NetBSD/sys/dev/pci/if_lmc.c

1441 lines
36 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* $NetBSD: if_lmc.c,v 1.10 2001/06/13 10:46:04 wiz Exp $ */
/*-
* Copyright (c) 1997-1999 LAN Media Corporation (LMC)
* All rights reserved. www.lanmedia.com
*
* This code is written by Michael Graff <graff@vix.com> for LMC.
* The code is derived from permitted modifications to software created
* by Matt Thomas (matt@3am-software.com).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* 3. All marketing or advertising materials mentioning features or
* use of this software must display the following acknowledgement:
* This product includes software developed by LAN Media Corporation
* and its contributors.
* 4. Neither the name of LAN Media Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY LAN MEDIA CORPORATION AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1994-1997 Matt Thomas (matt@3am-software.com)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/proc.h> /* only for declaration of wakeup() used by vm.h */
#if defined(__FreeBSD__)
#include <machine/clock.h>
#elif defined(__bsdi__) || defined(__NetBSD__)
#include <sys/device.h>
#endif
#if defined(__NetBSD__)
#include <dev/pci/pcidevs.h>
#include "rnd.h"
#if NRND > 0
#include <sys/rnd.h>
#endif
#endif
#include <net/if.h>
#include <net/if_types.h>
#include <net/if_dl.h>
#include <net/netisr.h>
#include "bpfilter.h"
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#if defined(__FreeBSD__) || defined(__NetBSD__)
#include <net/if_sppp.h>
#endif
#if defined(__bsdi__)
#if INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#endif
#include <net/netisr.h>
#include <net/if.h>
#include <net/netisr.h>
#include <net/if_types.h>
#include <net/if_p2p.h>
#include <net/if_c_hdlc.h>
#endif
#if defined(__NetBSD__)
#include <uvm/uvm_extern.h>
#endif
#if defined(__FreeBSD__)
#include <vm/vm.h>
#include <vm/pmap.h>
#include <pci.h>
#if NPCI > 0
#include <pci/pcivar.h>
#include <pci/dc21040reg.h>
#endif
#endif /* __FreeBSD__ */
#if defined(__bsdi__)
#include <vm/vm.h>
#include <i386/pci/ic/dc21040.h>
#include <i386/isa/isa.h>
#include <i386/isa/icu.h>
#include <i386/isa/dma.h>
#include <i386/isa/isavar.h>
#include <i386/pci/pci.h>
#endif /* __bsdi__ */
#if defined(__NetBSD__)
#include <machine/bus.h>
#if defined(__alpha__)
#include <machine/intr.h>
#endif
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/ic/dc21040reg.h>
#endif /* __NetBSD__ */
/*
* Sigh. Every OS puts these in different places.
*/
#if defined(__NetBSD__)
#include <dev/pci/if_lmc_types.h>
#include <dev/pci/if_lmcioctl.h>
#include <dev/pci/if_lmcvar.h>
#elif defined(__FreeBSD__)
#include "pci/if_lmc_types.h"
#include "pci/if_lmcioctl.h"
#include "pci/if_lmcvar.h"
#else /* BSDI */
#include "i386/pci/if_lmctypes.h"
#include "i386/pci/if_lmcioctl.h"
#include "i386/pci/if_lmcvar.h"
#endif
/*
* This module supports
* the DEC 21140A pass 2.2 PCI Fast Ethernet Controller.
*/
static ifnet_ret_t lmc_ifstart_one(struct ifnet *ifp);
static ifnet_ret_t lmc_ifstart(struct ifnet *ifp);
static struct mbuf *lmc_txput(lmc_softc_t * const sc, struct mbuf *m);
static void lmc_rx_intr(lmc_softc_t * const sc);
#if defined(__NetBSD__) || defined(__FreeBSD__)
static void lmc_watchdog(struct ifnet *ifp);
#endif
#if defined(__bsdi__)
static int lmc_watchdog(int);
#endif
static void lmc_ifup(lmc_softc_t * const sc);
static void lmc_ifdown(lmc_softc_t * const sc);
/*
* Code the read the SROM and MII bit streams (I2C)
*/
static inline void
lmc_delay_300ns(lmc_softc_t * const sc)
{
int idx;
for (idx = (300 / 33) + 1; idx > 0; idx--)
(void)LMC_CSR_READ(sc, csr_busmode);
}
#define EMIT \
do { \
LMC_CSR_WRITE(sc, csr_srom_mii, csr); \
lmc_delay_300ns(sc); \
} while (0)
static inline void
lmc_srom_idle(lmc_softc_t * const sc)
{
unsigned bit, csr;
csr = SROMSEL ; EMIT;
csr = SROMSEL | SROMRD; EMIT;
csr ^= SROMCS; EMIT;
csr ^= SROMCLKON; EMIT;
/*
* Write 25 cycles of 0 which will force the SROM to be idle.
