94da9a216b
inheriting of the active dynamic rules during the reload; also, fix a bug in the insert path by putting a memory barrier in the right place.
1003 lines
23 KiB
C
1003 lines
23 KiB
C
/* $NetBSD: npf_ruleset.c,v 1.42 2015/03/20 23:36:28 rmind Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2009-2015 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This material is based upon work partially supported by The
|
|
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* NPF ruleset module.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: npf_ruleset.c,v 1.42 2015/03/20 23:36:28 rmind Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/atomic.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/bpfjit.h>
|
|
#include <net/pfil.h>
|
|
#include <net/if.h>
|
|
|
|
#include "npf_impl.h"
|
|
|
|
struct npf_ruleset {
|
|
/*
|
|
* - List of all rules.
|
|
* - Dynamic (i.e. named) rules.
|
|
* - G/C list for convenience.
|
|
*/
|
|
LIST_HEAD(, npf_rule) rs_all;
|
|
LIST_HEAD(, npf_rule) rs_dynamic;
|
|
LIST_HEAD(, npf_rule) rs_gc;
|
|
|
|
/* Unique ID counter. */
|
|
uint64_t rs_idcnt;
|
|
|
|
/* Number of array slots and active rules. */
|
|
u_int rs_slots;
|
|
u_int rs_nitems;
|
|
|
|
/* Array of ordered rules. */
|
|
npf_rule_t * rs_rules[];
|
|
};
|
|
|
|
struct npf_rule {
|
|
/* Attributes, interface and skip slot. */
|
|
uint32_t r_attr;
|
|
u_int r_ifid;
|
|
u_int r_skip_to;
|
|
|
|
/* Code to process, if any. */
|
|
int r_type;
|
|
bpfjit_func_t r_jcode;
|
|
void * r_code;
|
|
u_int r_clen;
|
|
|
|
/* NAT policy (optional), rule procedure and subset. */
|
|
npf_natpolicy_t * r_natp;
|
|
npf_rproc_t * r_rproc;
|
|
|
|
union {
|
|
/*
|
|
* Dynamic group: rule subset and a group list entry.
|
|
*/
|
|
struct {
|
|
npf_rule_t * r_subset;
|
|
LIST_ENTRY(npf_rule) r_dentry;
|
|
};
|
|
|
|
/*
|
|
* Dynamic rule: priority, parent group and next rule.
|
|
*/
|
|
struct {
|
|
int r_priority;
|
|
npf_rule_t * r_parent;
|
|
npf_rule_t * r_next;
|
|
};
|
|
};
|
|
|
|
/* Rule ID, name and the optional key. */
|
|
uint64_t r_id;
|
|
char r_name[NPF_RULE_MAXNAMELEN];
|
|
uint8_t r_key[NPF_RULE_MAXKEYLEN];
|
|
|
|
/* All-list entry and the auxiliary info. */
|
|
LIST_ENTRY(npf_rule) r_aentry;
|
|
prop_data_t r_info;
|
|
};
|
|
|
|
#define SKIPTO_ADJ_FLAG (1U << 31)
|
|
#define SKIPTO_MASK (SKIPTO_ADJ_FLAG - 1)
|
|
|
|
static int npf_rule_export(const npf_ruleset_t *,
|
|
const npf_rule_t *, prop_dictionary_t);
|
|
|
|
/*
|
|
* Private attributes - must be in the NPF_RULE_PRIVMASK range.
|
|
*/
|
|
#define NPF_RULE_KEEPNAT (0x01000000 & NPF_RULE_PRIVMASK)
|
|
|
|
#define NPF_DYNAMIC_GROUP_P(attr) \
|
|
(((attr) & NPF_DYNAMIC_GROUP) == NPF_DYNAMIC_GROUP)
|
|
|
|
#define NPF_DYNAMIC_RULE_P(attr) \
|
|
(((attr) & NPF_DYNAMIC_GROUP) == NPF_RULE_DYNAMIC)
|
|
|
|
npf_ruleset_t *
|
|
npf_ruleset_create(size_t slots)
|
|
{
|
|
size_t len = offsetof(npf_ruleset_t, rs_rules[slots]);
|
|
npf_ruleset_t *rlset;
|
|
|
|
rlset = kmem_zalloc(len, KM_SLEEP);
|
|
LIST_INIT(&rlset->rs_dynamic);
|
|
LIST_INIT(&rlset->rs_all);
|
|
LIST_INIT(&rlset->rs_gc);
|
|
rlset->rs_slots = slots;
|
|
|
|
return rlset;
|
|
}
|
|
|
|
void
|
|
npf_ruleset_destroy(npf_ruleset_t *rlset)
|
|
{
|
|
size_t len = offsetof(npf_ruleset_t, rs_rules[rlset->rs_slots]);
|
|
npf_rule_t *rl;
|
|
|
|
while ((rl = LIST_FIRST(&rlset->rs_all)) != NULL) {
|
|
if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
|
|
/*
|
|
* Note: r_subset may point to the rules which
|
|
* were inherited by a new ruleset.
