NetBSD/sys/dev/ic/am7930.c
1997-10-19 20:34:54 +00:00

826 lines
21 KiB
C

/* $NetBSD: am7930.c,v 1.33 1997/10/19 20:34:54 christos Exp $ */
/*
* Copyright (c) 1995 Rolf Grossmann
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Rolf Grossmann.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "audio.h"
#if NAUDIO > 0
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/ic/am7930reg.h>
#include <sparc/dev/amd7930var.h>
#define AUDIO_ROM_NAME "audio"
#ifdef AUDIO_DEBUG
extern void Dprintf __P((const char *, ...));
int amd7930debug = 0;
#define DPRINTF(x) if (amd7930debug) Dprintf x
#else
#define DPRINTF(x)
#endif
/*
* Software state, per AMD79C30 audio chip.
*/
struct amd7930_softc {
struct device sc_dev; /* base device */
struct intrhand sc_hwih; /* hardware interrupt vector */
struct intrhand sc_swih; /* software interrupt vector */
int sc_open; /* single use device */
int sc_locked; /* true when transfering data */
struct mapreg sc_map; /* current contents of map registers */
u_char sc_rlevel; /* record level */
u_char sc_plevel; /* play level */
u_char sc_mlevel; /* monitor level */
u_char sc_out_port; /* output port */
/* interfacing with the interrupt handlers */
void (*sc_rintr)(void*); /* input completion intr handler */
void *sc_rarg; /* arg for sc_rintr() */
void (*sc_pintr)(void*); /* output completion intr handler */
void *sc_parg; /* arg for sc_pintr() */
/* sc_au is special in that the hardware interrupt handler uses it */
struct auio sc_au; /* recv and xmit buffers, etc */
#define sc_intrcnt sc_au.au_intrcnt /* statistics */
};
/* interrupt interfaces */
#ifdef AUDIO_C_HANDLER
int amd7930hwintr __P((void *));
#if defined(SUN4M)
#define AUDIO_SET_SWINTR do { \
if (CPU_ISSUN4M) \
raise(0, 4); \
else \
ienab_bis(IE_L4); \
} while(0);
#else
#define AUDIO_SET_SWINTR ienab_bis(IE_L4)
#endif /* defined(SUN4M) */
#else
struct auio *auiop;
#endif /* AUDIO_C_HANDLER */
int amd7930swintr __P((void *));
/* forward declarations */
void audio_setmap __P((volatile struct amd7930 *, struct mapreg *));
static void init_amd __P((volatile struct amd7930 *));
/* autoconfiguration driver */
void amd7930attach __P((struct device *, struct device *, void *));
int amd7930match __P((struct device *, struct cfdata *, void *));
struct cfattach audioamd_ca = {
sizeof(struct amd7930_softc), amd7930match, amd7930attach
};
struct cfdriver audioamd_cd = {
NULL, "audioamd", DV_DULL
};
struct audio_device amd7930_device = {
"amd7930",
"x",
"audioamd"
};
/* Write 16 bits of data from variable v to the data port of the audio chip */
#define WAMD16(amd, v) ((amd)->dr = (v), (amd)->dr = (v) >> 8)
/* The following tables stolen from former (4.4Lite's) sys/sparc/bsd_audio.c */
/*
* gx, gr & stg gains. this table must contain 256 elements with
* the 0th being "infinity" (the magic value 9008). The remaining
* elements match sun's gain curve (but with higher resolution):
* -18 to 0dB in .16dB steps then 0 to 12dB in .08dB steps.