*/
for (bit = 3 + SROM_BITWIDTH + 16; bit > 0; bit--) {
csr ^= SROMCLKOFF; EMIT; /* clock low; data not valid */
csr ^= SROMCLKON; EMIT; /* clock high; data valid */
}
csr ^= SROMCLKOFF; EMIT;
csr ^= SROMCS; EMIT;
csr = 0; EMIT;
}
static void
lmc_srom_read(lmc_softc_t * const sc)
{
unsigned idx;
const unsigned bitwidth = SROM_BITWIDTH;
const unsigned cmdmask = (SROMCMD_RD << bitwidth);
const unsigned msb = 1 << (bitwidth + 3 - 1);
unsigned lastidx = (1 << bitwidth) - 1;
lmc_srom_idle(sc);
for (idx = 0; idx <= lastidx; idx++) {
unsigned lastbit, data, bits, bit, csr;
csr = SROMSEL ; EMIT;
csr = SROMSEL | SROMRD; EMIT;
csr ^= SROMCSON; EMIT;
csr ^= SROMCLKON; EMIT;
lastbit = 0;
for (bits = idx|cmdmask, bit = bitwidth + 3
; bit > 0
; bit--, bits <<= 1) {
const unsigned thisbit = bits & msb;
csr ^= SROMCLKOFF; EMIT; /* clock L data invalid */
if (thisbit != lastbit) {
csr ^= SROMDOUT; EMIT;/* clock L invert data */
} else {
EMIT;
}
csr ^= SROMCLKON; EMIT; /* clock H data valid */
lastbit = thisbit;
}
csr ^= SROMCLKOFF; EMIT;
for (data = 0, bits = 0; bits < 16; bits++) {
data <<= 1;
csr ^= SROMCLKON; EMIT; /* clock H data valid */
data |= LMC_CSR_READ(sc, csr_srom_mii) & SROMDIN ? 1 : 0;
csr ^= SROMCLKOFF; EMIT; /* clock L data invalid */
}
sc->lmc_rombuf[idx*2] = data & 0xFF;
sc->lmc_rombuf[idx*2+1] = data >> 8;
csr = SROMSEL | SROMRD; EMIT;
csr = 0; EMIT;
}
lmc_srom_idle(sc);
}
#define MII_EMIT do { LMC_CSR_WRITE(sc, csr_srom_mii, csr); lmc_delay_300ns(sc); } while (0)
static inline void
lmc_mii_writebits(lmc_softc_t * const sc, unsigned data, unsigned bits)
{
unsigned msb = 1 << (bits - 1);
unsigned csr = LMC_CSR_READ(sc, csr_srom_mii) & (MII_RD|MII_DOUT|MII_CLK);
unsigned lastbit = (csr & MII_DOUT) ? msb : 0;
csr |= MII_WR; MII_EMIT; /* clock low; assert write */
for (; bits > 0; bits--, data <<= 1) {
const unsigned thisbit = data & msb;
if (thisbit != lastbit) {
csr ^= MII_DOUT; MII_EMIT; /* clock low; invert data */
}
csr ^= MII_CLKON; MII_EMIT; /* clock high; data valid */
lastbit = thisbit;
csr ^= MII_CLKOFF; MII_EMIT; /* clock low; data not valid */
}
}
static void
lmc_mii_turnaround(lmc_softc_t * const sc, u_int32_t cmd)
{
u_int32_t csr;
csr = LMC_CSR_READ(sc, csr_srom_mii) & (MII_RD|MII_DOUT|MII_CLK);
if (cmd == MII_WRCMD) {
csr |= MII_DOUT; MII_EMIT; /* clock low; change data */
csr ^= MII_CLKON; MII_EMIT; /* clock high; data valid */
csr ^= MII_CLKOFF; MII_EMIT; /* clock low; data not valid */
csr ^= MII_DOUT; MII_EMIT; /* clock low; change data */
} else {
csr |= MII_RD; MII_EMIT; /* clock low; switch to read */
}
csr ^= MII_CLKON; MII_EMIT; /* clock high; data valid */
csr ^= MII_CLKOFF; MII_EMIT; /* clock low; data not valid */
}
static u_int32_t
lmc_mii_readbits(lmc_softc_t * const sc)
{
u_int32_t data;
u_int32_t csr = LMC_CSR_READ(sc, csr_srom_mii) & (MII_RD|MII_DOUT|MII_CLK);
int idx;
for (idx = 0, data = 0; idx < 16; idx++) {
data <<= 1; /* this is NOOP on the first pass through */
csr ^= MII_CLKON; MII_EMIT; /* clock high; data valid */
if (LMC_CSR_READ(sc, csr_srom_mii) & MII_DIN)
data |= 1;
csr ^= MII_CLKOFF; MII_EMIT; /* clock low; data not valid */
}
csr ^= MII_RD; MII_EMIT; /* clock low; turn off read */
return data;
}
u_int32_t
lmc_mii_readreg(lmc_softc_t * const sc, u_int32_t devaddr, u_int32_t regno)
{
u_int32_t csr = LMC_CSR_READ(sc, csr_srom_mii) & (MII_RD|MII_DOUT|MII_CLK);
u_int32_t data;
csr &= ~(MII_RD|MII_CLK); MII_EMIT;
lmc_mii_writebits(sc, MII_PREAMBLE, 32);
lmc_mii_writebits(sc, MII_RDCMD, 8);
lmc_mii_writebits(sc, devaddr, 5);
lmc_mii_writebits(sc, regno, 5);
lmc_mii_turnaround(sc, MII_RDCMD);
data = lmc_mii_readbits(sc);
return (data);
}
void
lmc_mii_writereg(lmc_softc_t * const sc, u_int32_t devaddr,
u_int32_t regno, u_int32_t data)
{
u_int32_t csr;
csr = LMC_CSR_READ(sc, csr_srom_mii) & (MII_RD|MII_DOUT|MII_CLK);
csr &= ~(MII_RD|MII_CLK); MII_EMIT;
lmc_mii_writebits(sc, MII_PREAMBLE, 32);
lmc_mii_writebits(sc, MII_WRCMD, 8);
lmc_mii_writebits(sc, devaddr, 5);
lmc_mii_writebits(sc, regno, 5);
lmc_mii_turnaround(sc, MII_WRCMD);
lmc_mii_writebits(sc, data, 16);
}
int
lmc_read_macaddr(lmc_softc_t * const sc)
{
lmc_srom_read(sc);
bcopy(sc->lmc_rombuf + 20, sc->lmc_enaddr, 6);
return 0;
}
/*
* Check to make certain there is a signal from the modem, and flicker
* lights as needed.
