&lkp, &s, extflags, 0,
LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE,
RETURN_ADDRESS);
if (error)
break;
lkp->lk_sharecount++;
lkp->lk_flags |= LK_SHARE_NONZERO;
COUNT(lkp, l, cpu_num, 1);
break;
}
/*
* We hold an exclusive lock, so downgrade it to shared.
* An alternative would be to fail with EDEADLK.
*/
lkp->lk_sharecount++;
lkp->lk_flags |= LK_SHARE_NONZERO;
COUNT(lkp, l, cpu_num, 1);
/* fall into downgrade */
case LK_DOWNGRADE:
if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0 ||
lkp->lk_exclusivecount == 0)
lockpanic(lkp, "lockmgr: not holding exclusive lock");
lkp->lk_sharecount += lkp->lk_exclusivecount;
lkp->lk_flags |= LK_SHARE_NONZERO;
lkp->lk_exclusivecount = 0;
lkp->lk_recurselevel = 0;
lkp->lk_flags &= ~LK_HAVE_EXCL;
SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
#if defined(LOCKDEBUG)
lkp->lk_unlock_file = file;
lkp->lk_unlock_line = line;
#endif
DONTHAVEIT(lkp);
WAKEUP_WAITER(lkp);
break;
case LK_EXCLUPGRADE:
/*
* If another process is ahead of us to get an upgrade,
* then we want to fail rather than have an intervening
* exclusive access.
*/
if (lkp->lk_flags & LK_WANT_UPGRADE) {
lkp->lk_sharecount--;
if (lkp->lk_sharecount == 0)
lkp->lk_flags &= ~LK_SHARE_NONZERO;
COUNT(lkp, l, cpu_num, -1);
error = EBUSY;
break;
}
/* fall into normal upgrade */
case LK_UPGRADE:
/*
* Upgrade a shared lock to an exclusive one. If another
* shared lock has already requested an upgrade to an
* exclusive lock, our shared lock is released and an
* exclusive lock is requested (which will be granted
* after the upgrade). If we return an error, the file
* will always be unlocked.
*/
if (WEHOLDIT(lkp, pid, lid, cpu_num) || lkp->lk_sharecount <= 0)
lockpanic(lkp, "lockmgr: upgrade exclusive lock");
lkp->lk_sharecount--;
if (lkp->lk_sharecount == 0)
lkp->lk_flags &= ~LK_SHARE_NONZERO;
COUNT(lkp, l, cpu_num, -1);
/*
* If we are just polling, check to see if we will block.
*/
if ((extflags & LK_NOWAIT) &&
((lkp->lk_flags & LK_WANT_UPGRADE) ||
lkp->lk_sharecount > 1)) {
error = EBUSY;
break;
}
if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
/*
* We are first shared lock to request an upgrade, so
* request upgrade and wait for the shared count to
* drop to zero, then take exclusive lock.
*/
lkp->lk_flags |= LK_WANT_UPGRADE;
error = acquire(&lkp, &s, extflags, 0, LK_SHARE_NONZERO,
RETURN_ADDRESS);
lkp->lk_flags &= ~LK_WANT_UPGRADE;
if (error) {
WAKEUP_WAITER(lkp);
break;
}
lkp->lk_flags |= LK_HAVE_EXCL;
SETHOLDER(lkp, pid, lid, cpu_num);
#if defined(LOCKDEBUG)
lkp->lk_lock_file = file;
lkp->lk_lock_line = line;
#endif
HAVEIT(lkp);
if (lkp->lk_exclusivecount != 0)
lockpanic(lkp, "lockmgr: non-zero exclusive count");
lkp->lk_exclusivecount = 1;
if (extflags & LK_SETRECURSE)
lkp->lk_recurselevel = 1;
COUNT(lkp, l, cpu_num, 1);
break;
}
/*
* Someone else has requested upgrade. Release our shared
* lock, awaken upgrade requestor if we are the last shared
* lock, then request an exclusive lock.
*/
if (lkp->lk_sharecount == 0)
WAKEUP_WAITER(lkp);
/* fall into exclusive request */
case LK_EXCLUSIVE:
if (WEHOLDIT(lkp, pid, lid, cpu_num)) {
/*
* Recursive lock.