*/
static const u_short gx_coeff[256] = {
0x9008, 0x8e7c, 0x8e51, 0x8e45, 0x8d42, 0x8d3b, 0x8c36, 0x8c33,
0x8b32, 0x8b2a, 0x8b2b, 0x8b2c, 0x8b25, 0x8b23, 0x8b22, 0x8b22,
0x9122, 0x8b1a, 0x8aa3, 0x8aa3, 0x8b1c, 0x8aa6, 0x912d, 0x912b,
0x8aab, 0x8b12, 0x8aaa, 0x8ab2, 0x9132, 0x8ab4, 0x913c, 0x8abb,
0x9142, 0x9144, 0x9151, 0x8ad5, 0x8aeb, 0x8a79, 0x8a5a, 0x8a4a,
0x8b03, 0x91c2, 0x91bb, 0x8a3f, 0x8a33, 0x91b2, 0x9212, 0x9213,
0x8a2c, 0x921d, 0x8a23, 0x921a, 0x9222, 0x9223, 0x922d, 0x9231,
0x9234, 0x9242, 0x925b, 0x92dd, 0x92c1, 0x92b3, 0x92ab, 0x92a4,
0x92a2, 0x932b, 0x9341, 0x93d3, 0x93b2, 0x93a2, 0x943c, 0x94b2,
0x953a, 0x9653, 0x9782, 0x9e21, 0x9d23, 0x9cd2, 0x9c23, 0x9baa,
0x9bde, 0x9b33, 0x9b22, 0x9b1d, 0x9ab2, 0xa142, 0xa1e5, 0x9a3b,
0xa213, 0xa1a2, 0xa231, 0xa2eb, 0xa313, 0xa334, 0xa421, 0xa54b,
0xada4, 0xac23, 0xab3b, 0xaaab, 0xaa5c, 0xb1a3, 0xb2ca, 0xb3bd,
0xbe24, 0xbb2b, 0xba33, 0xc32b, 0xcb5a, 0xd2a2, 0xe31d, 0x0808,
0x72ba, 0x62c2, 0x5c32, 0x52db, 0x513e, 0x4cce, 0x43b2, 0x4243,
0x41b4, 0x3b12, 0x3bc3, 0x3df2, 0x34bd, 0x3334, 0x32c2, 0x3224,
0x31aa, 0x2a7b, 0x2aaa, 0x2b23, 0x2bba, 0x2c42, 0x2e23, 0x25bb,
0x242b, 0x240f, 0x231a, 0x22bb, 0x2241, 0x2223, 0x221f, 0x1a33,
0x1a4a, 0x1acd, 0x2132, 0x1b1b, 0x1b2c, 0x1b62, 0x1c12, 0x1c32,
0x1d1b, 0x1e71, 0x16b1, 0x1522, 0x1434, 0x1412, 0x1352, 0x1323,
0x1315, 0x12bc, 0x127a, 0x1235, 0x1226, 0x11a2, 0x1216, 0x0a2a,
0x11bc, 0x11d1, 0x1163, 0x0ac2, 0x0ab2, 0x0aab, 0x0b1b, 0x0b23,
0x0b33, 0x0c0f, 0x0bb3, 0x0c1b, 0x0c3e, 0x0cb1, 0x0d4c, 0x0ec1,
0x079a, 0x0614, 0x0521, 0x047c, 0x0422, 0x03b1, 0x03e3, 0x0333,
0x0322, 0x031c, 0x02aa, 0x02ba, 0x02f2, 0x0242, 0x0232, 0x0227,
0x0222, 0x021b, 0x01ad, 0x0212, 0x01b2, 0x01bb, 0x01cb, 0x01f6,
0x0152, 0x013a, 0x0133, 0x0131, 0x012c, 0x0123, 0x0122, 0x00a2,
0x011b, 0x011e, 0x0114, 0x00b1, 0x00aa, 0x00b3, 0x00bd, 0x00ba,
0x00c5, 0x00d3, 0x00f3, 0x0062, 0x0051, 0x0042, 0x003b, 0x0033,
0x0032, 0x002a, 0x002c, 0x0025, 0x0023, 0x0022, 0x001a, 0x0021,
0x001b, 0x001b, 0x001d, 0x0015, 0x0013, 0x0013, 0x0012, 0x0012,
0x000a, 0x000a, 0x0011, 0x0011, 0x000b, 0x000b, 0x000c, 0x000e,
};
/*
* second stage play gain.