*/
#if defined(__NetBSD__) || defined(__FreeBSD__)
static void
lmc_watchdog(struct ifnet *ifp)
#endif
#if defined(__bsdi__)
static int
lmc_watchdog(int unit)
#endif
{
#if defined(__NetBSD__) || defined(__FreeBSD__)
lmc_softc_t * const sc = LMC_IFP_TO_SOFTC(ifp);
#endif
#if defined(__bsdi__)
lmc_softc_t * const sc = LMC_UNIT_TO_SOFTC(unit);
struct ifnet *ifp = &sc->lmc_if;
#endif
int state;
u_int32_t ostatus;
u_int32_t link_status;
u_int32_t ticks;
state = 0;
/*
* Make sure the tx jabber and rx watchdog are off,
* and the transmit and receive processes are running.
*/
LMC_CSR_WRITE (sc, csr_15, 0x00000011);
sc->lmc_cmdmode |= TULIP_CMD_TXRUN | TULIP_CMD_RXRUN;
LMC_CSR_WRITE (sc, csr_command, sc->lmc_cmdmode);
/* Is the transmit clock still available? */
ticks = LMC_CSR_READ (sc, csr_gp_timer);
ticks = 0x0000ffff - (ticks & 0x0000ffff);
if (ticks == 0)
{
/* no clock found ? */
if (sc->tx_clockState != 0)
{
sc->tx_clockState = 0;
if (sc->lmc_cardtype == LMC_CARDTYPE_SSI)
lmc_led_on (sc, LMC_MII16_LED3); /* ON red */
}
else
if (sc->tx_clockState == 0)
{
sc->tx_clockState = 1;
if (sc->lmc_cardtype == LMC_CARDTYPE_SSI)
lmc_led_off (sc, LMC_MII16_LED3); /* OFF red */
}
}
link_status = sc->lmc_media->get_link_status(sc);
ostatus = ((sc->lmc_flags & LMC_MODEMOK) == LMC_MODEMOK);
/*
* hardware level link lost, but the interface is marked as up.
* Mark it as down.
*/
if (link_status == LMC_LINK_DOWN && ostatus) {
printf(LMC_PRINTF_FMT ": physical link down\n",
LMC_PRINTF_ARGS);
sc->lmc_flags &= ~LMC_MODEMOK;
if (sc->lmc_cardtype == LMC_CARDTYPE_DS3 ||
sc->lmc_cardtype == LMC_CARDTYPE_T1)
lmc_led_on (sc, LMC_DS3_LED3 | LMC_DS3_LED2);
/* turn on red LED */
else {
lmc_led_off (sc, LMC_MII16_LED1);
lmc_led_on (sc, LMC_MII16_LED0);
if (sc->lmc_timing == LMC_CTL_CLOCK_SOURCE_EXT)
lmc_led_on (sc, LMC_MII16_LED3);
}
}
/*
* hardware link is up, but the interface is marked as down.
* Bring it back up again.
*/
if (link_status != LMC_LINK_DOWN && !ostatus) {
printf(LMC_PRINTF_FMT ": physical link up\n",
LMC_PRINTF_ARGS);
if (sc->lmc_flags & LMC_IFUP)
lmc_ifup(sc);
sc->lmc_flags |= LMC_MODEMOK;
if (sc->lmc_cardtype == LMC_CARDTYPE_DS3 ||
sc->lmc_cardtype == LMC_CARDTYPE_T1)
{
sc->lmc_miireg16 |= LMC_DS3_LED3;
lmc_led_off (sc, LMC_DS3_LED3);
/* turn off red LED */
lmc_led_on (sc, LMC_DS3_LED2);
} else {
lmc_led_on (sc, LMC_MII16_LED0 | LMC_MII16_LED1
| LMC_MII16_LED2);
if (sc->lmc_timing != LMC_CTL_CLOCK_SOURCE_EXT)
lmc_led_off (sc, LMC_MII16_LED3);
}
return;
}
/* Call media specific watchdog functions */
sc->lmc_media->watchdog(sc);
/*
* remember the timer value
*/
ticks = LMC_CSR_READ(sc, csr_gp_timer);
LMC_CSR_WRITE(sc, csr_gp_timer, 0xffffffffUL);
sc->ictl.ticks = 0x0000ffff - (ticks & 0x0000ffff);
ifp->if_timer = 1;
}
/*
* Mark the interface as "up" and enable TX/RX and TX/RX interrupts.
* This also does a full software reset.
*/
static void
lmc_ifup(lmc_softc_t * const sc)
{
sc->lmc_if.if_timer = 0;
lmc_dec_reset(sc);
lmc_reset(sc);
sc->lmc_media->set_link_status(sc, LMC_LINK_UP);
sc->lmc_media->set_status(sc, NULL);
sc->lmc_flags |= LMC_IFUP;
/*
* for DS3 & DS1 adapters light the green light, led2
*/
if (sc->lmc_cardtype == LMC_CARDTYPE_DS3 ||
sc->lmc_cardtype == LMC_CARDTYPE_T1)
lmc_led_on (sc, LMC_MII16_LED2);
else
lmc_led_on (sc, LMC_MII16_LED0 | LMC_MII16_LED2);
/*
* select what interrupts we want to get
*/
sc->lmc_intrmask |= (TULIP_STS_NORMALINTR
| TULIP_STS_RXINTR
| TULIP_STS_TXINTR
| TULIP_STS_ABNRMLINTR
| TULIP_STS_SYSERROR
| TULIP_STS_TXSTOPPED
| TULIP_STS_TXUNDERFLOW
| TULIP_STS_RXSTOPPED
);
LMC_CSR_WRITE(sc, csr_intr, sc->lmc_intrmask);
sc->lmc_cmdmode |= TULIP_CMD_TXRUN;
sc->lmc_cmdmode |= TULIP_CMD_RXRUN;
LMC_CSR_WRITE(sc, csr_command, sc->lmc_cmdmode);
sc->lmc_if.if_timer = 1;
}
/*
* Mark the interface as "down" and disable TX/RX and TX/RX interrupts.