*/
if ((extflags & LK_CANRECURSE) == 0 &&
lkp->lk_recurselevel == 0) {
if (extflags & LK_RECURSEFAIL) {
error = EDEADLK;
break;
} else
lockpanic(lkp, "lockmgr: locking against myself");
}
lkp->lk_exclusivecount++;
if (extflags & LK_SETRECURSE &&
lkp->lk_recurselevel == 0)
lkp->lk_recurselevel = lkp->lk_exclusivecount;
COUNT(lkp, l, cpu_num, 1);
break;
}
/*
* If we are just polling, check to see if we will sleep.
*/
if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
(LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
LK_SHARE_NONZERO))) {
error = EBUSY;
break;
}
/*
* Try to acquire the want_exclusive flag.
*/
error = acquire(&lkp, &s, extflags, 0,
LK_HAVE_EXCL | LK_WANT_EXCL, RETURN_ADDRESS);
if (error)
break;
lkp->lk_flags |= LK_WANT_EXCL;
/*
* Wait for shared locks and upgrades to finish.
*/
error = acquire(&lkp, &s, extflags, 0,
LK_HAVE_EXCL | LK_WANT_UPGRADE | LK_SHARE_NONZERO,
RETURN_ADDRESS);
lkp->lk_flags &= ~LK_WANT_EXCL;
if (error) {
WAKEUP_WAITER(lkp);
break;
}
lkp->lk_flags |= LK_HAVE_EXCL;
SETHOLDER(lkp, pid, lid, cpu_num);
#if defined(LOCKDEBUG)
lkp->lk_lock_file = file;
lkp->lk_lock_line = line;
#endif
HAVEIT(lkp);
if (lkp->lk_exclusivecount != 0)
lockpanic(lkp, "lockmgr: non-zero exclusive count");
lkp->lk_exclusivecount = 1;
if (extflags & LK_SETRECURSE)
lkp->lk_recurselevel = 1;
COUNT(lkp, l, cpu_num, 1);
break;
case LK_RELEASE:
if (lkp->lk_exclusivecount != 0) {
if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0) {
if (lkp->lk_flags & LK_SPIN) {
lockpanic(lkp,
"lockmgr: processor %lu, not "
"exclusive lock holder %lu "
"unlocking", cpu_num, lkp->lk_cpu);
} else {
lockpanic(lkp, "lockmgr: pid %d.%d, not "
"exclusive lock holder %d.%d "
"unlocking", pid, lid,
lkp->lk_lockholder,
lkp->lk_locklwp);
}
}
if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
lkp->lk_recurselevel = 0;
lkp->lk_exclusivecount--;
COUNT(lkp, l, cpu_num, -1);
if (lkp->lk_exclusivecount == 0) {
lkp->lk_flags &= ~LK_HAVE_EXCL;
SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
#if defined(LOCKDEBUG)
lkp->lk_unlock_file = file;
lkp->lk_unlock_line = line;
#endif
DONTHAVEIT(lkp);
}
} else if (lkp->lk_sharecount != 0) {
lkp->lk_sharecount--;
if (lkp->lk_sharecount == 0)
lkp->lk_flags &= ~LK_SHARE_NONZERO;
COUNT(lkp, l, cpu_num, -1);
}
#ifdef DIAGNOSTIC
else
lockpanic(lkp, "lockmgr: release of unlocked lock!");
#endif
WAKEUP_WAITER(lkp);
break;
case LK_DRAIN:
/*
* Check that we do not already hold the lock, as it can
* never drain if we do. Unfortunately, we have no way to
* check for holding a shared lock, but at least we can
* check for an exclusive one.
*/
if (WEHOLDIT(lkp, pid, lid, cpu_num))
lockpanic(lkp, "lockmgr: draining against myself");
/*
* If we are just polling, check to see if we will sleep.