|
|
*/
|
|
rl->r_subset = NULL;
|
|
LIST_REMOVE(rl, r_dentry);
|
|
}
|
|
if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
|
|
/* Not removing from r_subset, see above. */
|
|
KASSERT(rl->r_parent != NULL);
|
|
}
|
|
LIST_REMOVE(rl, r_aentry);
|
|
npf_rule_free(rl);
|
|
}
|
|
KASSERT(LIST_EMPTY(&rlset->rs_dynamic));
|
|
KASSERT(LIST_EMPTY(&rlset->rs_gc));
|
|
kmem_free(rlset, len);
|
|
}
|
|
|
|
/*
|
|
* npf_ruleset_insert: insert the rule into the specified ruleset.
|
|
*/
|
|
void
|
|
npf_ruleset_insert(npf_ruleset_t *rlset, npf_rule_t *rl)
|
|
{
|
|
u_int n = rlset->rs_nitems;
|
|
|
|
KASSERT(n < rlset->rs_slots);
|
|
|
|
LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
|
|
if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
|
|
LIST_INSERT_HEAD(&rlset->rs_dynamic, rl, r_dentry);
|
|
} else {
|
|
KASSERTMSG(rl->r_parent == NULL, "cannot be dynamic rule");
|
|
rl->r_attr &= ~NPF_RULE_DYNAMIC;
|
|
}
|
|
|
|
rlset->rs_rules[n] = rl;
|
|
rlset->rs_nitems++;
|
|
|
|
if (rl->r_skip_to < ++n) {
|
|
rl->r_skip_to = SKIPTO_ADJ_FLAG | n;
|
|
}
|
|
}
|
|
|
|
static npf_rule_t *
|
|
npf_ruleset_lookup(npf_ruleset_t *rlset, const char *name)
|
|
{
|
|
npf_rule_t *rl;
|
|
|
|
KASSERT(npf_config_locked_p());
|
|
|
|
LIST_FOREACH(rl, &rlset->rs_dynamic, r_dentry) {
|
|
KASSERT(NPF_DYNAMIC_GROUP_P(rl->r_attr));
|
|
if (strncmp(rl->r_name, name, NPF_RULE_MAXNAMELEN) == 0)
|
|
break;
|
|
}
|
|
return rl;
|
|
}
|
|
|
|
/*
|
|
* npf_ruleset_add: insert dynamic rule into the (active) ruleset.
|
|
*/
|
|
int
|
|
npf_ruleset_add(npf_ruleset_t *rlset, const char *rname, npf_rule_t *rl)
|
|
{
|
|
npf_rule_t *rg, *it, *target;
|
|
int priocmd;
|
|
|
|
if (!NPF_DYNAMIC_RULE_P(rl->r_attr)) {
|
|
return EINVAL;
|
|
}
|
|
rg = npf_ruleset_lookup(rlset, rname);
|
|
if (rg == NULL) {
|
|
return ESRCH;
|
|
}
|
|
|
|
/* Dynamic rule - assign a unique ID and save the parent. */
|
|
rl->r_id = ++rlset->rs_idcnt;
|
|
rl->r_parent = rg;
|
|
|
|
/*
|
|
* Rule priority: (highest) 1, 2 ... n (lowest).
|
|
* Negative priority indicates an operation and is reset to zero.
|
|
*/
|
|
if ((priocmd = rl->r_priority) < 0) {
|
|
rl->r_priority = 0;
|
|
}
|
|
|
|
/*
|
|
* WARNING: once rg->subset or target->r_next of an *active*
|
|
* rule is set, then our rule becomes globally visible and active.
|
|
* Must issue a load fence to ensure rl->r_next visibility first.
