NetBSD/sys/dev/isa/if_eg.c

975 lines
22 KiB
C

/* $NetBSD: if_eg.c,v 1.44 1998/12/12 16:58:11 mycroft Exp $ */
/*
* Copyright (c) 1993 Dean Huxley <dean@fsa.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Dean Huxley.
* 4. The name of Dean Huxley may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Support for 3Com 3c505 Etherlink+ card.
*/
/* To do:
* - multicast
* - promiscuous
* - get rid of isa indirect stuff
*/
#include "opt_inet.h"
#include "opt_ns.h"
#include "bpfilter.h"
#include "rnd.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/syslog.h>
#include <sys/select.h>
#include <sys/device.h>
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_ether.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <machine/cpu.h>
#include <machine/intr.h>
#include <machine/bus.h>
#include <dev/isa/isavar.h>
#include <dev/isa/if_egreg.h>
#include <dev/isa/elink.h>
/* for debugging convenience */
#ifdef EGDEBUG
#define DPRINTF(x) printf x
#else
#define DPRINTF(x)
#endif
#define ETHER_MIN_LEN 64
#define ETHER_MAX_LEN 1518
#define ETHER_ADDR_LEN 6
#define EG_INLEN 10
#define EG_BUFLEN 0x0670
#define EG_PCBLEN 64
/*
* Ethernet software status per interface.
*/
struct eg_softc {
struct device sc_dev;
void *sc_ih;
struct ethercom sc_ethercom; /* Ethernet common part */
bus_space_tag_t sc_iot; /* bus space identifier */
bus_space_handle_t sc_ioh; /* i/o handle */
u_int8_t eg_rom_major; /* Cards ROM version (major number) */
u_int8_t eg_rom_minor; /* Cards ROM version (minor number) */
short eg_ram; /* Amount of RAM on the card */
u_int8_t eg_pcb[EG_PCBLEN]; /* Primary Command Block buffer */
u_int8_t eg_incount; /* Number of buffers currently used */
caddr_t eg_inbuf; /* Incoming packet buffer */
caddr_t eg_outbuf; /* Outgoing packet buffer */
#if NRND > 0
rndsource_element_t rnd_source;
#endif
};
int egprobe __P((struct device *, struct cfdata *, void *));
void egattach __P((struct device *, struct device *, void *));
struct cfattach eg_ca = {
sizeof(struct eg_softc), egprobe, egattach
};
int egintr __P((void *));
void eginit __P((struct eg_softc *));
int egioctl __P((struct ifnet *, u_long, caddr_t));
void egrecv __P((struct eg_softc *));
void egstart __P((struct ifnet *));
void egwatchdog __P((struct ifnet *));
void egreset __P((struct eg_softc *));
void egread __P((struct eg_softc *, caddr_t, int));
struct mbuf *egget __P((struct eg_softc *, caddr_t, int));
void egstop __P((struct eg_softc *));
static inline void egprintpcb __P((u_int8_t *));
static inline void egprintstat __P((u_char));
static int egoutPCB __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
static int egreadPCBstat __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
static int egreadPCBready __P((bus_space_tag_t, bus_space_handle_t));
static int egwritePCB __P((bus_space_tag_t, bus_space_handle_t, u_int8_t *));
static int egreadPCB __P((bus_space_tag_t, bus_space_handle_t, u_int8_t *));
/*
* Support stuff
*/
static inline void
egprintpcb(pcb)
u_int8_t *pcb;
{
int i;
for (i = 0; i < pcb[1] + 2; i++)
DPRINTF(("pcb[%2d] = %x\n", i, pcb[i]));
}
static inline void
egprintstat(b)
u_char b;