*/
if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
(LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
LK_SHARE_NONZERO | LK_WAIT_NONZERO))) {
error = EBUSY;
break;
}
error = acquire(&lkp, &s, extflags, 1,
LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
LK_SHARE_NONZERO | LK_WAIT_NONZERO,
RETURN_ADDRESS);
if (error)
break;
lkp->lk_flags |= LK_HAVE_EXCL;
if ((extflags & LK_RESURRECT) == 0)
lkp->lk_flags |= LK_DRAINING;
SETHOLDER(lkp, pid, lid, cpu_num);
#if defined(LOCKDEBUG)
lkp->lk_lock_file = file;
lkp->lk_lock_line = line;
#endif
HAVEIT(lkp);
lkp->lk_exclusivecount = 1;
/* XXX unlikely that we'd want this */
if (extflags & LK_SETRECURSE)
lkp->lk_recurselevel = 1;
COUNT(lkp, l, cpu_num, 1);
break;
default:
INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
lockpanic(lkp, "lockmgr: unknown locktype request %d",
flags & LK_TYPE_MASK);
/* NOTREACHED */
}
if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
((lkp->lk_flags &
(LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
LK_SHARE_NONZERO | LK_WAIT_NONZERO)) == 0)) {
lkp->lk_flags &= ~LK_WAITDRAIN;
wakeup(&lkp->lk_flags);
}
/*
* Note that this panic will be a recursive panic, since
* we only set lock_shutdown_noblock above if panicstr != NULL.
*/
if (error && lock_shutdown_noblock)
lockpanic(lkp, "lockmgr: deadlock (see previous panic)");
INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
return (error);
}
/*
* For a recursive spinlock held one or more times by the current CPU,
* release all N locks, and return N.
* Intended for use in mi_switch() shortly before context switching.
*/
int
#if defined(LOCKDEBUG)
_spinlock_release_all(volatile struct lock *lkp, const char *file, int line)
#else
spinlock_release_all(volatile struct lock *lkp)
#endif
{
int s, count;
cpuid_t cpu_num;
KASSERT(lkp->lk_flags & LK_SPIN);
INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
cpu_num = cpu_number();
count = lkp->lk_exclusivecount;
if (count != 0) {
#ifdef DIAGNOSTIC
if (WEHOLDIT(lkp, 0, 0, cpu_num) == 0) {
lockpanic(lkp, "spinlock_release_all: processor %lu, not "
"exclusive lock holder %lu "
"unlocking", (long)cpu_num, lkp->lk_cpu);
}
#endif
lkp->lk_recurselevel = 0;
lkp->lk_exclusivecount = 0;
COUNT_CPU(cpu_num, -count);
lkp->lk_flags &= ~LK_HAVE_EXCL;
SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
#if defined(LOCKDEBUG)
lkp->lk_unlock_file = file;
lkp->lk_unlock_line = line;
#endif
DONTHAVEIT(lkp);
}
#ifdef DIAGNOSTIC
else if (lkp->lk_sharecount != 0)
lockpanic(lkp, "spinlock_release_all: release of shared lock!");
else
lockpanic(lkp, "spinlock_release_all: release of unlocked lock!");
#endif
INTERLOCK_RELEASE(lkp, LK_SPIN, s);
return (count);
}
/*
* For a recursive spinlock held one or more times by the current CPU,
* release all N locks, and return N.
* Intended for use in mi_switch() right after resuming execution.
*/
void
#if defined(LOCKDEBUG)
_spinlock_acquire_count(volatile struct lock *lkp, int count,
const char *file, int line)
#else
spinlock_acquire_count(volatile struct lock *lkp, int count)
#endif
{
int s, error;
cpuid_t cpu_num;
KASSERT(lkp->lk_flags & LK_SPIN);
INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
cpu_num = cpu_number();
#ifdef DIAGNOSTIC
if (WEHOLDIT(lkp, LK_NOPROC, 0, cpu_num))
lockpanic(lkp, "spinlock_acquire_count: processor %lu already holds lock", (long)cpu_num);
#endif
/*
* Try to acquire the want_exclusive flag.
*/
error = acquire(&lkp, &s, LK_SPIN, 0, LK_HAVE_EXCL | LK_WANT_EXCL,
RETURN_ADDRESS);
lkp->lk_flags |= LK_WANT_EXCL;
/*
* Wait for shared locks and upgrades to finish.