|
|
*/
|
|
switch (priocmd) {
|
|
case NPF_PRI_LAST:
|
|
default:
|
|
target = NULL;
|
|
it = rg->r_subset;
|
|
while (it && it->r_priority <= rl->r_priority) {
|
|
target = it;
|
|
it = it->r_next;
|
|
}
|
|
if (target) {
|
|
rl->r_next = target->r_next;
|
|
membar_producer();
|
|
target->r_next = rl;
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
|
|
case NPF_PRI_FIRST:
|
|
rl->r_next = rg->r_subset;
|
|
membar_producer();
|
|
rg->r_subset = rl;
|
|
break;
|
|
}
|
|
|
|
/* Finally, add into the all-list. */
|
|
LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
npf_ruleset_unlink(npf_rule_t *rl, npf_rule_t *prev)
|
|
{
|
|
KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
|
|
if (prev) {
|
|
prev->r_next = rl->r_next;
|
|
} else {
|
|
npf_rule_t *rg = rl->r_parent;
|
|
rg->r_subset = rl->r_next;
|
|
}
|
|
LIST_REMOVE(rl, r_aentry);
|
|
}
|
|
|
|
/*
|
|
* npf_ruleset_remove: remove the dynamic rule given the rule ID.
|
|
*/
|
|
int
|
|
npf_ruleset_remove(npf_ruleset_t *rlset, const char *rname, uint64_t id)
|
|
{
|
|
npf_rule_t *rg, *prev = NULL;
|
|
|
|
if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
|
|
return ESRCH;
|
|
}
|
|
for (npf_rule_t *rl = rg->r_subset; rl; rl = rl->r_next) {
|
|
KASSERT(rl->r_parent == rg);
|
|
KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
|
|
|
|
/* Compare ID. On match, remove and return. */
|
|
if (rl->r_id == id) {
|
|
npf_ruleset_unlink(rl, prev);
|
|
LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
|
|
return 0;
|
|
}
|
|
prev = rl;
|
|
}
|
|
return ENOENT;
|
|
}
|
|
|
|
/*
|
|
* npf_ruleset_remkey: remove the dynamic rule given the rule key.
|
|
*/
|
|
int
|
|
npf_ruleset_remkey(npf_ruleset_t *rlset, const char *rname,
|
|
const void *key, size_t len)
|
|
{
|
|
npf_rule_t *rg, *rlast = NULL, *prev = NULL, *lastprev = NULL;
|
|
|
|
KASSERT(len && len <= NPF_RULE_MAXKEYLEN);
|
|
|
|
if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
|
|
return ESRCH;
|
|
}
|
|
|
|
/* Compare the key and find the last in the list. */
|
|
for (npf_rule_t *rl = rg->r_subset; rl; rl = rl->r_next) {
|
|
KASSERT(rl->r_parent == rg);
|
|
KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
|
|
if (memcmp(rl->r_key, key, len) == 0) {
|
|
lastprev = prev;
|
|
rlast = rl;
|
|
}
|
|
prev = rl;
|
|
}
|
|
if (!rlast) {
|
|
return ENOENT;
|
|
}
|
|
npf_ruleset_unlink(rlast, lastprev);
|
|
LIST_INSERT_HEAD(&rlset->rs_gc, rlast, r_aentry);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* npf_ruleset_list: serialise and return the dynamic rules.
|
|
*/
|
|
prop_dictionary_t
|
|
npf_ruleset_list(npf_ruleset_t *rlset, const char *rname)
|
|
{
|
|
prop_dictionary_t rgdict;
|
|
prop_array_t rules;
|
|
npf_rule_t *rg;
|
|
|
|
KASSERT(npf_config_locked_p());
|
|
|
|
if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
|
|
return NULL;
|
|
}
|
|
if ((rgdict = prop_dictionary_create()) == NULL) {
|
|
return NULL;
|
|
}
|
|
if ((rules = prop_array_create()) == NULL) {
|
|
prop_object_release(rgdict);
|
|
return NULL;
|
|
}
|
|
|
|
for (npf_rule_t *rl = rg->r_subset; rl; rl = rl->r_next) {
|
|
prop_dictionary_t rldict;
|
|
|
|
KASSERT(rl->r_parent == rg);
|
|
KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
|
|
|
|
rldict = prop_dictionary_create();
|
|
if (npf_rule_export(rlset, rl, rldict)) {
|
|
prop_object_release(rldict);
|
|
prop_object_release(rules);
|
|
return NULL;
|
|
}
|
|
prop_array_add(rules, rldict);
|
|
prop_object_release(rldict);
|
|
}
|
|
|
|
if (!prop_dictionary_set(rgdict, "rules", rules)) {
|
|
prop_object_release(rgdict);
|
|
rgdict = NULL;
|
|
}
|
|
prop_object_release(rules);
|
|
return rgdict;
|
|
}
|
|
|
|
/*
|
|
* npf_ruleset_flush: flush the dynamic rules in the ruleset by inserting
|
|
* them into the G/C list.