*/
static const u_short ger_coeff[] = {
0x431f, /* 5. dB */
0x331f, /* 5.5 dB */
0x40dd, /* 6. dB */
0x11dd, /* 6.5 dB */
0x440f, /* 7. dB */
0x411f, /* 7.5 dB */
0x311f, /* 8. dB */
0x5520, /* 8.5 dB */
0x10dd, /* 9. dB */
0x4211, /* 9.5 dB */
0x410f, /* 10. dB */
0x111f, /* 10.5 dB */
0x600b, /* 11. dB */
0x00dd, /* 11.5 dB */
0x4210, /* 12. dB */
0x110f, /* 13. dB */
0x7200, /* 14. dB */
0x2110, /* 15. dB */
0x2200, /* 15.9 dB */
0x000b, /* 16.9 dB */
0x000f /* 18. dB */
#define NGER (sizeof(ger_coeff) / sizeof(ger_coeff[0]))
};
/*
* Define our interface to the higher level audio driver.
*/
int amd7930_open __P((void *, int));
void amd7930_close __P((void *));
int amd7930_query_encoding __P((void *, struct audio_encoding *));
int amd7930_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
int amd7930_round_blocksize __P((void *, int));
int amd7930_commit_settings __P((void *));
int amd7930_start_output __P((void *, void *, int, void (*)(void *),
void *));
int amd7930_start_input __P((void *, void *, int, void (*)(void *),
void *));
int amd7930_halt_output __P((void *));
int amd7930_halt_input __P((void *));
int amd7930_getdev __P((void *, struct audio_device *));
int amd7930_set_port __P((void *, mixer_ctrl_t *));
int amd7930_get_port __P((void *, mixer_ctrl_t *));
int amd7930_query_devinfo __P((void *, mixer_devinfo_t *));
int amd7930_get_props __P((void *));
struct audio_hw_if sa_hw_if = {
amd7930_open,
amd7930_close,
0,
amd7930_query_encoding,
amd7930_set_params,
amd7930_round_blocksize,
amd7930_commit_settings,
0,
0,
amd7930_start_output,
amd7930_start_input,
amd7930_halt_output,
amd7930_halt_input,
0,
amd7930_getdev,
0,
amd7930_set_port,
amd7930_get_port,
amd7930_query_devinfo,
0,
0,
0,
0,
amd7930_get_props,
};
/* autoconfig routines */
int
amd7930match(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
register struct confargs *ca = aux;
register struct romaux *ra = &ca->ca_ra;
if (CPU_ISSUN4)
return (0);
return (strcmp(AUDIO_ROM_NAME, ra->ra_name) == 0);
}
/*
* Audio chip found.
*/
void
amd7930attach(parent, self, args)
struct device *parent, *self;
void *args;
{
register struct amd7930_softc *sc = (struct amd7930_softc *)self;
register struct confargs *ca = args;
register struct romaux *ra = &ca->ca_ra;
register volatile struct amd7930 *amd;
register int pri;
if (ra->ra_nintr != 1) {
printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
return;
}
pri = ra->ra_intr[0].int_pri;
printf(" pri %d, softpri %d\n", pri, PIL_AUSOFT);
amd = (volatile struct amd7930 *)(ra->ra_vaddr ?
ra->ra_vaddr : mapiodev(ra->ra_reg, 0, sizeof (*amd)));
sc->sc_map.mr_mmr1 = AMD_MMR1_GX | AMD_MMR1_GER |
AMD_MMR1_GR | AMD_MMR1_STG;
sc->sc_au.au_amd = amd;
/* set boot defaults */
sc->sc_rlevel = 128;
sc->sc_plevel = 128;
sc->sc_mlevel = 0;
sc->sc_out_port = SUNAUDIO_SPEAKER;
init_amd(amd);
#ifndef AUDIO_C_HANDLER
auiop = &sc->sc_au;
intr_fasttrap(pri, amd7930_trap);
#else
sc->sc_hwih.ih_fun = amd7930hwintr;
sc->sc_hwih.ih_arg = &sc->sc_au;
intr_establish(pri, &sc->sc_hwih);
#endif
sc->sc_swih.ih_fun = amd7930swintr;
sc->sc_swih.ih_arg = sc;
intr_establish(PIL_AUSOFT, &sc->sc_swih);
evcnt_attach(&sc->sc_dev, "intr", &sc->sc_intrcnt);
audio_attach_mi(&sa_hw_if, 0, sc, &sc->sc_dev);
}
static void
init_amd(amd)
register volatile struct amd7930 *amd;
{
/* disable interrupts */
amd->cr = AMDR_INIT;
amd->dr = AMD_INIT_PMS_ACTIVE | AMD_INIT_INT_DISABLE;
/*
* Initialize the mux unit. We use MCR3 to route audio (MAP)
* through channel Bb. MCR1 and MCR2 are unused.