* This is done by performing a full reset on the interface.
*/
static void
lmc_ifdown(lmc_softc_t * const sc)
{
sc->lmc_if.if_timer = 0;
sc->lmc_flags &= ~LMC_IFUP;
sc->lmc_media->set_link_status(sc, LMC_LINK_DOWN);
lmc_led_off(sc, LMC_MII16_LED_ALL);
lmc_dec_reset(sc);
lmc_reset(sc);
sc->lmc_media->set_status(sc, NULL);
}
static void
lmc_rx_intr(lmc_softc_t * const sc)
{
lmc_ringinfo_t * const ri = &sc->lmc_rxinfo;
struct ifnet * const ifp = &sc->lmc_if;
int fillok = 1;
sc->lmc_rxtick++;
for (;;) {
tulip_desc_t *eop = ri->ri_nextin;
int total_len = 0, last_offset = 0;
struct mbuf *ms = NULL, *me = NULL;
int accept = 0;
if (fillok && sc->lmc_rxq.ifq_len < LMC_RXQ_TARGET)
goto queue_mbuf;
/*
* If the TULIP has no descriptors, there can't be any receive
* descriptors to process.
*/
if (eop == ri->ri_nextout)
break;
/*
* 90% of the packets will fit in one descriptor. So we
* optimize for that case.
*/
if ((((volatile tulip_desc_t *) eop)->d_status & (TULIP_DSTS_OWNER|TULIP_DSTS_RxFIRSTDESC|TULIP_DSTS_RxLASTDESC)) == (TULIP_DSTS_RxFIRSTDESC|TULIP_DSTS_RxLASTDESC)) {
IF_DEQUEUE(&sc->lmc_rxq, ms);
me = ms;
} else {
/*
* If still owned by the TULIP, don't touch it.
*/
if (((volatile tulip_desc_t *)eop)->d_status & TULIP_DSTS_OWNER)
break;
/*
* It is possible (though improbable unless the
* BIG_PACKET support is enabled or MCLBYTES < 1518)
* for a received packet to cross more than one
* receive descriptor.
*/
while ((((volatile tulip_desc_t *) eop)->d_status & TULIP_DSTS_RxLASTDESC) == 0) {
if (++eop == ri->ri_last)
eop = ri->ri_first;
if (eop == ri->ri_nextout || ((((volatile tulip_desc_t *) eop)->d_status & TULIP_DSTS_OWNER))) {
return;
}
total_len++;
}
/*
* Dequeue the first buffer for the start of the
* packet. Hopefully this will be the only one we
* need to dequeue. However, if the packet consumed
* multiple descriptors, then we need to dequeue
* those buffers and chain to the starting mbuf.
* All buffers but the last buffer have the same
* length so we can set that now. (we add to
* last_offset instead of multiplying since we
* normally won't go into the loop and thereby
* saving a ourselves from doing a multiplication
* by 0 in the normal case).
*/
IF_DEQUEUE(&sc->lmc_rxq, ms);
for (me = ms; total_len > 0; total_len--) {
me->m_len = LMC_RX_BUFLEN;
last_offset += LMC_RX_BUFLEN;
IF_DEQUEUE(&sc->lmc_rxq, me->m_next);
me = me->m_next;
}
}
/*
* Now get the size of received packet (minus the CRC).
*/
total_len = ((eop->d_status >> 16) & 0x7FFF);
if (sc->ictl.crc_length == 16)
total_len -= 2;
else
total_len -= 4;
if ((sc->lmc_flags & LMC_RXIGNORE) == 0
&& ((eop->d_status & LMC_DSTS_ERRSUM) == 0
#ifdef BIG_PACKET
|| (total_len <= sc->lmc_if.if_mtu + PPP_HEADER_LEN
&& (eop->d_status & TULIP_DSTS_RxOVERFLOW) == 0)
#endif
)) {
me->m_len = total_len - last_offset;
#if NBPFILTER > 0
if (sc->lmc_bpf != NULL) {
if (me == ms)
LMC_BPF_TAP(sc, mtod(ms, caddr_t), total_len);
else
LMC_BPF_MTAP(sc, ms);
}
#endif
sc->lmc_flags |= LMC_RXACT;
accept = 1;
} else {
ifp->if_ierrors++;
if (eop->d_status & TULIP_DSTS_RxOVERFLOW) {
sc->lmc_dot3stats.dot3StatsInternalMacReceiveErrors++;
}
}
ifp->if_ipackets++;
if (++eop == ri->ri_last)
eop = ri->ri_first;
ri->ri_nextin = eop;
queue_mbuf:
/*
* Either we are priming the TULIP with mbufs (m == NULL)
* or we are about to accept an mbuf for the upper layers
* so we need to allocate an mbuf to replace it. If we
* can't replace it, send up it anyways. This may cause
* us to drop packets in the future but that's better than
* being caught in livelock.
*
* Note that if this packet crossed multiple descriptors
* we don't even try to reallocate all the mbufs here.
* Instead we rely on the test of the beginning of
* the loop to refill for the extra consumed mbufs.
*/
if (accept || ms == NULL) {
struct mbuf *m0;
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 != NULL) {
MCLGET(m0, M_DONTWAIT);
if ((m0->m_flags & M_EXT) == 0) {
m_freem(m0);
m0 = NULL;
}
}
if (accept) {
ms->m_pkthdr.len = total_len;
ms->m_pkthdr.rcvif = ifp;
#if defined(__NetBSD__) || defined(__FreeBSD__)
sppp_input(ifp, ms);
#endif
#if defined(__bsdi__)
sc->lmc_p2pcom.p2p_input(&sc->lmc_p2pcom, ms);
#endif
}
ms = m0;
}
if (ms == NULL) {
/*
* Couldn't allocate a new buffer. Don't bother
* trying to replenish the receive queue.