*/
error = acquire(&lkp, &s, LK_SPIN, 0,
LK_HAVE_EXCL | LK_SHARE_NONZERO | LK_WANT_UPGRADE,
RETURN_ADDRESS);
lkp->lk_flags &= ~LK_WANT_EXCL;
lkp->lk_flags |= LK_HAVE_EXCL;
SETHOLDER(lkp, LK_NOPROC, 0, cpu_num);
#if defined(LOCKDEBUG)
lkp->lk_lock_file = file;
lkp->lk_lock_line = line;
#endif
HAVEIT(lkp);
if (lkp->lk_exclusivecount != 0)
lockpanic(lkp, "lockmgr: non-zero exclusive count");
lkp->lk_exclusivecount = count;
lkp->lk_recurselevel = 1;
COUNT_CPU(cpu_num, count);
INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
}
/*
* Print out information about state of a lock. Used by VOP_PRINT
* routines to display ststus about contained locks.
*/
void
lockmgr_printinfo(volatile struct lock *lkp)
{
if (lkp->lk_sharecount)
printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
lkp->lk_sharecount);
else if (lkp->lk_flags & LK_HAVE_EXCL) {
printf(" lock type %s: EXCL (count %d) by ",
lkp->lk_wmesg, lkp->lk_exclusivecount);
if (lkp->lk_flags & LK_SPIN)
printf("processor %lu", lkp->lk_cpu);
else
printf("pid %d.%d", lkp->lk_lockholder,
lkp->lk_locklwp);
} else
printf(" not locked");
if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
printf(" with %d pending", lkp->lk_waitcount);
}
#if defined(LOCKDEBUG) /* { */
_TAILQ_HEAD(, struct simplelock, volatile) simplelock_list =
TAILQ_HEAD_INITIALIZER(simplelock_list);
#if defined(MULTIPROCESSOR) /* { */
struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
#define SLOCK_LIST_LOCK() \
__cpu_simple_lock(&simplelock_list_slock.lock_data)
#define SLOCK_LIST_UNLOCK() \
__cpu_simple_unlock(&simplelock_list_slock.lock_data)
#define SLOCK_COUNT(x) \
curcpu()->ci_simple_locks += (x)
#else
u_long simple_locks;
#define SLOCK_LIST_LOCK() /* nothing */
#define SLOCK_LIST_UNLOCK() /* nothing */
#define SLOCK_COUNT(x) simple_locks += (x)
#endif /* MULTIPROCESSOR */ /* } */
#ifdef MULTIPROCESSOR
#define SLOCK_MP() lock_printf("on CPU %ld\n", \
(u_long) cpu_number())
#else
#define SLOCK_MP() /* nothing */
#endif
#define SLOCK_WHERE(str, alp, id, l) \
do { \
lock_printf("\n"); \
lock_printf(str); \
lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
SLOCK_MP(); \
if ((alp)->lock_file != NULL) \
lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
(alp)->lock_line); \
if ((alp)->unlock_file != NULL) \
lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
(alp)->unlock_line); \
SLOCK_TRACE() \
SLOCK_DEBUGGER(); \
} while (/*CONSTCOND*/0)
/*
* Simple lock functions so that the debugger can see from whence
* they are being called.
*/
void
simple_lock_init(volatile struct simplelock *alp)
{
#if defined(MULTIPROCESSOR) /* { */
__cpu_simple_lock_init(&alp->lock_data);
#else
alp->lock_data = __SIMPLELOCK_UNLOCKED;
#endif /* } */
alp->lock_file = NULL;
alp->lock_line = 0;
alp->unlock_file = NULL;
alp->unlock_line = 0;
alp->lock_holder = LK_NOCPU;
}
void
_simple_lock(volatile struct simplelock *alp, const char *id, int l)
{
cpuid_t cpu_num = cpu_number();
int s;
s = splhigh();
/*
* MULTIPROCESSOR case: This is `safe' since if it's not us, we
* don't take any action, and just fall into the normal spin case.