|
|
*/
|
|
int
|
|
npf_ruleset_flush(npf_ruleset_t *rlset, const char *rname)
|
|
{
|
|
npf_rule_t *rg, *rl;
|
|
|
|
if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
|
|
return ESRCH;
|
|
}
|
|
|
|
rl = atomic_swap_ptr(&rg->r_subset, NULL);
|
|
membar_producer();
|
|
|
|
while (rl) {
|
|
KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
|
|
KASSERT(rl->r_parent == rg);
|
|
|
|
LIST_REMOVE(rl, r_aentry);
|
|
LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
|
|
rl = rl->r_next;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* npf_ruleset_gc: destroy the rules in G/C list.
|
|
*/
|
|
void
|
|
npf_ruleset_gc(npf_ruleset_t *rlset)
|
|
{
|
|
npf_rule_t *rl;
|
|
|
|
while ((rl = LIST_FIRST(&rlset->rs_gc)) != NULL) {
|
|
LIST_REMOVE(rl, r_aentry);
|
|
npf_rule_free(rl);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* npf_ruleset_export: serialise and return the static rules.
|
|
*/
|
|
int
|
|
npf_ruleset_export(const npf_ruleset_t *rlset, prop_array_t rules)
|
|
{
|
|
const u_int nitems = rlset->rs_nitems;
|
|
int error = 0;
|
|
u_int n = 0;
|
|
|
|
KASSERT(npf_config_locked_p());
|
|
|
|
while (n < nitems) {
|
|
const npf_rule_t *rl = rlset->rs_rules[n];
|
|
const npf_natpolicy_t *natp = rl->r_natp;
|
|
prop_dictionary_t rldict;
|
|
|
|
rldict = prop_dictionary_create();
|
|
if ((error = npf_rule_export(rlset, rl, rldict)) != 0) {
|
|
prop_object_release(rldict);
|
|
break;
|
|
}
|
|
if (natp && (error = npf_nat_policyexport(natp, rldict)) != 0) {
|
|
prop_object_release(rldict);
|
|
break;
|
|
}
|
|
prop_array_add(rules, rldict);
|
|
prop_object_release(rldict);
|
|
n++;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* npf_ruleset_reload: prepare the new ruleset by scanning the active
|
|
* ruleset and: 1) sharing the dynamic rules 2) sharing NAT policies.
|
|
*
|
|
* => The active (old) ruleset should be exclusively locked.
|
|
*/
|
|
void
|
|
npf_ruleset_reload(npf_ruleset_t *newset, npf_ruleset_t *oldset, bool load)
|
|
{
|
|
npf_rule_t *rg, *rl;
|
|
uint64_t nid = 0;
|
|
|
|
KASSERT(npf_config_locked_p());
|
|
|
|
/*
|
|
* Scan the dynamic rules and share (migrate) if needed.
|
|
*/
|
|
LIST_FOREACH(rg, &newset->rs_dynamic, r_dentry) {
|
|
npf_rule_t *active_rgroup;
|
|
|
|
/* Look for a dynamic ruleset group with such name. */
|
|
active_rgroup = npf_ruleset_lookup(oldset, rg->r_name);
|
|
if (active_rgroup == NULL) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* ATOMICITY: Copy the head pointer of the linked-list,
|
|
* but do not remove the rules from the active r_subset.
|
|
* This is necessary because the rules are still active
|
|
* and therefore are accessible for inspection via the
|
|
* old ruleset.
|
|
*/
|
|
rg->r_subset = active_rgroup->r_subset;
|
|
|
|
/*
|
|
* We can safely migrate to the new all-rule list and
|
|
* reset the parent rule, though.
|
|
*/
|
|
for (rl = rg->r_subset; rl; rl = rl->r_next) {
|
|
KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
|
|
LIST_REMOVE(rl, r_aentry);
|
|
LIST_INSERT_HEAD(&newset->rs_all, rl, r_aentry);
|
|
|
|
KASSERT(rl->r_parent == active_rgroup);
|
|
rl->r_parent = rg;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If performing the load of connections then NAT policies may
|
|
* already have translated connections associated with them and
|
|
* we should not share or inherit anything.
|
|
*/
|
|
if (load)
|
|
return;
|
|
|
|
/*
|
|
* Scan all rules in the new ruleset and share NAT policies.
|
|
* Also, assign a unique ID for each policy here.