{
DPRINTF(("%s %s %s %s %s %s %s\n",
(b & EG_STAT_HCRE)?"HCRE":"",
(b & EG_STAT_ACRF)?"ACRF":"",
(b & EG_STAT_DIR )?"DIR ":"",
(b & EG_STAT_DONE)?"DONE":"",
(b & EG_STAT_ASF3)?"ASF3":"",
(b & EG_STAT_ASF2)?"ASF2":"",
(b & EG_STAT_ASF1)?"ASF1":""));
}
static int
egoutPCB(iot, ioh, b)
bus_space_tag_t iot;
bus_space_handle_t ioh;
u_int8_t b;
{
int i;
for (i=0; i < 4000; i++) {
if (bus_space_read_1(iot, ioh, EG_STATUS) & EG_STAT_HCRE) {
bus_space_write_1(iot, ioh, EG_COMMAND, b);
return 0;
}
delay(10);
}
DPRINTF(("egoutPCB failed\n"));
return 1;
}
static int
egreadPCBstat(iot, ioh, statb)
bus_space_tag_t iot;
bus_space_handle_t ioh;
u_int8_t statb;
{
int i;
for (i=0; i < 5000; i++) {
if ((bus_space_read_1(iot, ioh, EG_STATUS) &
EG_PCB_STAT) != EG_PCB_NULL)
break;
delay(10);
}
if ((bus_space_read_1(iot, ioh, EG_STATUS) & EG_PCB_STAT) == statb)
return 0;
return 1;
}
static int
egreadPCBready(iot, ioh)
bus_space_tag_t iot;
bus_space_handle_t ioh;
{
int i;
for (i=0; i < 10000; i++) {
if (bus_space_read_1(iot, ioh, EG_STATUS) & EG_STAT_ACRF)
return 0;
delay(5);
}
DPRINTF(("PCB read not ready\n"));
return 1;
}
static int
egwritePCB(iot, ioh, pcb)
bus_space_tag_t iot;
bus_space_handle_t ioh;
u_int8_t *pcb;
{
int i;
u_int8_t len;
bus_space_write_1(iot, ioh, EG_CONTROL,
(bus_space_read_1(iot, ioh, EG_CONTROL) & ~EG_PCB_STAT) | EG_PCB_NULL);
len = pcb[1] + 2;
for (i = 0; i < len; i++)
egoutPCB(iot, ioh, pcb[i]);
for (i=0; i < 4000; i++) {
if (bus_space_read_1(iot, ioh, EG_STATUS) & EG_STAT_HCRE)
break;
delay(10);
}
bus_space_write_1(iot, ioh, EG_CONTROL,
(bus_space_read_1(iot, ioh, EG_CONTROL) & ~EG_PCB_STAT) | EG_PCB_DONE);
egoutPCB(iot, ioh, len);
if (egreadPCBstat(iot, ioh, EG_PCB_ACCEPT))
return 1;
return 0;
}
static int
egreadPCB(iot, ioh, pcb)
bus_space_tag_t iot;
bus_space_handle_t ioh;
u_int8_t *pcb;
{
int i;
u_int8_t b;
bus_space_write_1(iot, ioh, EG_CONTROL,
(bus_space_read_1(iot, ioh, EG_CONTROL) & ~EG_PCB_STAT) | EG_PCB_NULL);
bzero(pcb, EG_PCBLEN);
if (egreadPCBready(iot, ioh))
return 1;
pcb[0] = bus_space_read_1(iot, ioh, EG_COMMAND);
if (egreadPCBready(iot, ioh))
return 1;
pcb[1] = bus_space_read_1(iot, ioh, EG_COMMAND);
if (pcb[1] > 62) {
DPRINTF(("len %d too large\n", pcb[1]));
return 1;
}
for (i = 0; i < pcb[1]; i++) {
if (egreadPCBready(iot, ioh))
return 1;
pcb[2+i] = bus_space_read_1(iot, ioh, EG_COMMAND);
}
if (egreadPCBready(iot, ioh))
return 1;
if (egreadPCBstat(iot, ioh, EG_PCB_DONE))
return 1;
if ((b = bus_space_read_1(iot, ioh, EG_COMMAND)) != pcb[1] + 2) {
DPRINTF(("%d != %d\n", b, pcb[1] + 2));
return 1;
}
bus_space_write_1(iot, ioh, EG_CONTROL,
(bus_space_read_1(iot, ioh, EG_CONTROL) &
~EG_PCB_STAT) | EG_PCB_ACCEPT);
return 0;
}
/*
* Real stuff
*/
int
egprobe(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
struct isa_attach_args *ia = aux;
bus_space_tag_t iot = ia->ia_iot;
bus_space_handle_t ioh;
int i, rval;
static u_int8_t pcb[EG_PCBLEN];
rval = 0;
if ((ia->ia_iobase & ~0x07f0) != 0) {
DPRINTF(("Weird iobase %x\n", ia->ia_iobase));
return 0;
}
/* Disallow wildcarded i/o address. */
if (ia->ia_iobase == ISACF_PORT_DEFAULT)
return (0);