*/
if (alp->lock_data == __SIMPLELOCK_LOCKED) {
#if defined(MULTIPROCESSOR) /* { */
if (alp->lock_holder == cpu_num) {
SLOCK_WHERE("simple_lock: locking against myself\n",
alp, id, l);
goto out;
}
#else
SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
goto out;
#endif /* MULTIPROCESSOR */ /* } */
}
#if defined(MULTIPROCESSOR) /* { */
/* Acquire the lock before modifying any fields. */
splx(s);
__cpu_simple_lock(&alp->lock_data);
s = splhigh();
#else
alp->lock_data = __SIMPLELOCK_LOCKED;
#endif /* } */
if (alp->lock_holder != LK_NOCPU) {
SLOCK_WHERE("simple_lock: uninitialized lock\n",
alp, id, l);
}
alp->lock_file = id;
alp->lock_line = l;
alp->lock_holder = cpu_num;
SLOCK_LIST_LOCK();
TAILQ_INSERT_TAIL(&simplelock_list, alp, list);
SLOCK_LIST_UNLOCK();
SLOCK_COUNT(1);
out:
splx(s);
}
int
_simple_lock_held(volatile struct simplelock *alp)
{
#if defined(MULTIPROCESSOR) || defined(DIAGNOSTIC)
cpuid_t cpu_num = cpu_number();
#endif
int s, locked = 0;
s = splhigh();
#if defined(MULTIPROCESSOR)
if (__cpu_simple_lock_try(&alp->lock_data) == 0)
locked = (alp->lock_holder == cpu_num);
else
__cpu_simple_unlock(&alp->lock_data);
#else
if (alp->lock_data == __SIMPLELOCK_LOCKED) {
locked = 1;
KASSERT(alp->lock_holder == cpu_num);
}
#endif
splx(s);
return (locked);
}
int
_simple_lock_try(volatile struct simplelock *alp, const char *id, int l)
{
cpuid_t cpu_num = cpu_number();
int s, rv = 0;
s = splhigh();
/*
* MULTIPROCESSOR case: This is `safe' since if it's not us, we
* don't take any action.
*/
#if defined(MULTIPROCESSOR) /* { */
if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
if (alp->lock_holder == cpu_num)
SLOCK_WHERE("simple_lock_try: locking against myself\n",
alp, id, l);
goto out;
}
#else
if (alp->lock_data == __SIMPLELOCK_LOCKED) {
SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
goto out;
}
alp->lock_data = __SIMPLELOCK_LOCKED;
#endif /* MULTIPROCESSOR */ /* } */
/*
* At this point, we have acquired the lock.
*/
rv = 1;
alp->lock_file = id;
alp->lock_line = l;
alp->lock_holder = cpu_num;
SLOCK_LIST_LOCK();
TAILQ_INSERT_TAIL(&simplelock_list, alp, list);
SLOCK_LIST_UNLOCK();
SLOCK_COUNT(1);
out:
splx(s);
return (rv);
}
void
_simple_unlock(volatile struct simplelock *alp, const char *id, int l)
{
int s;
s = splhigh();
/*
* MULTIPROCESSOR case: This is `safe' because we think we hold
* the lock, and if we don't, we don't take any action.
*/
if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
SLOCK_WHERE("simple_unlock: lock not held\n",
alp, id, l);
goto out;
}
SLOCK_LIST_LOCK();
TAILQ_REMOVE(&simplelock_list, alp, list);
SLOCK_LIST_UNLOCK();
SLOCK_COUNT(-1);
alp->list.tqe_next = NULL; /* sanity */
alp->list.tqe_prev = NULL; /* sanity */
alp->unlock_file = id;
alp->unlock_line = l;
#if defined(MULTIPROCESSOR) /* { */
alp->lock_holder = LK_NOCPU;
/* Now that we've modified all fields, release the lock. */
__cpu_simple_unlock(&alp->lock_data);
#else
alp->lock_data = __SIMPLELOCK_UNLOCKED;
KASSERT(alp->lock_holder == cpu_number());
alp->lock_holder = LK_NOCPU;
#endif /* } */
out:
splx(s);
}
void
simple_lock_dump(void)
{
volatile struct simplelock *alp;
int s;
s = splhigh();
SLOCK_LIST_LOCK();
lock_printf("all simple locks:\n");
TAILQ_FOREACH(alp, &simplelock_list, list) {
lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
alp->lock_file, alp->lock_line);
}
SLOCK_LIST_UNLOCK();
splx(s);
}
void
simple_lock_freecheck(void *start, void *end)
{
volatile struct simplelock *alp;
int s;
s = splhigh();
SLOCK_LIST_LOCK();
TAILQ_FOREACH(alp, &simplelock_list, list) {
if ((volatile void *)alp >= start &&
(volatile void *)alp < end) {
lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
alp, alp->lock_holder, alp->lock_file,
alp->lock_line);
SLOCK_DEBUGGER();
}
}
SLOCK_LIST_UNLOCK();
splx(s);
}
/*
* We must be holding exactly one lock: the spc_lock.