|
|
*/
|
|
LIST_FOREACH(rl, &newset->rs_all, r_aentry) {
|
|
npf_natpolicy_t *np;
|
|
npf_rule_t *actrl;
|
|
|
|
/* Does the rule have a NAT policy associated? */
|
|
if ((np = rl->r_natp) == NULL) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* First, try to share the active port map. If this
|
|
* policy will be unused, npf_nat_freepolicy() will
|
|
* drop the reference.
|
|
*/
|
|
npf_ruleset_sharepm(oldset, np);
|
|
|
|
/* Does it match with any policy in the active ruleset? */
|
|
LIST_FOREACH(actrl, &oldset->rs_all, r_aentry) {
|
|
if (!actrl->r_natp)
|
|
continue;
|
|
if ((actrl->r_attr & NPF_RULE_KEEPNAT) != 0)
|
|
continue;
|
|
if (npf_nat_cmppolicy(actrl->r_natp, np))
|
|
break;
|
|
}
|
|
if (!actrl) {
|
|
/* No: just set the ID and continue. */
|
|
npf_nat_setid(np, ++nid);
|
|
continue;
|
|
}
|
|
|
|
/* Yes: inherit the matching NAT policy. */
|
|
rl->r_natp = actrl->r_natp;
|
|
npf_nat_setid(rl->r_natp, ++nid);
|
|
|
|
/*
|
|
* Finally, mark the active rule to not destroy its NAT
|
|
* policy later as we inherited it (but the rule must be
|
|
* kept active for now). Destroy the new/unused policy.
|
|
*/
|
|
actrl->r_attr |= NPF_RULE_KEEPNAT;
|
|
npf_nat_freepolicy(np);
|
|
}
|
|
|
|
/* Inherit the ID counter. */
|
|
newset->rs_idcnt = oldset->rs_idcnt;
|
|
}
|
|
|
|
/*
|
|
* npf_ruleset_sharepm: attempt to share the active NAT portmap.
|
|
*/
|
|
npf_rule_t *
|
|
npf_ruleset_sharepm(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
|
|
{
|
|
npf_natpolicy_t *np;
|
|
npf_rule_t *rl;
|
|
|
|
/*
|
|
* Scan the NAT policies in the ruleset and match with the
|
|
* given policy based on the translation IP address. If they
|
|
* match - adjust the given NAT policy to use the active NAT
|
|
* portmap. In such case the reference on the old portmap is
|
|
* dropped and acquired on the active one.
|
|
*/
|
|
LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
|
|
np = rl->r_natp;
|
|
if (np == NULL || np == mnp)
|
|
continue;
|
|
if (npf_nat_sharepm(np, mnp))
|
|
break;
|
|
}
|
|
return rl;
|
|
}
|
|
|
|
npf_natpolicy_t *
|
|
npf_ruleset_findnat(npf_ruleset_t *rlset, uint64_t id)
|
|
{
|
|
npf_rule_t *rl;
|
|
|
|
LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
|
|
npf_natpolicy_t *np = rl->r_natp;
|
|
if (np && npf_nat_getid(np) == id) {
|
|
return np;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* npf_ruleset_freealg: inspect the ruleset and disassociate specified
|
|
* ALG from all NAT entries using it.
|
|
*/
|
|
void
|
|
npf_ruleset_freealg(npf_ruleset_t *rlset, npf_alg_t *alg)
|
|
{
|
|
npf_rule_t *rl;
|
|
npf_natpolicy_t *np;
|
|
|
|
LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
|
|
if ((np = rl->r_natp) != NULL) {
|
|
npf_nat_freealg(np, alg);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* npf_rule_alloc: allocate a rule and initialise it.