/* Map i/o space. */
if (bus_space_map(iot, ia->ia_iobase, 0x08, 0, &ioh)) {
DPRINTF(("egprobe: can't map i/o space in probe\n"));
return 0;
}
/* hard reset card */
bus_space_write_1(iot, ioh, EG_CONTROL, EG_CTL_RESET);
bus_space_write_1(iot, ioh, EG_CONTROL, 0);
for (i = 0; i < 5000; i++) {
delay(1000);
if ((bus_space_read_1(iot, ioh, EG_STATUS) &
EG_PCB_STAT) == EG_PCB_NULL)
break;
}
if ((bus_space_read_1(iot, ioh, EG_STATUS) & EG_PCB_STAT) != EG_PCB_NULL) {
DPRINTF(("egprobe: Reset failed\n"));
goto out;
}
pcb[0] = EG_CMD_GETINFO; /* Get Adapter Info */
pcb[1] = 0;
if (egwritePCB(iot, ioh, pcb) != 0)
goto out;
if ((egreadPCB(iot, ioh, pcb) != 0) ||
pcb[0] != EG_RSP_GETINFO || /* Get Adapter Info Response */
pcb[1] != 0x0a) {
egprintpcb(pcb);
goto out;
}
ia->ia_iosize = 0x08;
ia->ia_msize = 0;
rval = 1;
out:
bus_space_unmap(iot, ioh, 0x08);
return rval;
}
void
egattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct eg_softc *sc = (void *)self;
struct isa_attach_args *ia = aux;
bus_space_tag_t iot = ia->ia_iot;
bus_space_handle_t ioh;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
u_int8_t myaddr[ETHER_ADDR_LEN];
printf("\n");
/* Map i/o space. */
if (bus_space_map(iot, ia->ia_iobase, ia->ia_iosize, 0, &ioh)) {
printf("%s: can't map i/o space\n", self->dv_xname);
return;
}
sc->sc_iot = iot;
sc->sc_ioh = ioh;
sc->eg_pcb[0] = EG_CMD_GETINFO; /* Get Adapter Info */
sc->eg_pcb[1] = 0;
if (egwritePCB(iot, ioh, sc->eg_pcb) != 0) {
printf("%s: error requesting adapter info\n", self->dv_xname);
return;
}
if (egreadPCB(iot, ioh, sc->eg_pcb) != 0) {
egprintpcb(sc->eg_pcb);
printf("%s: error reading adapter info\n", self->dv_xname);
return;
}
if (sc->eg_pcb[0] != EG_RSP_GETINFO || /* Get Adapter Info Response */
sc->eg_pcb[1] != 0x0a) {
egprintpcb(sc->eg_pcb);
printf("%s: bogus adapter info\n", self->dv_xname);
return;
}
sc->eg_rom_major = sc->eg_pcb[3];
sc->eg_rom_minor = sc->eg_pcb[2];
sc->eg_ram = sc->eg_pcb[6] | (sc->eg_pcb[7] << 8);
egstop(sc);
sc->eg_pcb[0] = EG_CMD_GETEADDR; /* Get Station address */
sc->eg_pcb[1] = 0;
if (egwritePCB(iot, ioh, sc->eg_pcb) != 0) {
printf("%s: can't send Get Station Address\n", self->dv_xname);
return;
}
if (egreadPCB(iot, ioh, sc->eg_pcb) != 0) {
printf("%s: can't read station address\n", self->dv_xname);
egprintpcb(sc->eg_pcb);
return;
}
/* check Get station address response */
if (sc->eg_pcb[0] != EG_RSP_GETEADDR || sc->eg_pcb[1] != 0x06) {
printf("%s: card responded with garbage (1)\n",
self->dv_xname);
egprintpcb(sc->eg_pcb);
return;
}
bcopy(&sc->eg_pcb[2], myaddr, ETHER_ADDR_LEN);
printf("%s: ROM v%d.%02d %dk address %s\n", self->dv_xname,
sc->eg_rom_major, sc->eg_rom_minor, sc->eg_ram,
ether_sprintf(myaddr));
sc->eg_pcb[0] = EG_CMD_SETEADDR; /* Set station address */
if (egwritePCB(iot, ioh, sc->eg_pcb) != 0) {
printf("%s: can't send Set Station Address\n", self->dv_xname);
return;
}
if (egreadPCB(iot, ioh, sc->eg_pcb) != 0) {
printf("%s: can't read Set Station Address status\n",
self->dv_xname);
egprintpcb(sc->eg_pcb);
return;
}
if (sc->eg_pcb[0] != EG_RSP_SETEADDR || sc->eg_pcb[1] != 0x02 ||
sc->eg_pcb[2] != 0 || sc->eg_pcb[3] != 0) {