*/
void
simple_lock_switchcheck(void)
{
simple_lock_only_held(NULL, "switching");
}
/*
* Drop into the debugger if lp isn't the only lock held.
* lp may be NULL.
*/
void
simple_lock_only_held(volatile struct simplelock *lp, const char *where)
{
volatile struct simplelock *alp;
cpuid_t cpu_num = cpu_number();
int s;
if (lp) {
LOCK_ASSERT(simple_lock_held(lp));
}
s = splhigh();
SLOCK_LIST_LOCK();
TAILQ_FOREACH(alp, &simplelock_list, list) {
if (alp == lp)
continue;
if (alp->lock_holder == cpu_num)
break;
}
SLOCK_LIST_UNLOCK();
splx(s);
if (alp != NULL) {
lock_printf("\n%s with held simple_lock %p "
"CPU %lu %s:%d\n",
where, alp, alp->lock_holder, alp->lock_file,
alp->lock_line);
SLOCK_TRACE();
SLOCK_DEBUGGER();
}
}
/*
* Set to 1 by simple_lock_assert_*().
* Can be cleared from ddb to avoid a panic.
*/
int slock_assert_will_panic;
/*
* If the lock isn't held, print a traceback, optionally drop into the
* debugger, then panic.
* The panic can be avoided by clearing slock_assert_with_panic from the
* debugger.
*/
void
_simple_lock_assert_locked(volatile struct simplelock *alp,
const char *lockname, const char *id, int l)
{
if (simple_lock_held(alp) == 0) {
slock_assert_will_panic = 1;
lock_printf("%s lock not held\n", lockname);
SLOCK_WHERE("lock not held", alp, id, l);
if (slock_assert_will_panic && panicstr == NULL)
panic("%s: not locked", lockname);
}
}
void
_simple_lock_assert_unlocked(volatile struct simplelock *alp,
const char *lockname, const char *id, int l)
{
if (simple_lock_held(alp)) {
slock_assert_will_panic = 1;
lock_printf("%s lock held\n", lockname);
SLOCK_WHERE("lock held", alp, id, l);
if (slock_assert_will_panic && panicstr == NULL)
panic("%s: locked", lockname);
}
}
void
assert_sleepable(struct simplelock *interlock, const char *msg)
{
if (panicstr != NULL)
return;
if (CURCPU_IDLE_P()) {
panic("assert_sleepable: idle");
}
simple_lock_only_held(interlock, msg);
}
#endif /* LOCKDEBUG */ /* } */
int kernel_lock_id;
__cpu_simple_lock_t kernel_lock;
#if defined(MULTIPROCESSOR)
/*
* Functions for manipulating the kernel_lock. We put them here
* so that they show up in profiles.
*/
#define _KERNEL_LOCK_ABORT(msg) \
LOCKDEBUG_ABORT(kernel_lock_id, &kernel_lock, &_kernel_lock_ops, \
__FUNCTION__, msg)
#ifdef LOCKDEBUG
#define _KERNEL_LOCK_ASSERT(cond) \
do { \
if (!(cond)) \
_KERNEL_LOCK_ABORT("assertion failed: " #cond); \
} while (/* CONSTCOND */ 0)
#else
#define _KERNEL_LOCK_ASSERT(cond) /* nothing */
#endif
void _kernel_lock_dump(volatile void *);
lockops_t _kernel_lock_ops = {
"Kernel lock",
0,
_kernel_lock_dump
};
/*
* Initialize the kernel lock.
*/
void
_kernel_lock_init(void)
{
__cpu_simple_lock_init(&kernel_lock);
kernel_lock_id = LOCKDEBUG_ALLOC(&kernel_lock, &_kernel_lock_ops);
}
/*
* Print debugging information about the kernel lock.
*/
void
_kernel_lock_dump(volatile void *junk)
{
struct cpu_info *ci = curcpu();
(void)junk;
printf_nolog("curcpu holds : %18d wanted by: %#018lx\n",
ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
}
/*
* Acquire 'nlocks' holds on the kernel lock. If 'l' is non-null, the
* acquisition is from process context.