* Setting the INT enable bit in MCR4 will generate an interrupt
* on each converted audio sample.
*/
amd->cr = AMDR_MUX_1_4;
amd->dr = 0;
amd->dr = 0;
amd->dr = (AMD_MCRCHAN_BB << 4) | AMD_MCRCHAN_BA;
amd->dr = AMD_MCR4_INT_ENABLE;
}
int
amd7930_open(addr, flags)
void *addr;
int flags;
{
struct amd7930_softc *sc = addr;
DPRINTF(("sa_open: unit %p\n", sc));
if (sc->sc_open)
return (EBUSY);
sc->sc_open = 1;
sc->sc_locked = 0;
sc->sc_rintr = 0;
sc->sc_rarg = 0;
sc->sc_pintr = 0;
sc->sc_parg = 0;
sc->sc_au.au_rdata = 0;
sc->sc_au.au_pdata = 0;
DPRINTF(("saopen: ok -> sc=0x%x\n",sc));
return (0);
}
void
amd7930_close(addr)
void *addr;
{
register struct amd7930_softc *sc = addr;
DPRINTF(("sa_close: sc=0x%x\n", sc));
/*
* halt i/o, clear open flag, and done.
*/
amd7930_halt_input(sc);
amd7930_halt_output(sc);
sc->sc_open = 0;
DPRINTF(("sa_close: closed.\n"));
}
int
amd7930_set_params(addr, setmode, usemode, p, r)
void *addr;
int setmode, usemode;
struct audio_params *p, *r;
{
if (p->sample_rate < 7500 || p->sample_rate > 8500 ||
p->encoding != AUDIO_ENCODING_ULAW ||
p->precision != 8 ||
p->channels != 1)
return EINVAL;
p->sample_rate = 8000; /* no other sampling rates supported by amd chip */
return 0;
}
int
amd7930_query_encoding(addr, fp)
void *addr;
struct audio_encoding *fp;
{
switch (fp->index) { /* ??? */
case 0:
strcpy(fp->name, AudioEmulaw);
fp->encoding = AUDIO_ENCODING_ULAW;
fp->precision = 8;
fp->flags = 0;
break;
default:
return(EINVAL);
/*NOTREACHED*/
}
return(0);
}
int
amd7930_round_blocksize(addr, blk)
void *addr;
int blk;
{
return(blk);
}
int
amd7930_commit_settings(addr)
void *addr;
{
register struct amd7930_softc *sc = addr;
register struct mapreg *map;
register volatile struct amd7930 *amd;
register int s, level;
DPRINTF(("sa_commit.\n"));
map = &sc->sc_map;
amd = sc->sc_au.au_amd;
map->mr_gx = gx_coeff[sc->sc_rlevel];
map->mr_stgr = gx_coeff[sc->sc_mlevel];
level = (sc->sc_plevel * (256 + NGER)) >> 8;
if (level >= 256) {
map->mr_ger = ger_coeff[level - 256];
map->mr_gr = gx_coeff[255];
} else {
map->mr_ger = ger_coeff[0];
map->mr_gr = gx_coeff[level];
}
if (sc->sc_out_port == SUNAUDIO_SPEAKER)
map->mr_mmr2 |= AMD_MMR2_LS;
else
map->mr_mmr2 &= ~AMD_MMR2_LS;
s = splaudio();
amd->cr = AMDR_MAP_MMR1;
amd->dr = map->mr_mmr1;
amd->cr = AMDR_MAP_GX;
WAMD16(amd, map->mr_gx);
amd->cr = AMDR_MAP_STG;
WAMD16(amd, map->mr_stgr);
amd->cr = AMDR_MAP_GR;
WAMD16(amd, map->mr_gr);
amd->cr = AMDR_MAP_GER;
WAMD16(amd, map->mr_ger);
amd->cr = AMDR_MAP_MMR2;
amd->dr = map->mr_mmr2;
splx(s);
return(0);
}
int
amd7930_start_output(addr, p, cc, intr, arg)
void *addr;
void *p;
int cc;
void (*intr) __P((void *));
void *arg;
{
register struct amd7930_softc *sc = addr;
#ifdef AUDIO_DEBUG
if (amd7930debug > 1)
Dprintf("sa_start_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
#endif
if (!sc->sc_locked) {
register volatile struct amd7930 *amd;
amd = sc->sc_au.au_amd;
amd->cr = AMDR_INIT;
amd->dr = AMD_INIT_PMS_ACTIVE;
sc->sc_locked = 1;
DPRINTF(("sa_start_output: started intrs.\n"));
}
sc->sc_pintr = intr;
sc->sc_parg = arg;
sc->sc_au.au_pdata = p;
sc->sc_au.au_pend = p + cc - 1;
return(0);
}
/* ARGSUSED */
int
amd7930_start_input(addr, p, cc, intr, arg)