|
|
*/
|
|
npf_rule_t *
|
|
npf_rule_alloc(prop_dictionary_t rldict)
|
|
{
|
|
npf_rule_t *rl;
|
|
const char *rname;
|
|
prop_data_t d;
|
|
|
|
/* Allocate a rule structure. */
|
|
rl = kmem_zalloc(sizeof(npf_rule_t), KM_SLEEP);
|
|
rl->r_natp = NULL;
|
|
|
|
/* Name (optional) */
|
|
if (prop_dictionary_get_cstring_nocopy(rldict, "name", &rname)) {
|
|
strlcpy(rl->r_name, rname, NPF_RULE_MAXNAMELEN);
|
|
} else {
|
|
rl->r_name[0] = '\0';
|
|
}
|
|
|
|
/* Attributes, priority and interface ID (optional). */
|
|
prop_dictionary_get_uint32(rldict, "attr", &rl->r_attr);
|
|
rl->r_attr &= ~NPF_RULE_PRIVMASK;
|
|
|
|
if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
|
|
/* Priority of the dynamic rule. */
|
|
prop_dictionary_get_int32(rldict, "prio", &rl->r_priority);
|
|
} else {
|
|
/* The skip-to index. No need to validate it. */
|
|
prop_dictionary_get_uint32(rldict, "skip-to", &rl->r_skip_to);
|
|
}
|
|
|
|
/* Interface name; register and get the npf-if-id. */
|
|
if (prop_dictionary_get_cstring_nocopy(rldict, "ifname", &rname)) {
|
|
if ((rl->r_ifid = npf_ifmap_register(rname)) == 0) {
|
|
kmem_free(rl, sizeof(npf_rule_t));
|
|
return NULL;
|
|
}
|
|
} else {
|
|
rl->r_ifid = 0;
|
|
}
|
|
|
|
/* Key (optional). */
|
|
prop_object_t obj = prop_dictionary_get(rldict, "key");
|
|
const void *key = prop_data_data_nocopy(obj);
|
|
|
|
if (key) {
|
|
size_t len = prop_data_size(obj);
|
|
if (len > NPF_RULE_MAXKEYLEN) {
|
|
kmem_free(rl, sizeof(npf_rule_t));
|
|
return NULL;
|
|
}
|
|
memcpy(rl->r_key, key, len);
|
|
}
|
|
|
|
if ((d = prop_dictionary_get(rldict, "info")) != NULL) {
|
|
rl->r_info = prop_data_copy(d);
|
|
}
|
|
return rl;
|
|
}
|
|
|
|
static int
|
|
npf_rule_export(const npf_ruleset_t *rlset, const npf_rule_t *rl,
|
|
prop_dictionary_t rldict)
|
|
{
|
|
u_int skip_to = 0;
|
|
prop_data_t d;
|
|
|
|
prop_dictionary_set_uint32(rldict, "attr", rl->r_attr);
|
|
prop_dictionary_set_int32(rldict, "prio", rl->r_priority);
|
|
if ((rl->r_skip_to & SKIPTO_ADJ_FLAG) == 0) {
|
|
skip_to = rl->r_skip_to & SKIPTO_MASK;
|
|
}
|
|
prop_dictionary_set_uint32(rldict, "skip-to", skip_to);
|
|
prop_dictionary_set_int32(rldict, "code-type", rl->r_type);
|
|
if (rl->r_code) {
|
|
d = prop_data_create_data(rl->r_code, rl->r_clen);
|
|
prop_dictionary_set_and_rel(rldict, "code", d);
|
|
}
|
|
|
|
if (rl->r_ifid) {
|
|
const char *ifname = npf_ifmap_getname(rl->r_ifid);
|
|
prop_dictionary_set_cstring(rldict, "ifname", ifname);
|
|
}
|
|
prop_dictionary_set_uint64(rldict, "id", rl->r_id);
|
|
|
|
if (rl->r_name[0]) {
|
|
prop_dictionary_set_cstring(rldict, "name", rl->r_name);
|
|
}
|
|
if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
|
|
d = prop_data_create_data(rl->r_key, NPF_RULE_MAXKEYLEN);
|
|
prop_dictionary_set_and_rel(rldict, "key", d);
|
|
}
|
|
if (rl->r_info) {
|
|
prop_dictionary_set(rldict, "info", rl->r_info);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* npf_rule_setcode: assign filter code to the rule.
|
|
*
|
|
* => The code must be validated by the caller.
|
|
* => JIT compilation may be performed here.
|
|
*/
|
|
void
|
|
npf_rule_setcode(npf_rule_t *rl, const int type, void *code, size_t size)
|
|
{
|
|
KASSERT(type == NPF_CODE_BPF);
|
|
|
|
rl->r_type = type;
|
|
rl->r_code = code;
|
|
rl->r_clen = size;
|
|
rl->r_jcode = npf_bpf_compile(code, size);
|
|
}
|
|
|
|
/*
|
|
* npf_rule_setrproc: assign a rule procedure and hold a reference on it.
|
|
*/
|
|
void
|
|
npf_rule_setrproc(npf_rule_t *rl, npf_rproc_t *rp)
|
|
{
|
|
npf_rproc_acquire(rp);
|
|
rl->r_rproc = rp;
|
|
}
|
|
|
|
/*
|
|
* npf_rule_free: free the specified rule.
