1771 lines
41 KiB
C
1771 lines
41 KiB
C
/* $NetBSD: subr_vmem.c,v 1.93 2015/08/24 22:50:32 pooka Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* reference:
|
|
* - Magazines and Vmem: Extending the Slab Allocator
|
|
* to Many CPUs and Arbitrary Resources
|
|
* http://www.usenix.org/event/usenix01/bonwick.html
|
|
*
|
|
* locking & the boundary tag pool:
|
|
* - A pool(9) is used for vmem boundary tags
|
|
* - During a pool get call the global vmem_btag_refill_lock is taken,
|
|
* to serialize access to the allocation reserve, but no other
|
|
* vmem arena locks.
|
|
* - During pool_put calls no vmem mutexes are locked.
|
|
* - pool_drain doesn't hold the pool's mutex while releasing memory to
|
|
* its backing therefore no interferance with any vmem mutexes.
|
|
* - The boundary tag pool is forced to put page headers into pool pages
|
|
* (PR_PHINPAGE) and not off page to avoid pool recursion.
|
|
* (due to sizeof(bt_t) it should be the case anyway)
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.93 2015/08/24 22:50:32 pooka Exp $");
|
|
|
|
#if defined(_KERNEL) && defined(_KERNEL_OPT)
|
|
#include "opt_ddb.h"
|
|
#endif /* defined(_KERNEL) && defined(_KERNEL_OPT) */
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/hash.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/bitops.h>
|
|
|
|
#if defined(_KERNEL)
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h> /* hz */
|
|
#include <sys/callout.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/vmem.h>
|
|
#include <sys/vmem_impl.h>
|
|
#include <sys/workqueue.h>
|
|
#include <sys/atomic.h>
|
|
#include <uvm/uvm.h>
|
|
#include <uvm/uvm_extern.h>
|
|
#include <uvm/uvm_km.h>
|
|
#include <uvm/uvm_page.h>
|
|
#include <uvm/uvm_pdaemon.h>
|
|
#else /* defined(_KERNEL) */
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "../sys/vmem.h"
|
|
#include "../sys/vmem_impl.h"
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
|
|
#if defined(_KERNEL)
|
|
#include <sys/evcnt.h>
|
|
#define VMEM_EVCNT_DEFINE(name) \
|
|
struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
|
|
"vmem", #name); \
|
|
EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
|
|
#define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
|
|
#define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
|
|
|
|
VMEM_EVCNT_DEFINE(static_bt_count)
|
|
VMEM_EVCNT_DEFINE(static_bt_inuse)
|
|
|
|
#define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
|
|
#define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
|
|
#define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
|
|
#define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
|
|
|
|
#else /* defined(_KERNEL) */
|
|
|
|
#define VMEM_EVCNT_INCR(ev) /* nothing */
|
|
#define VMEM_EVCNT_DECR(ev) /* nothing */
|
|
|
|
#define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
|
|
#define VMEM_CONDVAR_DESTROY(vm) /* nothing */
|
|
#define VMEM_CONDVAR_WAIT(vm) /* nothing */
|
|
#define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
|
|
|
|
#define UNITTEST
|
|
#define KASSERT(a) assert(a)
|
|
#define mutex_init(a, b, c) /* nothing */
|
|
#define mutex_destroy(a) /* nothing */
