2e19186660
but 0 in all cases.
434 lines
16 KiB
C
434 lines
16 KiB
C
/* $NetBSD: rf_pqdegdags.c,v 1.9 2004/01/10 00:56:28 oster Exp $ */
|
|
/*
|
|
* Copyright (c) 1995 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Author: Daniel Stodolsky
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/*
|
|
* rf_pqdegdags.c
|
|
* Degraded mode dags for double fault cases.
|
|
*/
|
|
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: rf_pqdegdags.c,v 1.9 2004/01/10 00:56:28 oster Exp $");
|
|
|
|
#include "rf_archs.h"
|
|
|
|
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
|
|
|
|
#include <dev/raidframe/raidframevar.h>
|
|
|
|
#include "rf_raid.h"
|
|
#include "rf_dag.h"
|
|
#include "rf_dagdegrd.h"
|
|
#include "rf_dagdegwr.h"
|
|
#include "rf_dagfuncs.h"
|
|
#include "rf_dagutils.h"
|
|
#include "rf_etimer.h"
|
|
#include "rf_acctrace.h"
|
|
#include "rf_general.h"
|
|
#include "rf_pqdegdags.h"
|
|
#include "rf_pq.h"
|
|
|
|
static void
|
|
applyPDA(RF_Raid_t * raidPtr, RF_PhysDiskAddr_t * pda, RF_PhysDiskAddr_t * ppda,
|
|
RF_PhysDiskAddr_t * qpda, void *bp);
|
|
|
|
/*
|
|
Two data drives have failed, and we are doing a read that covers one of them.
|
|
We may also be reading some of the surviving drives.
|
|
|
|
|
|
*****************************************************************************************
|
|
*
|
|
* creates a DAG to perform a degraded-mode read of data within one stripe.
|
|
* This DAG is as follows:
|
|
*
|
|
* Hdr
|
|
* |
|
|
* Block
|
|
* / / \ \ \ \
|
|
* Rud ... Rud Rrd ... Rrd Rp Rq
|
|
* | \ | \ | \ | \ | \ | \
|
|
*
|
|
* | |
|
|
* Unblock X
|
|
* \ /
|
|
* ------ T ------
|
|
*
|
|
* Each R node is a successor of the L node
|
|
* One successor arc from each R node goes to U, and the other to X
|
|
* There is one Rud for each chunk of surviving user data requested by the user,
|
|
* and one Rrd for each chunk of surviving user data _not_ being read by the user
|
|
* R = read, ud = user data, rd = recovery (surviving) data, p = P data, q = Qdata
|
|
* X = pq recovery node, T = terminate
|
|
*
|
|
* The block & unblock nodes are leftovers from a previous version. They
|
|
* do nothing, but I haven't deleted them because it would be a tremendous
|
|
* effort to put them back in.
|
|
*
|
|
* Note: The target buffer for the XOR node is set to the actual user buffer where the
|
|
* failed data is supposed to end up. This buffer is zero'd by the code here. Thus,
|
|
* if you create a degraded read dag, use it, and then re-use, you have to be sure to
|
|
* zero the target buffer prior to the re-use.
|
|
*
|
|
* Every buffer read is passed to the pq recovery node, whose job it is to sort out whats
|
|
* needs and what's not.