*/
fillok = 0;
sc->lmc_flags |= LMC_RXBUFSLOW;
continue;
}
/*
* Now give the buffer(s) to the TULIP and save in our
* receive queue.
*/
do {
ri->ri_nextout->d_length1 = LMC_RX_BUFLEN;
ri->ri_nextout->d_addr1 = LMC_KVATOPHYS(sc, mtod(ms, caddr_t));
ri->ri_nextout->d_status = TULIP_DSTS_OWNER;
if (++ri->ri_nextout == ri->ri_last)
ri->ri_nextout = ri->ri_first;
me = ms->m_next;
ms->m_next = NULL;
IF_ENQUEUE(&sc->lmc_rxq, ms);
} while ((ms = me) != NULL);
if (sc->lmc_rxq.ifq_len >= LMC_RXQ_TARGET)
sc->lmc_flags &= ~LMC_RXBUFSLOW;
}
}
static int
lmc_tx_intr(lmc_softc_t * const sc)
{
lmc_ringinfo_t * const ri = &sc->lmc_txinfo;
struct mbuf *m;
int xmits = 0;
int descs = 0;
sc->lmc_txtick++;
while (ri->ri_free < ri->ri_max) {
u_int32_t d_flag;
if (((volatile tulip_desc_t *) ri->ri_nextin)->d_status & TULIP_DSTS_OWNER)
break;
d_flag = ri->ri_nextin->d_flag;
if (d_flag & TULIP_DFLAG_TxLASTSEG) {
const u_int32_t d_status = ri->ri_nextin->d_status;
IF_DEQUEUE(&sc->lmc_txq, m);
if (m != NULL) {
#if NBPFILTER > 0
if (sc->lmc_bpf != NULL)
LMC_BPF_MTAP(sc, m);
#endif
m_freem(m);
#if defined(LMC_DEBUG)
} else {
printf(LMC_PRINTF_FMT ": tx_intr: failed to dequeue mbuf?!?\n", LMC_PRINTF_ARGS);
#endif
}
xmits++;
if (d_status & LMC_DSTS_ERRSUM) {
sc->lmc_if.if_oerrors++;
if (d_status & TULIP_DSTS_TxUNDERFLOW)
sc->lmc_dot3stats.dot3StatsInternalTransmitUnderflows++;
} else {
if (d_status & TULIP_DSTS_TxDEFERRED)
sc->lmc_dot3stats.dot3StatsDeferredTransmissions++;
}
}
if (++ri->ri_nextin == ri->ri_last)
ri->ri_nextin = ri->ri_first;
ri->ri_free++;
descs++;
sc->lmc_if.if_flags &= ~IFF_OACTIVE;
}
/*
* If nothing left to transmit, disable the timer.
* Else if progress, reset the timer back to 2 ticks.
*/
sc->lmc_if.if_opackets += xmits;
return descs;
}
static void
lmc_print_abnormal_interrupt (lmc_softc_t * const sc, u_int32_t csr)
{
printf(LMC_PRINTF_FMT ": Abnormal interrupt\n", LMC_PRINTF_ARGS);
}
static void
lmc_intr_handler(lmc_softc_t * const sc, int *progress_p)
{
u_int32_t csr;
while ((csr = LMC_CSR_READ(sc, csr_status)) & sc->lmc_intrmask) {
#if defined(__NetBSD__)
#if NRND > 0
rnd_add_uint32(&sc->lmc_rndsource, csr);
#endif
#endif
*progress_p = 1;
LMC_CSR_WRITE(sc, csr_status, csr);
if (csr & TULIP_STS_SYSERROR) {
sc->lmc_last_system_error = (csr & TULIP_STS_ERRORMASK) >> TULIP_STS_ERR_SHIFT;
if (sc->lmc_flags & LMC_NOMESSAGES) {
sc->lmc_flags |= LMC_SYSTEMERROR;
} else {
printf(LMC_PRINTF_FMT ": system error: %s\n",
LMC_PRINTF_ARGS,
lmc_system_errors[sc->lmc_last_system_error]);
}
sc->lmc_flags |= LMC_NEEDRESET;
sc->lmc_system_errors++;
break;
}
if (csr & (TULIP_STS_RXINTR | TULIP_STS_RXNOBUF)) {
u_int32_t misses = LMC_CSR_READ(sc, csr_missed_frames);
if (csr & TULIP_STS_RXNOBUF)
sc->lmc_dot3stats.dot3StatsMissedFrames += misses & 0xFFFF;
/*
* Pass 2.[012] of the 21140A-A[CDE] may hang and/or corrupt data
* on receive overflows.
*/
if ((misses & 0x0FFE0000) && (sc->lmc_features & LMC_HAVE_RXBADOVRFLW)) {
sc->lmc_dot3stats.dot3StatsInternalMacReceiveErrors++;
/*
* Stop the receiver process and spin until it's stopped.
* Tell rx_intr to drop the packets it dequeues.
*/
LMC_CSR_WRITE(sc, csr_command, sc->lmc_cmdmode & ~TULIP_CMD_RXRUN);
while ((LMC_CSR_READ(sc, csr_status) & TULIP_STS_RXSTOPPED) == 0)
;
LMC_CSR_WRITE(sc, csr_status, TULIP_STS_RXSTOPPED);
sc->lmc_flags |= LMC_RXIGNORE;
}
lmc_rx_intr(sc);
if (sc->lmc_flags & LMC_RXIGNORE) {
/*
* Restart the receiver.