void *addr;
void *p;
int cc;
void (*intr) __P((void *));
void *arg;
{
register struct amd7930_softc *sc = addr;
#ifdef AUDIO_DEBUG
if (amd7930debug > 1)
Dprintf("sa_start_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
#endif
if (!sc->sc_locked) {
register volatile struct amd7930 *amd;
amd = sc->sc_au.au_amd;
amd->cr = AMDR_INIT;
amd->dr = AMD_INIT_PMS_ACTIVE;
sc->sc_locked = 1;
DPRINTF(("sa_start_input: started intrs.\n"));
}
sc->sc_rintr = intr;
sc->sc_rarg = arg;
sc->sc_au.au_rdata = p;
sc->sc_au.au_rend = p + cc -1;
return(0);
}
int
amd7930_halt_output(addr)
void *addr;
{
register struct amd7930_softc *sc = addr;
register volatile struct amd7930 *amd;
/* XXX only halt, if input is also halted ?? */
amd = sc->sc_au.au_amd;
amd->cr = AMDR_INIT;
amd->dr = AMD_INIT_PMS_ACTIVE | AMD_INIT_INT_DISABLE;
sc->sc_locked = 0;
return(0);
}
int
amd7930_halt_input(addr)
void *addr;
{
register struct amd7930_softc *sc = addr;
register volatile struct amd7930 *amd;
/* XXX only halt, if output is also halted ?? */
amd = sc->sc_au.au_amd;
amd->cr = AMDR_INIT;
amd->dr = AMD_INIT_PMS_ACTIVE | AMD_INIT_INT_DISABLE;
sc->sc_locked = 0;
return(0);
}
int
amd7930_getdev(addr, retp)
void *addr;
struct audio_device *retp;
{
*retp = amd7930_device;
return 0;
}
int
amd7930_set_port(addr, cp)
void *addr;
mixer_ctrl_t *cp;
{
register struct amd7930_softc *sc = addr;
DPRINTF(("amd7930_set_port: port=%d", cp->dev));
if (cp->type != AUDIO_MIXER_VALUE || cp->un.value.num_channels != 1)
return(EINVAL);
switch(cp->dev) {
case SUNAUDIO_MIC_PORT:
sc->sc_rlevel = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
break;
case SUNAUDIO_SPEAKER:
case SUNAUDIO_HEADPHONES:
sc->sc_plevel = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
break;
case SUNAUDIO_MONITOR:
sc->sc_mlevel = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
break;
case SUNAUDIO_SOURCE:
if (cp->un.ord != SUNAUDIO_MIC_PORT)
return EINVAL;
break;
case SUNAUDIO_OUTPUT:
if (cp->un.ord != SUNAUDIO_SPEAKER &&
cp->un.ord != SUNAUDIO_HEADPHONES)
return EINVAL;
sc->sc_out_port = cp->un.ord;
break;
default:
return(EINVAL);
/* NOTREACHED */
}
return(0);
}
int
amd7930_get_port(addr, cp)
void *addr;
mixer_ctrl_t *cp;
{
register struct amd7930_softc *sc = addr;
DPRINTF(("amd7930_get_port: port=%d", cp->dev));
if (cp->type != AUDIO_MIXER_VALUE || cp->un.value.num_channels != 1)
return(EINVAL);
switch(cp->dev) {
case SUNAUDIO_MIC_PORT:
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_rlevel;
break;
case SUNAUDIO_SPEAKER:
case SUNAUDIO_HEADPHONES:
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_plevel;
break;
case SUNAUDIO_MONITOR:
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_mlevel;
break;
case SUNAUDIO_SOURCE:
cp->un.ord = SUNAUDIO_MIC_PORT;
break;
case SUNAUDIO_OUTPUT:
cp->un.ord = sc->sc_out_port;
break;
default:
return(EINVAL);
/* NOTREACHED */
}
return(0);
}
int
amd7930_get_props(addr)
void *addr;
{
return AUDIO_PROP_FULLDUPLEX;
}
int
amd7930_query_devinfo(addr, dip)
void *addr;
register mixer_devinfo_t *dip;
{
switch(dip->index) {
case SUNAUDIO_MIC_PORT:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = SUNAUDIO_INPUT_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmicrophone);