printf("%s: card responded with garbage (2)\n",
self->dv_xname);
egprintpcb(sc->eg_pcb);
return;
}
/* Initialize ifnet structure. */
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_start = egstart;
ifp->if_ioctl = egioctl;
ifp->if_watchdog = egwatchdog;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS;
/* Now we can attach the interface. */
if_attach(ifp);
ether_ifattach(ifp, myaddr);
#if NBPFILTER > 0
bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
sc->sc_ih = isa_intr_establish(ia->ia_ic, ia->ia_irq, IST_EDGE,
IPL_NET, egintr, sc);
#if NRND > 0
rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, RND_TYPE_NET);
#endif
}
void
eginit(sc)
register struct eg_softc *sc;
{
register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
/* soft reset the board */
bus_space_write_1(iot, ioh, EG_CONTROL, EG_CTL_FLSH);
delay(100);
bus_space_write_1(iot, ioh, EG_CONTROL, EG_CTL_ATTN);
delay(100);
bus_space_write_1(iot, ioh, EG_CONTROL, 0);
delay(200);
sc->eg_pcb[0] = EG_CMD_CONFIG82586; /* Configure 82586 */
sc->eg_pcb[1] = 2;
sc->eg_pcb[2] = 3; /* receive broadcast & multicast */
sc->eg_pcb[3] = 0;
if (egwritePCB(iot, ioh, sc->eg_pcb) != 0)
printf("%s: can't send Configure 82586\n",
sc->sc_dev.dv_xname);
if (egreadPCB(iot, ioh, sc->eg_pcb) != 0) {
printf("%s: can't read Configure 82586 status\n",
sc->sc_dev.dv_xname);
egprintpcb(sc->eg_pcb);
} else if (sc->eg_pcb[2] != 0 || sc->eg_pcb[3] != 0)
printf("%s: configure card command failed\n",
sc->sc_dev.dv_xname);
if (sc->eg_inbuf == NULL) {
sc->eg_inbuf = malloc(EG_BUFLEN, M_TEMP, M_NOWAIT);
if (sc->eg_inbuf == NULL) {
printf("%s: can't allocate inbuf\n",
sc->sc_dev.dv_xname);
panic("eginit");
}
}
sc->eg_incount = 0;
if (sc->eg_outbuf == NULL) {
sc->eg_outbuf = malloc(EG_BUFLEN, M_TEMP, M_NOWAIT);
if (sc->eg_outbuf == NULL) {
printf("%s: can't allocate outbuf\n",
sc->sc_dev.dv_xname);
panic("eginit");
}
}
bus_space_write_1(iot, ioh, EG_CONTROL, EG_CTL_CMDE);
sc->eg_incount = 0;
egrecv(sc);
/* Interface is now `running', with no output active. */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/* Attempt to start output, if any. */
egstart(ifp);
}
void
egrecv(sc)
struct eg_softc *sc;
{
while (sc->eg_incount < EG_INLEN) {
sc->eg_pcb[0] = EG_CMD_RECVPACKET;
sc->eg_pcb[1] = 0x08;
sc->eg_pcb[2] = 0; /* address not used.. we send zero */
sc->eg_pcb[3] = 0;
sc->eg_pcb[4] = 0;
sc->eg_pcb[5] = 0;
sc->eg_pcb[6] = EG_BUFLEN & 0xff; /* our buffer size */
sc->eg_pcb[7] = (EG_BUFLEN >> 8) & 0xff;
sc->eg_pcb[8] = 0; /* timeout, 0 == none */
sc->eg_pcb[9] = 0;
if (egwritePCB(sc->sc_iot, sc->sc_ioh, sc->eg_pcb) != 0)
break;
sc->eg_incount++;
}
}
void
egstart(ifp)
struct ifnet *ifp;
{
register struct eg_softc *sc = ifp->if_softc;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct mbuf *m0, *m;
caddr_t buffer;
int len;
u_int16_t *ptr;
/* Don't transmit if interface is busy or not running */
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
loop:
/* Dequeue the next datagram. */
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == 0)
return;
ifp->if_flags |= IFF_OACTIVE;