*/
sc->lmc_flags &= ~LMC_RXIGNORE;
LMC_CSR_WRITE(sc, csr_command, sc->lmc_cmdmode);
}
}
if (csr & TULIP_STS_ABNRMLINTR) {
u_int32_t tmp = csr & sc->lmc_intrmask
& ~(TULIP_STS_NORMALINTR|TULIP_STS_ABNRMLINTR);
if (csr & TULIP_STS_TXUNDERFLOW) {
if ((sc->lmc_cmdmode & TULIP_CMD_THRESHOLDCTL) != TULIP_CMD_THRSHLD160) {
sc->lmc_cmdmode += TULIP_CMD_THRSHLD96;
sc->lmc_flags |= LMC_NEWTXTHRESH;
} else if (sc->lmc_features & LMC_HAVE_STOREFWD) {
sc->lmc_cmdmode |= TULIP_CMD_STOREFWD;
sc->lmc_flags |= LMC_NEWTXTHRESH;
}
}
if (sc->lmc_flags & LMC_NOMESSAGES) {
sc->lmc_statusbits |= tmp;
} else {
lmc_print_abnormal_interrupt(sc, tmp);
sc->lmc_flags |= LMC_NOMESSAGES;
}
LMC_CSR_WRITE(sc, csr_command, sc->lmc_cmdmode);
}
if (csr & TULIP_STS_TXINTR)
lmc_tx_intr(sc);
if (sc->lmc_flags & LMC_WANTTXSTART)
lmc_ifstart(&sc->lmc_if);
}
}
lmc_intrfunc_t
lmc_intr_normal(void *arg)
{
lmc_softc_t * sc = (lmc_softc_t *) arg;
int progress = 0;
lmc_intr_handler(sc, &progress);
#if !defined(LMC_VOID_INTRFUNC)
return progress;
#endif
}
static struct mbuf *
lmc_mbuf_compress(struct mbuf *m)
{
struct mbuf *m0;
#if MCLBYTES >= LMC_MTU + PPP_HEADER_LEN && !defined(BIG_PACKET)
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 != NULL) {
if (m->m_pkthdr.len > MHLEN) {
MCLGET(m0, M_DONTWAIT);
if ((m0->m_flags & M_EXT) == 0) {
m_freem(m);
m_freem(m0);
return NULL;
}
}
m_copydata(m, 0, m->m_pkthdr.len, mtod(m0, caddr_t));
m0->m_pkthdr.len = m0->m_len = m->m_pkthdr.len;
}
#else
int mlen = MHLEN;
int len = m->m_pkthdr.len;
struct mbuf **mp = &m0;
while (len > 0) {
if (mlen == MHLEN) {
MGETHDR(*mp, M_DONTWAIT, MT_DATA);
} else {
MGET(*mp, M_DONTWAIT, MT_DATA);
}
if (*mp == NULL) {
m_freem(m0);
m0 = NULL;
break;
}
if (len > MLEN) {
MCLGET(*mp, M_DONTWAIT);
if (((*mp)->m_flags & M_EXT) == 0) {
m_freem(m0);
m0 = NULL;
break;
}
(*mp)->m_len = (len <= MCLBYTES ? len : MCLBYTES);
} else {
(*mp)->m_len = (len <= mlen ? len : mlen);
}
m_copydata(m, m->m_pkthdr.len - len,
(*mp)->m_len, mtod((*mp), caddr_t));
len -= (*mp)->m_len;
mp = &(*mp)->m_next;
mlen = MLEN;
}
#endif
m_freem(m);
return m0;
}
/*
* queue the mbuf handed to us for the interface. If we cannot
* queue it, return the mbuf. Return NULL if the mbuf was queued.
*/
static struct mbuf *
lmc_txput(lmc_softc_t * const sc, struct mbuf *m)
{
lmc_ringinfo_t * const ri = &sc->lmc_txinfo;
tulip_desc_t *eop, *nextout;
int segcnt, free;
u_int32_t d_status;
struct mbuf *m0;
#if defined(LMC_DEBUG)
if ((sc->lmc_cmdmode & TULIP_CMD_TXRUN) == 0) {
printf(LMC_PRINTF_FMT ": txput: tx not running\n",
LMC_PRINTF_ARGS);
sc->lmc_flags |= LMC_WANTTXSTART;
goto finish;
}
#endif
/*
* Now we try to fill in our transmit descriptors. This is
* a bit reminiscent of going on the Ark two by two
* since each descriptor for the TULIP can describe
* two buffers. So we advance through packet filling
* each of the two entries at a time to fill each
* descriptor. Clear the first and last segment bits
* in each descriptor (actually just clear everything
* but the end-of-ring or chain bits) to make sure
* we don't get messed up by previously sent packets.
*
* We may fail to put the entire packet on the ring if
* there is either not enough ring entries free or if the
* packet has more than MAX_TXSEG segments. In the former
* case we will just wait for the ring to empty. In the
* latter case we have to recopy.
*/
again:
d_status = 0;
eop = nextout = ri->ri_nextout;
m0 = m;
segcnt = 0;
free = ri->ri_free;
do {
int len = m0->m_len;
caddr_t addr = mtod(m0, caddr_t);
unsigned clsize = PAGE_SIZE - (((u_long) addr) & PAGE_MASK);
while (len > 0) {
unsigned slen = min(len, clsize);
#ifdef BIG_PACKET
int partial = 0;
if (slen >= 2048)
slen = 2040, partial = 1;
#endif
segcnt++;
if (segcnt > LMC_MAX_TXSEG) {
/*
* The packet exceeds the number of transmit
* buffer entries that we can use for one
* packet, so we have recopy it into one mbuf
* and then try again.
*/
m = lmc_mbuf_compress(m);
if (m == NULL)
goto finish;
goto again;
}
if (segcnt & 1) {
if (--free == 0) {
/*
* See if there's any unclaimed space
* in the transmit ring.
*/
if ((free += lmc_tx_intr(sc)) == 0) {
/*
* There's no more room but
* since nothing has been
* committed at this point,
* just show output is active,
* put back the mbuf and
* return.