|
|
****************************************************************************************/
|
|
/* init a disk node with 2 successors and one predecessor */
|
|
#define INIT_DISK_NODE(node,name) \
|
|
rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
|
|
(node)->succedents[0] = unblockNode; \
|
|
(node)->succedents[1] = recoveryNode; \
|
|
(node)->antecedents[0] = blockNode; \
|
|
(node)->antType[0] = rf_control
|
|
|
|
#define DISK_NODE_PARAMS(_node_,_p_) \
|
|
(_node_).params[0].p = _p_ ; \
|
|
(_node_).params[1].p = (_p_)->bufPtr; \
|
|
(_node_).params[2].v = parityStripeID; \
|
|
(_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
|
|
|
|
#define DISK_NODE_PDA(node) ((node)->params[0].p)
|
|
|
|
RF_CREATE_DAG_FUNC_DECL(rf_PQ_DoubleDegRead)
|
|
{
|
|
rf_DoubleDegRead(raidPtr, asmap, dag_h, bp, flags, allocList,
|
|
"Rq", "PQ Recovery", rf_PQDoubleRecoveryFunc);
|
|
}
|
|
|
|
static void
|
|
applyPDA(raidPtr, pda, ppda, qpda, bp)
|
|
RF_Raid_t *raidPtr;
|
|
RF_PhysDiskAddr_t *pda;
|
|
RF_PhysDiskAddr_t *ppda;
|
|
RF_PhysDiskAddr_t *qpda;
|
|
void *bp;
|
|
{
|
|
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
|
|
RF_RaidAddr_t s0off = rf_StripeUnitOffset(layoutPtr, ppda->startSector);
|
|
RF_SectorCount_t s0len = ppda->numSector, len;
|
|
RF_SectorNum_t suoffset;
|
|
unsigned coeff;
|
|
char *pbuf = ppda->bufPtr;
|
|
char *qbuf = qpda->bufPtr;
|
|
char *buf;
|
|
int delta;
|
|
|
|
suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
|
|
len = pda->numSector;
|
|
/* see if pda intersects a recovery pda */
|
|
if ((suoffset < s0off + s0len) && (suoffset + len > s0off)) {
|
|
buf = pda->bufPtr;
|
|
coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), pda->raidAddress);
|
|
coeff = (coeff % raidPtr->Layout.numDataCol);
|
|
|
|
if (suoffset < s0off) {
|
|
delta = s0off - suoffset;
|
|
buf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta);
|
|
suoffset = s0off;
|
|
len -= delta;
|
|
}
|
|
if (suoffset > s0off) {
|
|
delta = suoffset - s0off;
|
|
pbuf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta);
|
|
qbuf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta);
|
|
}
|
|
if ((suoffset + len) > (s0len + s0off))
|
|
len = s0len + s0off - suoffset;
|
|
|
|
/* src, dest, len */
|
|
rf_bxor(buf, pbuf, rf_RaidAddressToByte(raidPtr, len), bp);
|
|
|
|
/* dest, src, len, coeff */
|
|
rf_IncQ((unsigned long *) qbuf, (unsigned long *) buf, rf_RaidAddressToByte(raidPtr, len), coeff);
|
|
}
|
|
}
|
|
/*
|
|
Recover data in the case of a double failure. There can be two
|
|
result buffers, one for each chunk of data trying to be recovered.
|
|
The params are pda's that have not been range restricted or otherwise
|
|
politely massaged - this should be done here. The last params are the
|
|
pdas of P and Q, followed by the raidPtr. The list can look like
|
|
|
|
pda, pda, ... , p pda, q pda, raidptr, asm
|
|
|
|
or
|
|
|
|
pda, pda, ... , p_1 pda, p_2 pda, q_1 pda, q_2 pda, raidptr, asm
|
|
|
|
depending on wether two chunks of recovery data were required.
|
|
|
|
The second condition only arises if there are two failed buffers
|
|
whose lengths do not add up a stripe unit.
|
|
*/
|
|
|
|
|
|
int
|
|
rf_PQDoubleRecoveryFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
int np = node->numParams;
|
|
RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
|
|
RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
|
|
RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
|
|
int d, i;
|
|
unsigned coeff;
|
|
RF_RaidAddr_t sosAddr, suoffset;
|
|
RF_SectorCount_t len, secPerSU = layoutPtr->sectorsPerStripeUnit;
|
|
int two = 0;
|
|
RF_PhysDiskAddr_t *ppda, *ppda2, *qpda, *qpda2, *pda, npda;
|
|
char *buf;
|
|
int numDataCol = layoutPtr->numDataCol;
|
|
RF_Etimer_t timer;
|
|
RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
|
|
|
|
RF_ETIMER_START(timer);
|
|
|
|
if (asmap->failedPDAs[1] &&
|
|
(asmap->failedPDAs[1]->numSector + asmap->failedPDAs[0]->numSector < secPerSU)) {
|
|
RF_ASSERT(0);
|
|
ppda = node->params[np - 6].p;
|
|
ppda2 = node->params[np - 5].p;
|
|
qpda = node->params[np - 4].p;
|
|
qpda2 = node->params[np - 3].p;
|
|
d = (np - 6);
|
|
two = 1;
|
|
} else {
|