/* We need to use m->m_pkthdr.len, so require the header */
if ((m0->m_flags & M_PKTHDR) == 0) {
printf("%s: no header mbuf\n", sc->sc_dev.dv_xname);
panic("egstart");
}
len = max(m0->m_pkthdr.len, ETHER_MIN_LEN);
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif
sc->eg_pcb[0] = EG_CMD_SENDPACKET;
sc->eg_pcb[1] = 0x06;
sc->eg_pcb[2] = 0; /* address not used, we send zero */
sc->eg_pcb[3] = 0;
sc->eg_pcb[4] = 0;
sc->eg_pcb[5] = 0;
sc->eg_pcb[6] = len; /* length of packet */
sc->eg_pcb[7] = len >> 8;
if (egwritePCB(iot, ioh, sc->eg_pcb) != 0) {
printf("%s: can't send Send Packet command\n",
sc->sc_dev.dv_xname);
ifp->if_oerrors++;
ifp->if_flags &= ~IFF_OACTIVE;
m_freem(m0);
goto loop;
}
buffer = sc->eg_outbuf;
for (m = m0; m != 0; m = m->m_next) {
bcopy(mtod(m, caddr_t), buffer, m->m_len);
buffer += m->m_len;
}
/* set direction bit: host -> adapter */
bus_space_write_1(iot, ioh, EG_CONTROL,
bus_space_read_1(iot, ioh, EG_CONTROL) & ~EG_CTL_DIR);
for (ptr = (u_int16_t *) sc->eg_outbuf; len > 0; len -= 2) {
bus_space_write_2(iot, ioh, EG_DATA, *ptr++);
while (!(bus_space_read_1(iot, ioh, EG_STATUS) & EG_STAT_HRDY))
; /* XXX need timeout here */
}
m_freem(m0);
}
int
egintr(arg)
void *arg;
{
register struct eg_softc *sc = arg;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i, len, serviced;
u_int16_t *ptr;
serviced = 0;
while (bus_space_read_1(iot, ioh, EG_STATUS) & EG_STAT_ACRF) {
egreadPCB(iot, ioh, sc->eg_pcb);
switch (sc->eg_pcb[0]) {
case EG_RSP_RECVPACKET:
len = sc->eg_pcb[6] | (sc->eg_pcb[7] << 8);
/* Set direction bit : Adapter -> host */
bus_space_write_1(iot, ioh, EG_CONTROL,
bus_space_read_1(iot, ioh, EG_CONTROL) | EG_CTL_DIR);
for (ptr = (u_int16_t *) sc->eg_inbuf;
len > 0; len -= 2) {
while (!(bus_space_read_1(iot, ioh, EG_STATUS) &
EG_STAT_HRDY))
;
*ptr++ = bus_space_read_2(iot, ioh, EG_DATA);
}
len = sc->eg_pcb[8] | (sc->eg_pcb[9] << 8);
egread(sc, sc->eg_inbuf, len);
sc->eg_incount--;
egrecv(sc);
serviced = 1;
break;
case EG_RSP_SENDPACKET:
if (sc->eg_pcb[6] || sc->eg_pcb[7]) {
DPRINTF(("%s: packet dropped\n",
sc->sc_dev.dv_xname));
sc->sc_ethercom.ec_if.if_oerrors++;
} else
sc->sc_ethercom.ec_if.if_opackets++;
sc->sc_ethercom.ec_if.if_collisions +=
sc->eg_pcb[8] & 0xf;
sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
egstart(&sc->sc_ethercom.ec_if);
serviced = 1;
break;
/* XXX byte-order and type-size bugs here... */
case EG_RSP_GETSTATS:
DPRINTF(("%s: Card Statistics\n",
sc->sc_dev.dv_xname));
bcopy(&sc->eg_pcb[2], &i, sizeof(i));
DPRINTF(("Receive Packets %d\n", i));
bcopy(&sc->eg_pcb[6], &i, sizeof(i));
DPRINTF(("Transmit Packets %d\n", i));
DPRINTF(("CRC errors %d\n",
*(short *) &sc->eg_pcb[10]));
DPRINTF(("alignment errors %d\n",
*(short *) &sc->eg_pcb[12]));
DPRINTF(("no resources errors %d\n",
*(short *) &sc->eg_pcb[14]));
DPRINTF(("overrun errors %d\n",
*(short *) &sc->eg_pcb[16]));
serviced = 1;
break;
default:
printf("%s: egintr: Unknown response %x??\n",
sc->sc_dev.dv_xname, sc->eg_pcb[0]);
egprintpcb(sc->eg_pcb);
break;
}
#if NRND > 0
rnd_add_uint32(&sc->rnd_source, sc->eg_pcb[0]);
#endif
}
return serviced;
}
/*
* Pass a packet up to the higher levels.