*/
sc->lmc_flags |= LMC_WANTTXSTART;
goto finish;
}
}
eop = nextout;
if (++nextout == ri->ri_last)
nextout = ri->ri_first;
eop->d_flag &= TULIP_DFLAG_ENDRING;
eop->d_flag |= TULIP_DFLAG_TxNOPADDING;
if (sc->ictl.crc_length == 16)
eop->d_flag |= TULIP_DFLAG_TxHASCRC;
eop->d_status = d_status;
eop->d_addr1 = LMC_KVATOPHYS(sc, addr);
eop->d_length1 = slen;
} else {
/*
* Fill in second half of descriptor
*/
eop->d_addr2 = LMC_KVATOPHYS(sc, addr);
eop->d_length2 = slen;
}
d_status = TULIP_DSTS_OWNER;
len -= slen;
addr += slen;
#ifdef BIG_PACKET
if (partial)
continue;
#endif
clsize = PAGE_SIZE;
}
} while ((m0 = m0->m_next) != NULL);
/*
* The descriptors have been filled in. Now get ready
* to transmit.
*/
IF_ENQUEUE(&sc->lmc_txq, m);
m = NULL;
/*
* Make sure the next descriptor after this packet is owned
* by us since it may have been set up above if we ran out
* of room in the ring.
*/
nextout->d_status = 0;
/*
* If we only used the first segment of the last descriptor,
* make sure the second segment will not be used.
*/
if (segcnt & 1) {
eop->d_addr2 = 0;
eop->d_length2 = 0;
}
/*
* Mark the last and first segments, indicate we want a transmit
* complete interrupt, and tell it to transmit!
*/
eop->d_flag |= TULIP_DFLAG_TxLASTSEG | TULIP_DFLAG_TxWANTINTR;
/*
* Note that ri->ri_nextout is still the start of the packet
* and until we set the OWNER bit, we can still back out of
* everything we have done.
*/
ri->ri_nextout->d_flag |= TULIP_DFLAG_TxFIRSTSEG;
ri->ri_nextout->d_status = TULIP_DSTS_OWNER;
LMC_CSR_WRITE(sc, csr_txpoll, 1);
/*
* This advances the ring for us.
*/
ri->ri_nextout = nextout;
ri->ri_free = free;
/*
* switch back to the single queueing ifstart.
*/
sc->lmc_flags &= ~LMC_WANTTXSTART;
sc->lmc_if.if_start = lmc_ifstart_one;
/*
* If we want a txstart, there must be not enough space in the
* transmit ring. So we want to enable transmit done interrupts
* so we can immediately reclaim some space. When the transmit
* interrupt is posted, the interrupt handler will call tx_intr
* to reclaim space and then txstart (since WANTTXSTART is set).
* txstart will move the packet into the transmit ring and clear
* WANTTXSTART thereby causing TXINTR to be cleared.
*/
finish:
if (sc->lmc_flags & LMC_WANTTXSTART) {
sc->lmc_if.if_flags |= IFF_OACTIVE;
sc->lmc_if.if_start = lmc_ifstart;
}
return m;
}
/*
* This routine is entered at splnet() (splsoftnet() on NetBSD)
*/
static int
lmc_ifioctl(struct ifnet * ifp, ioctl_cmd_t cmd, caddr_t data)
{
lmc_softc_t * const sc = LMC_IFP_TO_SOFTC(ifp);
#if defined(__NetBSD__) || defined(__FreeBSD__)
lmc_spl_t s;
#endif
int error = 0;
struct ifreq *ifr = (struct ifreq *)data;
u_int32_t new_state;
u_int32_t old_state;
lmc_ctl_t ctl;
#if defined(__NetBSD__) || defined(__FreeBSD__)
s = LMC_RAISESPL();
#endif
switch (cmd) {
case LMCIOCGINFO:
error = copyout(&sc->ictl, ifr->ifr_data, sizeof(lmc_ctl_t));
goto out;
break;
case LMCIOCSINFO:
#if 0 /* XXX */
error = suser(p->p_ucred, &p->p_acflag);
if (error)
goto out;
#endif
error = copyin(ifr->ifr_data, &ctl, sizeof(lmc_ctl_t));
if (error != 0)
goto out;
sc->lmc_media->set_status(sc, &ctl);
goto out;
break;
#if defined(__NetBSD__) || defined(__FreeBSD__)
case SIOCSIFMTU:
/*
* Don't allow the MTU to get larger than we can handle
*/
if (ifr->ifr_mtu > LMC_MTU) {
error = EINVAL;
goto out;
} else {
ifp->if_mtu = ifr->ifr_mtu;
}
break;
#endif
}
#if defined(__NetBSD__) || defined(__FreeBSD__)
/*
* call the sppp ioctl layer
*/
error = sppp_ioctl(ifp, cmd, data);
if (error != 0)
goto out;
#endif
#if defined(__bsdi__)
error = p2p_ioctl(ifp, cmd, data);
#endif
#if defined(__NetBSD__) || defined(__FreeBSD__)
/*
* If we are transitioning from up to down or down to up, call
* our init routine.
*/
new_state = ifp->if_flags & IFF_UP;
old_state = sc->lmc_flags & LMC_IFUP;
if (new_state && !old_state)
lmc_ifup(sc);
else if (!new_state && old_state)
lmc_ifdown(sc);
#endif
out:
#if defined(__NetBSD__) || defined(__FreeBSD__)
LMC_RESTORESPL(s);
#endif
return error;
}
/*
* These routines gets called at device spl (from sppp_output).