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case SUNAUDIO_SPEAKER:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = SUNAUDIO_OUTPUT_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNspeaker);
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case SUNAUDIO_HEADPHONES:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = SUNAUDIO_OUTPUT_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNheadphone);
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case SUNAUDIO_SOURCE:
dip->type = AUDIO_MIXER_ENUM;
dip->mixer_class = SUNAUDIO_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNsource);
dip->un.e.num_mem = 1;
strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
dip->un.e.member[0].ord = SUNAUDIO_MIC_PORT;
break;
case SUNAUDIO_OUTPUT:
dip->type = AUDIO_MIXER_ENUM;
dip->mixer_class = SUNAUDIO_MONITOR_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNoutput);
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNspeaker);
dip->un.e.member[0].ord = SUNAUDIO_SPEAKER;
strcpy(dip->un.e.member[1].label.name, AudioNheadphone);
dip->un.e.member[1].ord = SUNAUDIO_HEADPHONES;
break;
case SUNAUDIO_INPUT_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = SUNAUDIO_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCinputs);
break;
case SUNAUDIO_OUTPUT_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = SUNAUDIO_OUTPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCrecord);
break;
case SUNAUDIO_RECORD_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = SUNAUDIO_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCoutputs);
break;
case SUNAUDIO_MONITOR:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = SUNAUDIO_MONITOR_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCmonitor);
break;
default:
return ENXIO;
/*NOTREACHED*/
}
DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name));
return(0);
}
#ifdef AUDIO_C_HANDLER
int
amd7930hwintr(au0)
void *au0;
{
register struct auio *au = au0;
register volatile struct amd7930 *amd = au->au_amd;
register u_char *d, *e;
register int k;
k = amd->ir; /* clear interrupt */
/* receive incoming data */
d = au->au_rdata;
e = au->au_rend;
if (d && d <= e) {
*d = amd->bbrb;
au->au_rdata++;
if (d == e) {
#ifdef AUDIO_DEBUG
if (amd7930debug > 1)
Dprintf("amd7930hwintr: swintr(r) requested");
#endif
AUDIO_SET_SWINTR;
}
}
/* send outgoing data */
d = au->au_pdata;
e = au->au_pend;
if (d && d <= e) {
amd->bbtb = *d;
au->au_pdata++;
if (d == e) {
#ifdef AUDIO_DEBUG
if (amd7930debug > 1)
Dprintf("amd7930hwintr: swintr(p) requested");
#endif
AUDIO_SET_SWINTR;
}
}
*(au->au_intrcnt)++;
return (1);
}
#endif /* AUDIO_C_HANDLER */
int
amd7930swintr(sc0)
void *sc0;
{
register struct amd7930_softc *sc = sc0;
register struct auio *au;
register int s, ret = 0;
#ifdef AUDIO_DEBUG
if (amd7930debug > 1)
Dprintf("audiointr: sc=0x%x\n",sc);
#endif
au = &sc->sc_au;
s = splaudio();
if (au->au_rdata > au->au_rend && sc->sc_rintr != NULL) {
splx(s);
ret = 1;
(*sc->sc_rintr)(sc->sc_rarg);
s = splaudio();
}
if (au->au_pdata > au->au_pend && sc->sc_pintr != NULL) {
splx(s);
ret = 1;
(*sc->sc_pintr)(sc->sc_parg);
} else
splx(s);
return (ret);
}
#endif /* NAUDIO > 0 */