|
|
*/
|
|
void
|
|
npf_rule_free(npf_rule_t *rl)
|
|
{
|
|
npf_natpolicy_t *np = rl->r_natp;
|
|
npf_rproc_t *rp = rl->r_rproc;
|
|
|
|
if (np && (rl->r_attr & NPF_RULE_KEEPNAT) == 0) {
|
|
/* Free NAT policy. */
|
|
npf_nat_freepolicy(np);
|
|
}
|
|
if (rp) {
|
|
/* Release rule procedure. */
|
|
npf_rproc_release(rp);
|
|
}
|
|
if (rl->r_code) {
|
|
/* Free byte-code. */
|
|
kmem_free(rl->r_code, rl->r_clen);
|
|
}
|
|
if (rl->r_jcode) {
|
|
/* Free JIT code. */
|
|
bpf_jit_freecode(rl->r_jcode);
|
|
}
|
|
if (rl->r_info) {
|
|
prop_object_release(rl->r_info);
|
|
}
|
|
kmem_free(rl, sizeof(npf_rule_t));
|
|
}
|
|
|
|
/*
|
|
* npf_rule_getid: return the unique ID of a rule.
|
|
* npf_rule_getrproc: acquire a reference and return rule procedure, if any.
|
|
* npf_rule_getnat: get NAT policy assigned to the rule.
|
|
*/
|
|
|
|
uint64_t
|
|
npf_rule_getid(const npf_rule_t *rl)
|
|
{
|
|
KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
|
|
return rl->r_id;
|
|
}
|
|
|
|
npf_rproc_t *
|
|
npf_rule_getrproc(const npf_rule_t *rl)
|
|
{
|
|
npf_rproc_t *rp = rl->r_rproc;
|
|
|
|
if (rp) {
|
|
npf_rproc_acquire(rp);
|
|
}
|
|
return rp;
|
|
}
|
|
|
|
npf_natpolicy_t *
|
|
npf_rule_getnat(const npf_rule_t *rl)
|
|
{
|
|
return rl->r_natp;
|
|
}
|
|
|
|
/*
|
|
* npf_rule_setnat: assign NAT policy to the rule and insert into the
|
|
* NAT policy list in the ruleset.
|
|
*/
|
|
void
|
|
npf_rule_setnat(npf_rule_t *rl, npf_natpolicy_t *np)
|
|
{
|
|
KASSERT(rl->r_natp == NULL);
|
|
rl->r_natp = np;
|
|
}
|
|
|
|
/*
|
|
* npf_rule_inspect: match the interface, direction and run the filter code.
|
|
* Returns true if rule matches and false otherwise.
|
|
*/
|
|
static inline bool
|
|
npf_rule_inspect(const npf_rule_t *rl, bpf_args_t *bc_args,
|
|
const int di_mask, const u_int ifid)
|
|
{
|
|
/* Match the interface. */
|
|
if (rl->r_ifid && rl->r_ifid != ifid) {
|
|
return false;
|
|
}
|
|
|
|
/* Match the direction. */
|
|
if ((rl->r_attr & NPF_RULE_DIMASK) != NPF_RULE_DIMASK) {
|
|
if ((rl->r_attr & di_mask) == 0)
|
|
return false;
|
|
}
|
|
|
|
/* Any code? */
|
|
if (!rl->r_code) {
|
|
KASSERT(rl->r_jcode == NULL);
|
|
return true;
|
|
}
|
|
KASSERT(rl->r_type == NPF_CODE_BPF);
|
|
return npf_bpf_filter(bc_args, rl->r_code, rl->r_jcode) != 0;
|
|
}
|
|
|
|
/*
|
|
* npf_rule_reinspect: re-inspect the dynamic rule by iterating its list.
|
|
* This is only for the dynamic rules. Subrules cannot have nested rules.
|
|
*/
|
|
static inline npf_rule_t *
|
|
npf_rule_reinspect(const npf_rule_t *rg, bpf_args_t *bc_args,
|
|
const int di_mask, const u_int ifid)
|
|
{
|
|
npf_rule_t *final_rl = NULL, *rl;
|
|
|
|
KASSERT(NPF_DYNAMIC_GROUP_P(rg->r_attr));
|
|
|
|
for (rl = rg->r_subset; rl; rl = rl->r_next) {
|
|
KASSERT(!final_rl || rl->r_priority >= final_rl->r_priority);
|
|
if (!npf_rule_inspect(rl, bc_args, di_mask, ifid)) {
|
|
continue;
|
|
}
|
|
if (rl->r_attr & NPF_RULE_FINAL) {
|
|
return rl;
|
|
}
|
|
final_rl = rl;
|
|
}
|
|
return final_rl;
|
|
}
|
|
|
|
/*
|
|
* npf_ruleset_inspect: inspect the packet against the given ruleset.