*/
#if defined(__NetBSD__) || defined(__FreeBSD__)
static ifnet_ret_t
lmc_ifstart(struct ifnet * const ifp)
{
lmc_softc_t * const sc = LMC_IFP_TO_SOFTC(ifp);
struct mbuf *m;
if (sc->lmc_flags & LMC_IFUP) {
while (sppp_isempty(ifp) == 0) {
m = sppp_dequeue(ifp);
if ((m = lmc_txput(sc, m)) != NULL) {
IF_PREPEND(&((struct sppp *)ifp)->pp_fastq, m);
break;
}
}
LMC_CSR_WRITE(sc, csr_txpoll, 1);
}
}
static ifnet_ret_t
lmc_ifstart_one(struct ifnet * const ifp)
{
lmc_softc_t * const sc = LMC_IFP_TO_SOFTC(ifp);
struct mbuf *m;
if ((sc->lmc_flags & LMC_IFUP) && (sppp_isempty(ifp) == 0)) {
m = sppp_dequeue(ifp);
if ((m = lmc_txput(sc, m)) != NULL) {
IF_PREPEND(&((struct sppp *)ifp)->pp_fastq, m);
}
LMC_CSR_WRITE(sc, csr_txpoll, 1);
}
}
#endif
#if defined(__bsdi__)
static ifnet_ret_t
lmc_ifstart(struct ifnet * const ifp)
{
lmc_softc_t * const sc = LMC_IFP_TO_SOFTC(ifp);
struct mbuf *m;
struct ifqueue *ifq;
if ((sc->lmc_flags & LMC_IFUP) == 0)
return;
for (;;) {
ifq = &sc->lmc_p2pcom.p2p_isnd;
m = ifq->ifq_head;
if (m == NULL) {
ifq = &sc->lmc_if.if_snd;
m = ifq->ifq_head;
}
if (m == NULL)
break;
IF_DEQUEUE(ifq, m);
m = lmc_txput(sc, m);
if (m != NULL) {
IF_PREPEND(ifq, m);
break;
}
}
LMC_CSR_WRITE(sc, csr_txpoll, 1);
}
static ifnet_ret_t
lmc_ifstart_one(struct ifnet * const ifp)
{
lmc_softc_t * const sc = LMC_IFP_TO_SOFTC(ifp);
struct mbuf *m;
struct ifqueue *ifq;
if ((sc->lmc_flags & LMC_IFUP) == 0)
return;
ifq = &sc->lmc_p2pcom.p2p_isnd;
m = ifq->ifq_head;
if (m == NULL) {
ifq = &sc->lmc_if.if_snd;
m = ifq->ifq_head;
}
if (m == NULL)
return 0;
IF_DEQUEUE(ifq, m);
m = lmc_txput(sc, m);
if (m != NULL)
IF_PREPEND(ifq, m);
LMC_CSR_WRITE(sc, csr_txpoll, 1);
}
#endif
#if defined(__bsdi__)
int
lmc_getmdm(struct p2pcom *pp, caddr_t b)
{
lmc_softc_t *sc = LMC_UNIT_TO_SOFTC(pp->p2p_if.if_unit);
if (sc->lmc_media->get_link_status(sc)) {
*(int *)b = TIOCM_CAR;
} else {
*(int *)b = 0;
}
return (0);
}
int
lmc_mdmctl(struct p2pcom *pp, int flag)
{
lmc_softc_t *sc = LMC_UNIT_TO_SOFTC(pp->p2p_if.if_unit);
sc->lmc_media->set_link_status(sc, flag);
if (flag)
if ((sc->lmc_flags & LMC_IFUP) == 0)
lmc_ifup(sc);
else
if ((sc->lmc_flags & LMC_IFUP) == LMC_IFUP)
lmc_ifdown(sc);
return (0);
}
#endif
/*
* Set up the OS interface magic and attach to the operating system
* network services.
*/
void
lmc_attach(lmc_softc_t * const sc)
{
struct ifnet * const ifp = &sc->lmc_if;
ifp->if_flags = IFF_POINTOPOINT | IFF_MULTICAST;
ifp->if_ioctl = lmc_ifioctl;
ifp->if_start = lmc_ifstart;
ifp->if_watchdog = lmc_watchdog;
ifp->if_timer = 1;
ifp->if_mtu = LMC_MTU;
#if defined(__bsdi__)
ifp->if_type = IFT_NONE;
ifp->if_unit = (sc->lmc_dev.dv_unit);
#endif
if_attach(ifp);
#if defined(__NetBSD__) || defined(__FreeBSD__)
sc->lmc_sppp.pp_framebytes = 3; /* 1 flag byte, 2 byte FCS */
sppp_attach((struct ifnet *)&sc->lmc_sppp);
sc->lmc_sppp.pp_flags = PP_CISCO | PP_KEEPALIVE;
#endif
#if defined(__bsdi__)
sc->lmc_p2pcom.p2p_mdmctl = lmc_mdmctl;
sc->lmc_p2pcom.p2p_getmdm = lmc_getmdm;
p2p_attach(&sc->lmc_p2pcom);
#endif
#if NBPFILTER > 0
LMC_BPF_ATTACH(sc);
#endif
#if defined(__NetBSD__) && NRND > 0
rnd_attach_source(&sc->lmc_rndsource, sc->lmc_dev.dv_xname,
RND_TYPE_NET, 0);
#endif
/*
* turn off those LEDs...
*/
sc->lmc_miireg16 |= LMC_MII16_LED_ALL;
lmc_led_on(sc, LMC_MII16_LED0);
}
void
lmc_initring(lmc_softc_t * const sc, lmc_ringinfo_t * const ri,
tulip_desc_t *descs, int ndescs)
{
ri->ri_max = ndescs;
ri->ri_first = descs;
ri->ri_last = ri->ri_first + ri->ri_max;
bzero((caddr_t) ri->ri_first, sizeof(ri->ri_first[0]) * ri->ri_max);
ri->ri_last[-1].d_flag = TULIP_DFLAG_ENDRING;
}