|
ppda = node->params[np - 4].p;
|
|
qpda = node->params[np - 3].p;
|
|
d = (np - 4);
|
|
}
|
|
|
|
for (i = 0; i < d; i++) {
|
|
pda = node->params[i].p;
|
|
buf = pda->bufPtr;
|
|
suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
|
|
len = pda->numSector;
|
|
coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress);
|
|
/* compute the data unit offset within the column */
|
|
coeff = (coeff % raidPtr->Layout.numDataCol);
|
|
/* see if pda intersects a recovery pda */
|
|
applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp);
|
|
if (two)
|
|
applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp);
|
|
}
|
|
|
|
/* ok, we got the parity back to the point where we can recover. We
|
|
* now need to determine the coeff of the columns that need to be
|
|
* recovered. We can also only need to recover a single stripe unit. */
|
|
|
|
if (asmap->failedPDAs[1] == NULL) { /* only a single stripe unit
|
|
* to recover. */
|
|
pda = asmap->failedPDAs[0];
|
|
sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
|
|
/* need to determine the column of the other failed disk */
|
|
coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress);
|
|
/* compute the data unit offset within the column */
|
|
coeff = (coeff % raidPtr->Layout.numDataCol);
|
|
for (i = 0; i < numDataCol; i++) {
|
|
npda.raidAddress = sosAddr + (i * secPerSU);
|
|
(raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0);
|
|
/* skip over dead disks */
|
|
if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status))
|
|
if (i != coeff)
|
|
break;
|
|
}
|
|
RF_ASSERT(i < numDataCol);
|
|
RF_ASSERT(two == 0);
|
|
/* recover the data. Since we need only want to recover one
|
|
* column, we overwrite the parity with the other one. */
|
|
if (coeff < i) /* recovering 'a' */
|
|
rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) pda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff, i);
|
|
else /* recovering 'b' */
|
|
rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, (unsigned long *) pda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), i, coeff);
|
|
} else
|
|
RF_PANIC();
|
|
|
|
RF_ETIMER_STOP(timer);
|
|
RF_ETIMER_EVAL(timer);
|
|
if (tracerec)
|
|
tracerec->q_us += RF_ETIMER_VAL_US(timer);
|
|
rf_GenericWakeupFunc(node, 0);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
rf_PQWriteDoubleRecoveryFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
/* The situation:
|
|
*
|
|
* We are doing a write that hits only one failed data unit. The other
|
|
* failed data unit is not being overwritten, so we need to generate
|
|
* it.
|
|
*
|
|
* For the moment, we assume all the nonfailed data being written is in
|
|
* the shadow of the failed data unit. (i.e,, either a single data
|
|
* unit write or the entire failed stripe unit is being overwritten. )
|
|
*
|
|
* Recovery strategy: apply the recovery data to the parity and q. Use P
|
|
* & Q to recover the second failed data unit in P. Zero fill Q, then
|
|
* apply the recovered data to p. Then apply the data being written to
|
|
* the failed drive. Then walk through the surviving drives, applying
|
|
* new data when it exists, othewise the recovery data. Quite a mess.
|
|
*
|
|
*
|
|
* The params
|
|
*
|
|
* read pda0, read pda1, ... read pda (numDataCol-3), write pda0, ... ,
|
|
* write pda (numStripeUnitAccess - numDataFailed), failed pda,
|
|
* raidPtr, asmap */
|
|
|
|
int np = node->numParams;
|
|
RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
|
|
RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
|
|
RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
|
|
int i;
|
|
RF_RaidAddr_t sosAddr;
|
|
unsigned coeff;
|
|
RF_StripeCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
|
|
RF_PhysDiskAddr_t *ppda, *qpda, *pda, npda;
|
|
int numDataCol = layoutPtr->numDataCol;
|
|
RF_Etimer_t timer;
|
|
RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
|
|
|
|
RF_ASSERT(node->numResults == 2);
|
|
RF_ASSERT(asmap->failedPDAs[1] == NULL);
|
|
RF_ETIMER_START(timer);
|
|
ppda = node->results[0];
|
|
qpda = node->results[1];
|
|
/* apply the recovery data */
|
|
for (i = 0; i < numDataCol - 2; i++)
|
|