*/
void
_kernel_lock(int nlocks, struct lwp *l)
{
struct cpu_info *ci = curcpu();
LOCKSTAT_TIMER(spintime);
LOCKSTAT_FLAG(lsflag);
struct lwp *owant;
#ifdef LOCKDEBUG
u_int spins;
#endif
int s;
(void)l;
if (nlocks == 0)
return;
_KERNEL_LOCK_ASSERT(nlocks > 0);
s = splsched(); /* XXX splvm() */
if (ci->ci_biglock_count != 0) {
_KERNEL_LOCK_ASSERT(kernel_lock == __SIMPLELOCK_LOCKED);
ci->ci_biglock_count += nlocks;
splx(s);
return;
}
LOCKDEBUG_WANTLOCK(kernel_lock_id,
(uintptr_t)__builtin_return_address(0), 0);
if (__cpu_simple_lock_try(&kernel_lock)) {
ci->ci_biglock_count = nlocks;
LOCKDEBUG_LOCKED(kernel_lock_id,
(uintptr_t)__builtin_return_address(0), 0);
splx(s);
return;
}
LOCKSTAT_ENTER(lsflag);
LOCKSTAT_START_TIMER(lsflag, spintime);
/*
* Before setting ci_biglock_wanted we must post a store
* fence (see kern_mutex.c). This is accomplished by the
* __cpu_simple_lock_try() above.
*/
owant = ci->ci_biglock_wanted;
ci->ci_biglock_wanted = curlwp; /* XXXAD */
#ifdef LOCKDEBUG
spins = 0;
#endif
do {
while (kernel_lock == __SIMPLELOCK_LOCKED) {
#ifdef LOCKDEBUG
if (SPINLOCK_SPINOUT(spins))
_KERNEL_LOCK_ABORT("spinout");
#endif
splx(s);
SPINLOCK_SPIN_HOOK;
(void)splsched(); /* XXX splvm() */
}
} while (!__cpu_simple_lock_try(&kernel_lock));
ci->ci_biglock_wanted = owant;
ci->ci_biglock_count += nlocks;
LOCKSTAT_STOP_TIMER(lsflag, spintime);
LOCKDEBUG_LOCKED(kernel_lock_id,
(uintptr_t)__builtin_return_address(0), 0);
splx(s);
/*
* Again, another store fence is required (see kern_mutex.c).
*/
mb_write();
if (owant == NULL) {
LOCKSTAT_EVENT(lsflag, &kernel_lock, LB_KERNEL_LOCK | LB_SPIN,
1, spintime);
}
LOCKSTAT_EXIT(lsflag);
}
/*
* Release 'nlocks' holds on the kernel lock. If 'nlocks' is zero, release
* all holds. If 'l' is non-null, the release is from process context.
*/
void
_kernel_unlock(int nlocks, struct lwp *l, int *countp)
{
struct cpu_info *ci = curcpu();
u_int olocks;
int s;
(void)l;
_KERNEL_LOCK_ASSERT(nlocks < 2);
olocks = ci->ci_biglock_count;
if (olocks == 0) {
_KERNEL_LOCK_ASSERT(nlocks <= 0);
if (countp != NULL)
*countp = 0;
return;
}
_KERNEL_LOCK_ASSERT(kernel_lock == __SIMPLELOCK_LOCKED);
if (nlocks == 0)
nlocks = olocks;
else if (nlocks == -1) {
nlocks = 1;
_KERNEL_LOCK_ASSERT(olocks == 1);
}
s = splsched(); /* XXX splvm() */
if ((ci->ci_biglock_count -= nlocks) == 0) {
LOCKDEBUG_UNLOCKED(kernel_lock_id,
(uintptr_t)__builtin_return_address(0), 0);
__cpu_simple_unlock(&kernel_lock);
}
splx(s);
if (countp != NULL)
*countp = olocks;
}
#if defined(DEBUG)
/*
* Assert that the kernel lock is held.
*/
void
_kernel_lock_assert_locked(void)
{
if (kernel_lock != __SIMPLELOCK_LOCKED ||
curcpu()->ci_biglock_count == 0)
_KERNEL_LOCK_ABORT("not locked");
}
void
_kernel_lock_assert_unlocked()
{
if (curcpu()->ci_biglock_count != 0)
_KERNEL_LOCK_ABORT("locked");
}
#endif
#endif /* MULTIPROCESSOR || LOCKDEBUG */