|
|
*
|
|
* Loop through the rules in the set and run the byte-code of each rule
|
|
* against the packet (nbuf chain). If sub-ruleset is found, inspect it.
|
|
*/
|
|
npf_rule_t *
|
|
npf_ruleset_inspect(npf_cache_t *npc, const npf_ruleset_t *rlset,
|
|
const int di, const int layer)
|
|
{
|
|
nbuf_t *nbuf = npc->npc_nbuf;
|
|
const int di_mask = (di & PFIL_IN) ? NPF_RULE_IN : NPF_RULE_OUT;
|
|
const u_int nitems = rlset->rs_nitems;
|
|
const u_int ifid = nbuf->nb_ifid;
|
|
npf_rule_t *final_rl = NULL;
|
|
bpf_args_t bc_args;
|
|
u_int n = 0;
|
|
|
|
KASSERT(((di & PFIL_IN) != 0) ^ ((di & PFIL_OUT) != 0));
|
|
|
|
/*
|
|
* Prepare the external memory store and the arguments for
|
|
* the BPF programs to be executed.
|
|
*/
|
|
uint32_t bc_words[NPF_BPF_NWORDS];
|
|
npf_bpf_prepare(npc, &bc_args, bc_words);
|
|
|
|
while (n < nitems) {
|
|
npf_rule_t *rl = rlset->rs_rules[n];
|
|
const u_int skip_to = rl->r_skip_to & SKIPTO_MASK;
|
|
const uint32_t attr = rl->r_attr;
|
|
|
|
KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
|
|
KASSERT(n < skip_to);
|
|
|
|
/* Group is a barrier: return a matching if found any. */
|
|
if ((attr & NPF_RULE_GROUP) != 0 && final_rl) {
|
|
break;
|
|
}
|
|
|
|
/* Main inspection of the rule. */
|
|
if (!npf_rule_inspect(rl, &bc_args, di_mask, ifid)) {
|
|
n = skip_to;
|
|
continue;
|
|
}
|
|
|
|
if (NPF_DYNAMIC_GROUP_P(attr)) {
|
|
/*
|
|
* If this is a dynamic rule, re-inspect the subrules.
|
|
* If it has any matching rule, then it is final.
|
|
*/
|
|
rl = npf_rule_reinspect(rl, &bc_args, di_mask, ifid);
|
|
if (rl != NULL) {
|
|
final_rl = rl;
|
|
break;
|
|
}
|
|
} else if ((attr & NPF_RULE_GROUP) == 0) {
|
|
/*
|
|
* Groups themselves are not matching.
|
|
*/
|
|
final_rl = rl;
|
|
}
|
|
|
|
/* Set the matching rule and check for "final". */
|
|
if (attr & NPF_RULE_FINAL) {
|
|
break;
|
|
}
|
|
n++;
|
|
}
|
|
|
|
KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
|
|
return final_rl;
|
|
}
|
|
|
|
/*
|
|
* npf_rule_conclude: return decision and the flags for conclusion.
|
|
*
|
|
* => Returns ENETUNREACH if "block" and 0 if "pass".
|
|
*/
|
|
int
|
|
npf_rule_conclude(const npf_rule_t *rl, int *retfl)
|
|
{
|
|
/* If not passing - drop the packet. */
|
|
*retfl = rl->r_attr;
|
|
return (rl->r_attr & NPF_RULE_PASS) ? 0 : ENETUNREACH;
|
|
}
|
|
|
|
|
|
#if defined(DDB) || defined(_NPF_TESTING)
|
|
|
|
void
|
|
npf_ruleset_dump(const char *name)
|
|
{
|
|
npf_ruleset_t *rlset = npf_config_ruleset();
|
|
npf_rule_t *rg, *rl;
|
|
|
|
LIST_FOREACH(rg, &rlset->rs_dynamic, r_dentry) {
|
|
printf("ruleset '%s':\n", rg->r_name);
|
|
for (rl = rg->r_subset; rl; rl = rl->r_next) {
|
|
printf("\tid %"PRIu64", key: ", rl->r_id);
|
|
for (u_int i = 0; i < NPF_RULE_MAXKEYLEN; i++)
|
|
printf("%x", rl->r_key[i]);
|
|
printf("\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|