281 lines
6.4 KiB
C
281 lines
6.4 KiB
C
/* $NetBSD: arc4random.c,v 1.21 2013/10/17 23:56:17 christos Exp $ */
|
|
/* $OpenBSD: arc4random.c,v 1.6 2001/06/05 05:05:38 pvalchev Exp $ */
|
|
|
|
/*
|
|
* Arc4 random number generator for OpenBSD.
|
|
* Copyright 1996 David Mazieres <dm@lcs.mit.edu>.
|
|
*
|
|
* Modification and redistribution in source and binary forms is
|
|
* permitted provided that due credit is given to the author and the
|
|
* OpenBSD project by leaving this copyright notice intact.
|
|
*/
|
|
|
|
/*
|
|
* This code is derived from section 17.1 of Applied Cryptography,
|
|
* second edition, which describes a stream cipher allegedly
|
|
* compatible with RSA Labs "RC4" cipher (the actual description of
|
|
* which is a trade secret). The same algorithm is used as a stream
|
|
* cipher called "arcfour" in Tatu Ylonen's ssh package.
|
|
*
|
|
* Here the stream cipher has been modified always to include the time
|
|
* when initializing the state. That makes it impossible to
|
|
* regenerate the same random sequence twice, so this can't be used
|
|
* for encryption, but will generate good random numbers.
|
|
*
|
|
* RC4 is a registered trademark of RSA Laboratories.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#if defined(LIBC_SCCS) && !defined(lint)
|
|
__RCSID("$NetBSD: arc4random.c,v 1.21 2013/10/17 23:56:17 christos Exp $");
|
|
#endif /* LIBC_SCCS and not lint */
|
|
|
|
#include "namespace.h"
|
|
#include "reentrant.h"
|
|
#include <fcntl.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/time.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#ifdef __weak_alias
|
|
__weak_alias(arc4random,_arc4random)
|
|
__weak_alias(arc4random_addrandom,_arc4random_addrandom)
|
|
__weak_alias(arc4random_buf,_arc4random_buf)
|
|
__weak_alias(arc4random_stir,_arc4random_stir)
|
|
__weak_alias(arc4random_uniform,_arc4random_uniform)
|
|
#endif
|
|
|
|
struct arc4_stream {
|
|
uint8_t stirred;
|
|
uint8_t pad;
|
|
uint8_t i;
|
|
uint8_t j;
|
|
uint8_t s[(uint8_t)~0u + 1u]; /* 256 to you and me */
|
|
mutex_t mtx;
|
|
};
|
|
|
|
#ifdef _REENTRANT
|
|
#define LOCK(rs) { \
|
|
int isthreaded = __isthreaded; \
|
|
if (isthreaded) \
|
|
mutex_lock(&(rs)->mtx);
|
|
#define UNLOCK(rs) \
|
|
if (isthreaded) \
|
|
mutex_unlock(&(rs)->mtx); \
|
|
}
|
|
#else
|
|
#define LOCK(rs)
|
|
#define UNLOCK(rs)
|
|
#endif
|
|
|
|
#define S(n) (n)
|
|
#define S4(n) S(n), S(n + 1), S(n + 2), S(n + 3)
|
|
#define S16(n) S4(n), S4(n + 4), S4(n + 8), S4(n + 12)
|
|
#define S64(n) S16(n), S16(n + 16), S16(n + 32), S16(n + 48)
|
|
#define S256 S64(0), S64(64), S64(128), S64(192)
|
|
|
|
static struct arc4_stream rs = { .i = 0xff, .j = 0, .s = { S256 },
|
|
.stirred = 0, .mtx = MUTEX_INITIALIZER };
|
|
|
|
#undef S
|
|
#undef S4
|
|
#undef S16
|
|
#undef S64
|
|
#undef S256
|
|
|
|
static inline void arc4_addrandom(struct arc4_stream *, u_char *, int);
|
|
static __noinline void arc4_stir(struct arc4_stream *);
|
|
static inline uint8_t arc4_getbyte(struct arc4_stream *);
|
|
static inline uint32_t arc4_getword(struct arc4_stream *);
|
|
|
|
static inline int
|
|
arc4_check_init(struct arc4_stream *as)
|
|
{
|
|
if (__predict_true(rs.stirred))
|
|
return 0;
|
|
|
|
arc4_stir(as);
|
|
return 1;
|
|
}
|
|
|
|
static inline void
|
|
arc4_addrandom(struct arc4_stream *as, u_char *dat, int datlen)
|
|
{
|
|
uint8_t si;
|
|
size_t n;
|
|
|
|
for (n = 0; n < __arraycount(as->s); n++) {
|
|
as->i = (as->i + 1);
|
|
si = as->s[as->i];
|
|
as->j = (as->j + si + dat[n % datlen]);
|
|
as->s[as->i] = as->s[as->j];
|
|
as->s[as->j] = si;
|
|
}
|
|
}
|
|
|
|
static __noinline void
|
|
arc4_stir(struct arc4_stream *as)
|
|
{
|
|
int rdat[32];
|
|
int mib[] = { CTL_KERN, KERN_URND };
|
|
size_t len;
|
|
size_t i, j;
|
|
|
|
/*
|
|
* This code once opened and read /dev/urandom on each
|
|
* call. That causes repeated rekeying of the kernel stream
|
|
* generator, which is very wasteful. Because of application
|
|
* behavior, caching the fd doesn't really help. So we just
|
|
* fill up the tank from sysctl, which is a tiny bit slower
|
|
* for us but much friendlier to other entropy consumers.