applyPDA(raidPtr, node->params[i].p, ppda, qpda, node->dagHdr->bp);
|
|
|
|
/* determine the other failed data unit */
|
|
pda = asmap->failedPDAs[0];
|
|
sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
|
|
/* need to determine the column of the other failed disk */
|
|
coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress);
|
|
/* compute the data unit offset within the column */
|
|
coeff = (coeff % raidPtr->Layout.numDataCol);
|
|
for (i = 0; i < numDataCol; i++) {
|
|
npda.raidAddress = sosAddr + (i * secPerSU);
|
|
(raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0);
|
|
/* skip over dead disks */
|
|
if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status))
|
|
if (i != coeff)
|
|
break;
|
|
}
|
|
RF_ASSERT(i < numDataCol);
|
|
/* recover the data. The column we want to recover we write over the
|
|
* parity. The column we don't care about we dump in q. */
|
|
if (coeff < i) /* recovering 'a' */
|
|
rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff, i);
|
|
else /* recovering 'b' */
|
|
rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), i, coeff);
|
|
|
|
/* OK. The valid data is in P. Zero fill Q, then inc it into it. */
|
|
memset(qpda->bufPtr, 0, rf_RaidAddressToByte(raidPtr, qpda->numSector));
|
|
rf_IncQ((unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector), i);
|
|
|
|
/* now apply all the write data to the buffer */
|
|
/* single stripe unit write case: the failed data is only thing we are
|
|
* writing. */
|
|
RF_ASSERT(asmap->numStripeUnitsAccessed == 1);
|
|
/* dest, src, len, coeff */
|
|
rf_IncQ((unsigned long *) qpda->bufPtr, (unsigned long *) asmap->failedPDAs[0]->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector), coeff);
|
|
rf_bxor(asmap->failedPDAs[0]->bufPtr, ppda->bufPtr, rf_RaidAddressToByte(raidPtr, ppda->numSector), node->dagHdr->bp);
|
|
|
|
/* now apply all the recovery data */
|
|
for (i = 0; i < numDataCol - 2; i++)
|
|
applyPDA(raidPtr, node->params[i].p, ppda, qpda, node->dagHdr->bp);
|
|
|
|
RF_ETIMER_STOP(timer);
|
|
RF_ETIMER_EVAL(timer);
|
|
if (tracerec)
|
|
tracerec->q_us += RF_ETIMER_VAL_US(timer);
|
|
|
|
rf_GenericWakeupFunc(node, 0);
|
|
return (0);
|
|
}
|
|
RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDLargeWrite)
|
|
{
|
|
RF_PANIC();
|
|
}
|
|
/*
|
|
Two lost data unit write case.
|
|
|
|
There are really two cases here:
|
|
|
|
(1) The write completely covers the two lost data units.
|
|
In that case, a reconstruct write that doesn't write the
|
|
failed data units will do the correct thing. So in this case,
|
|
the dag looks like
|
|
|
|
full stripe read of surviving data units (not being overwriten)
|
|
write new data (ignoring failed units) compute P&Q
|
|
write P&Q
|
|
|
|
|
|
(2) The write does not completely cover both failed data units
|
|
(but touches at least one of them). Then we need to do the
|
|
equivalent of a reconstruct read to recover the missing data
|
|
unit from the other stripe.
|
|
|
|
For any data we are writing that is not in the "shadow"
|
|
of the failed units, we need to do a four cycle update.
|
|
PANIC on this case. for now
|
|
|
|
*/
|
|
|
|
RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateWriteDAG)
|
|
{
|
|
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
|
|
RF_SectorCount_t sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
|
|
int sum;
|
|
int nf = asmap->numDataFailed;
|
|
|
|
sum = asmap->failedPDAs[0]->numSector;
|
|
if (nf == 2)
|
|
sum += asmap->failedPDAs[1]->numSector;
|
|
|
|
if ((nf == 2) && (sum == (2 * sectorsPerSU))) {
|
|
/* large write case */
|
|
rf_PQ_DDLargeWrite(raidPtr, asmap, dag_h, bp, flags, allocList);
|
|
return;
|
|
}
|
|
if ((nf == asmap->numStripeUnitsAccessed) || (sum >= sectorsPerSU)) {
|
|
/* small write case, no user data not in shadow */
|
|
rf_PQ_DDSimpleSmallWrite(raidPtr, asmap, dag_h, bp, flags, allocList);
|
|
return;
|
|
}
|
|
RF_PANIC();
|
|
}
|
|
RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDSimpleSmallWrite)
|
|
{
|
|
rf_DoubleDegSmallWrite(raidPtr, asmap, dag_h, bp, flags, allocList, "Rq", "Wq", "PQ Recovery", rf_PQWriteDoubleRecoveryFunc);
|
|
}
|
|
#endif /* (RF_INCLUDE_DECL_PQ > 0) ||
|
|
* (RF_INCLUDE_RAID6 > 0) */
|