*/
void
egread(sc, buf, len)
struct eg_softc *sc;
caddr_t buf;
int len;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mbuf *m;
struct ether_header *eh;
if (len <= sizeof(struct ether_header) ||
len > ETHER_MAX_LEN) {
printf("%s: invalid packet size %d; dropping\n",
sc->sc_dev.dv_xname, len);
ifp->if_ierrors++;
return;
}
/* Pull packet off interface. */
m = egget(sc, buf, len);
if (m == 0) {
ifp->if_ierrors++;
return;
}
ifp->if_ipackets++;
/* We assume the header fit entirely in one mbuf. */
eh = mtod(m, struct ether_header *);
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface.
* If so, hand off the raw packet to BPF.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp->if_bpf, m);
/*
* Note that the interface cannot be in promiscuous mode if
* there are no BPF listeners. And if we are in promiscuous
* mode, we have to check if this packet is really ours.
*/
if ((ifp->if_flags & IFF_PROMISC) &&
(eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
bcmp(eh->ether_dhost, LLADDR(ifp->if_sadl),
sizeof(eh->ether_dhost)) != 0) {
m_freem(m);
return;
}
}
#endif
/* We assume the header fit entirely in one mbuf. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
/*
* convert buf into mbufs
*/
struct mbuf *
egget(sc, buf, totlen)
struct eg_softc *sc;
caddr_t buf;
int totlen;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mbuf *m, *m0, *newm;
int len;
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 == 0)
return (0);
m0->m_pkthdr.rcvif = ifp;
m0->m_pkthdr.len = totlen;
len = MHLEN;
m = m0;
while (totlen > 0) {
if (totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0)
goto bad;
len = MCLBYTES;
}
m->m_len = len = min(totlen, len);
bcopy((caddr_t)buf, mtod(m, caddr_t), len);
buf += len;
totlen -= len;
if (totlen > 0) {
MGET(newm, M_DONTWAIT, MT_DATA);
if (newm == 0)
goto bad;
len = MLEN;
m = m->m_next = newm;
}
}
return (m0);
bad:
m_freem(m0);
return (0);
}
int
egioctl(ifp, cmd, data)
register struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct eg_softc *sc = ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
eginit(sc);
arp_ifinit(ifp, ifa);
break;
#endif
#ifdef NS
case AF_NS:
{
register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *)LLADDR(ifp->if_sadl);
else
bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
ETHER_ADDR_LEN);
/* Set new address. */
eginit(sc);
break;
}
#endif
default:
eginit(sc);
break;
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
egstop(sc);
ifp->if_flags &= ~IFF_RUNNING;
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
eginit(sc);
} else {
sc->eg_pcb[0] = EG_CMD_GETSTATS;
sc->eg_pcb[1] = 0;
if (egwritePCB(sc->sc_iot, sc->sc_ioh, sc->eg_pcb) != 0)
DPRINTF(("write error\n"));
/*
* XXX deal with flags changes:
* IFF_MULTICAST, IFF_PROMISC,
* IFF_LINK0, IFF_LINK1,
*/
}
break;
default:
error = EINVAL;
break;
}
splx(s);
return error;
}
void
egreset(sc)
struct eg_softc *sc;
{
int s;
DPRINTF(("%s: egreset()\n", sc->sc_dev.dv_xname));
s = splnet();
egstop(sc);
eginit(sc);
splx(s);
}
void
egwatchdog(ifp)
struct ifnet *ifp;
{
struct eg_softc *sc = ifp->if_softc;
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
sc->sc_ethercom.ec_if.if_oerrors++;
egreset(sc);
}
void
egstop(sc)
register struct eg_softc *sc;
{
bus_space_write_1(sc->sc_iot, sc->sc_ioh, EG_CONTROL, 0);
}