|
|
*/
|
|
|
|
for (i = 0; i < __arraycount(rdat); i++) {
|
|
len = sizeof(rdat[i]);
|
|
if (sysctl(mib, 2, &rdat[i], &len, NULL, 0) == -1)
|
|
abort();
|
|
}
|
|
|
|
arc4_addrandom(as, (void *) &rdat, (int)sizeof(rdat));
|
|
|
|
/*
|
|
* Throw away the first N words of output, as suggested in the
|
|
* paper "Weaknesses in the Key Scheduling Algorithm of RC4"
|
|
* by Fluher, Mantin, and Shamir. (N = 256 in our case.)
|
|
*/
|
|
for (j = 0; j < __arraycount(as->s) * 4; j++)
|
|
arc4_getbyte(as);
|
|
|
|
as->stirred = 1;
|
|
}
|
|
|
|
static __inline uint8_t
|
|
arc4_getbyte_ij(struct arc4_stream *as, uint8_t *i, uint8_t *j)
|
|
{
|
|
uint8_t si, sj;
|
|
|
|
*i = *i + 1;
|
|
si = as->s[*i];
|
|
*j = *j + si;
|
|
sj = as->s[*j];
|
|
as->s[*i] = sj;
|
|
as->s[*j] = si;
|
|
return (as->s[(si + sj) & 0xff]);
|
|
}
|
|
|
|
static inline uint8_t
|
|
arc4_getbyte(struct arc4_stream *as)
|
|
{
|
|
return arc4_getbyte_ij(as, &as->i, &as->j);
|
|
}
|
|
|
|
static inline uint32_t
|
|
arc4_getword(struct arc4_stream *as)
|
|
{
|
|
uint32_t val;
|
|
val = arc4_getbyte(as) << 24;
|
|
val |= arc4_getbyte(as) << 16;
|
|
val |= arc4_getbyte(as) << 8;
|
|
val |= arc4_getbyte(as);
|
|
return val;
|
|
}
|
|
|
|
void
|
|
arc4random_stir(void)
|
|
{
|
|
LOCK(&rs);
|
|
arc4_stir(&rs);
|
|
UNLOCK(&rs);
|
|
}
|
|
|
|
void
|
|
arc4random_addrandom(u_char *dat, int datlen)
|
|
{
|
|
LOCK(&rs);
|
|
arc4_check_init(&rs);
|
|
arc4_addrandom(&rs, dat, datlen);
|
|
UNLOCK(&rs);
|
|
}
|
|
|
|
uint32_t
|
|
arc4random(void)
|
|
{
|
|
uint32_t v;
|
|
|
|
LOCK(&rs);
|
|
arc4_check_init(&rs);
|
|
v = arc4_getword(&rs);
|
|
UNLOCK(&rs);
|
|
return v;
|
|
}
|
|
|
|
void
|
|
arc4random_buf(void *buf, size_t len)
|
|
{
|
|
uint8_t *bp = buf;
|
|
uint8_t *ep = bp + len;
|
|
uint8_t i, j;
|
|
|
|
LOCK(&rs);
|
|
arc4_check_init(&rs);
|
|
|
|
/* cache i and j - compiler can't know 'buf' doesn't alias them */
|
|
i = rs.i;
|
|
j = rs.j;
|
|
|
|
while (bp < ep)
|
|
*bp++ = arc4_getbyte_ij(&rs, &i, &j);
|
|
rs.i = i;
|
|
rs.j = j;
|
|
|
|
UNLOCK(&rs);
|
|
}
|
|
|
|
/*-
|
|
* Written by Damien Miller.
|
|
* With simplifications by Jinmei Tatuya.
|
|
*/
|
|
|
|
/*
|
|
* Calculate a uniformly distributed random number less than
|
|
* upper_bound avoiding "modulo bias".
|
|
*
|
|
* Uniformity is achieved by generating new random numbers
|
|
* until the one returned is outside the range
|
|
* [0, 2^32 % upper_bound[. This guarantees the selected
|
|
* random number will be inside the range
|
|
* [2^32 % upper_bound, 2^32[ which maps back to
|
|
* [0, upper_bound[ after reduction modulo upper_bound.
|
|
*/
|
|
uint32_t
|
|
arc4random_uniform(uint32_t upper_bound)
|
|
{
|
|
uint32_t r, min;
|
|
|
|
if (upper_bound < 2)
|
|
return 0;
|
|
|
|
/* calculate (2^32 % upper_bound) avoiding 64-bit math */
|
|
/* ((2^32 - x) % x) == (2^32 % x) when x <= 2^31 */
|
|
min = (0xFFFFFFFFU - upper_bound + 1) % upper_bound;
|
|
|
|
LOCK(&rs);
|
|
arc4_check_init(&rs);
|
|
|
|
/*
|
|
* This could theoretically loop forever but each retry has
|
|
* p > 0.5 (worst case, usually far better) of selecting a
|
|
* number inside the range we need, so it should rarely need
|
|
* to re-roll (at all).
|
|
*/
|
|
do
|
|
r = arc4_getword(&rs);
|
|
while (r < min);
|
|
UNLOCK(&rs);
|
|
|
|
return r % upper_bound;
|
|
}
|