|
|
#define mutex_enter(a) /* nothing */
|
|
#define mutex_tryenter(a) true
|
|
#define mutex_exit(a) /* nothing */
|
|
#define mutex_owned(a) /* nothing */
|
|
#define ASSERT_SLEEPABLE() /* nothing */
|
|
#define panic(...) printf(__VA_ARGS__); abort()
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
#if defined(VMEM_SANITY)
|
|
static void vmem_check(vmem_t *);
|
|
#else /* defined(VMEM_SANITY) */
|
|
#define vmem_check(vm) /* nothing */
|
|
#endif /* defined(VMEM_SANITY) */
|
|
|
|
#define VMEM_HASHSIZE_MIN 1 /* XXX */
|
|
#define VMEM_HASHSIZE_MAX 65536 /* XXX */
|
|
#define VMEM_HASHSIZE_INIT 1
|
|
|
|
#define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
|
|
|
|
#if defined(_KERNEL)
|
|
static bool vmem_bootstrapped = false;
|
|
static kmutex_t vmem_list_lock;
|
|
static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
/* ---- misc */
|
|
|
|
#define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
|
|
#define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
|
|
#define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
|
|
#define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
|
|
#define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
|
|
#define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
|
|
|
|
#define VMEM_ALIGNUP(addr, align) \
|
|
(-(-(addr) & -(align)))
|
|
|
|
#define VMEM_CROSS_P(addr1, addr2, boundary) \
|
|
((((addr1) ^ (addr2)) & -(boundary)) != 0)
|
|
|
|
#define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
|
|
#define SIZE2ORDER(size) ((int)ilog2(size))
|
|
|
|
#if !defined(_KERNEL)
|
|
#define xmalloc(sz, flags) malloc(sz)
|
|
#define xfree(p, sz) free(p)
|
|
#define bt_alloc(vm, flags) malloc(sizeof(bt_t))
|
|
#define bt_free(vm, bt) free(bt)
|
|
#else /* defined(_KERNEL) */
|
|
|
|
#define xmalloc(sz, flags) \
|
|
kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
|
|
#define xfree(p, sz) kmem_free(p, sz);
|
|
|
|
/*
|
|
* BT_RESERVE calculation:
|
|
* we allocate memory for boundry tags with vmem, therefor we have
|
|
* to keep a reserve of bts used to allocated memory for bts.
|
|
* This reserve is 4 for each arena involved in allocating vmems memory.
|
|
* BT_MAXFREE: don't cache excessive counts of bts in arenas
|
|
*/
|
|
#define STATIC_BT_COUNT 200
|
|
#define BT_MINRESERVE 4
|
|
#define BT_MAXFREE 64
|
|
|
|
static struct vmem_btag static_bts[STATIC_BT_COUNT];
|
|
static int static_bt_count = STATIC_BT_COUNT;
|
|
|
|
static struct vmem kmem_va_meta_arena_store;
|
|
vmem_t *kmem_va_meta_arena;
|
|
static struct vmem kmem_meta_arena_store;
|
|
vmem_t *kmem_meta_arena = NULL;
|
|
|
|
static kmutex_t vmem_btag_refill_lock;
|
|
static kmutex_t vmem_btag_lock;
|
|
static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
|
|
static size_t vmem_btag_freelist_count = 0;
|
|
static struct pool vmem_btag_pool;
|
|
|
|
/* ---- boundary tag */
|
|
|
|
static int bt_refill(vmem_t *vm, vm_flag_t flags);
|
|
|
|
static void *
|
|
pool_page_alloc_vmem_meta(struct pool *pp, int flags)
|
|
{
|
|
const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
|
|
vmem_addr_t va;
|
|
int ret;
|
|
|
|
ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
|
|
(vflags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va);
|
|
|
|
return ret ? NULL : (void *)va;
|
|
}
|
|
|
|
static void
|
|
pool_page_free_vmem_meta(struct pool *pp, void *v)
|
|
{
|
|
|
|
vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
|
|
}
|
|
|
|
/* allocator for vmem-pool metadata */
|
|
struct pool_allocator pool_allocator_vmem_meta = {
|
|
.pa_alloc = pool_page_alloc_vmem_meta,
|
|
.pa_free = pool_page_free_vmem_meta,
|
|
.pa_pagesz = 0
|
|
};
|
|
|
|
static int
|
|
bt_refill(vmem_t *vm, vm_flag_t flags)
|
|
{
|
|
bt_t *bt;
|
|
|
|
KASSERT(flags & VM_NOSLEEP);
|
|
|
|
VMEM_LOCK(vm);
|
|
if (vm->vm_nfreetags > BT_MINRESERVE) {
|
|
VMEM_UNLOCK(vm);
|
|
return 0;
|
|
}
|
|
|
|
mutex_enter(&vmem_btag_lock);
|
|
while (!LIST_EMPTY(&vmem_btag_freelist) &&
|
|
vm->vm_nfreetags <= BT_MINRESERVE) {
|
|
bt = LIST_FIRST(&vmem_btag_freelist);
|
|
LIST_REMOVE(bt, bt_freelist);
|
|
LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
|
|
vm->vm_nfreetags++;
|
|
vmem_btag_freelist_count--;
|
|
VMEM_EVCNT_INCR(static_bt_inuse);
|
|
}
|
|
mutex_exit(&vmem_btag_lock);
|
|
|
|
while (vm->vm_nfreetags <= BT_MINRESERVE) {
|
|
VMEM_UNLOCK(vm);
|
|
mutex_enter(&vmem_btag_refill_lock);
|
|
bt = pool_get(&vmem_btag_pool, PR_NOWAIT);
|
|
mutex_exit(&vmem_btag_refill_lock);
|
|
VMEM_LOCK(vm);
|
|
if (bt == NULL)
|
|
break;
|
|
LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
|
|
vm->vm_nfreetags++;
|
|
}
|
|
|
|
if (vm->vm_nfreetags <= BT_MINRESERVE) {
|
|
VMEM_UNLOCK(vm);
|
|
return ENOMEM;
|
|
}
|
|
|
|
VMEM_UNLOCK(vm);
|
|
|
|
if (kmem_meta_arena != NULL) {
|
|
bt_refill(kmem_arena, (flags & ~VM_FITMASK)
|
|
| VM_INSTANTFIT | VM_POPULATING);
|
|
bt_refill(kmem_va_meta_arena, (flags & ~VM_FITMASK)
|
|
| VM_INSTANTFIT | VM_POPULATING);
|
|
bt_refill(kmem_meta_arena, (flags & ~VM_FITMASK)
|
|
| VM_INSTANTFIT | VM_POPULATING);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bt_t *
|
|
bt_alloc(vmem_t *vm, vm_flag_t flags)
|
|
{
|
|
bt_t *bt;
|
|
VMEM_LOCK(vm);
|
|
while (vm->vm_nfreetags <= BT_MINRESERVE && (flags & VM_POPULATING) == 0) {
|
|
VMEM_UNLOCK(vm);
|
|
if (bt_refill(vm, VM_NOSLEEP | VM_INSTANTFIT)) {
|
|
return NULL;
|
|
}
|
|
VMEM_LOCK(vm);
|
|
}
|
|
bt = LIST_FIRST(&vm->vm_freetags);
|
|
LIST_REMOVE(bt, bt_freelist);
|
|
vm->vm_nfreetags--;
|
|
VMEM_UNLOCK(vm);
|
|
|
|
return bt;
|
|
}
|
|
|
|
static void
|
|
bt_free(vmem_t *vm, bt_t *bt)
|
|
{
|
|
|
|
VMEM_LOCK(vm);
|
|
LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
|
|
vm->vm_nfreetags++;
|
|
VMEM_UNLOCK(vm);
|
|
}
|
|
|
|
static void
|
|
bt_freetrim(vmem_t *vm, int freelimit)
|
|
{
|
|
bt_t *t;
|
|
LIST_HEAD(, vmem_btag) tofree;
|
|
|
|
LIST_INIT(&tofree);
|
|
|
|
VMEM_LOCK(vm);
|
|
while (vm->vm_nfreetags > freelimit) {
|
|
bt_t *bt = LIST_FIRST(&vm->vm_freetags);
|
|
LIST_REMOVE(bt, bt_freelist);
|
|
vm->vm_nfreetags--;
|
|
if (bt >= static_bts
|
|
&& bt < &static_bts[STATIC_BT_COUNT]) {
|
|
mutex_enter(&vmem_btag_lock);
|
|
LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
|
|
vmem_btag_freelist_count++;
|
|
mutex_exit(&vmem_btag_lock);
|
|
VMEM_EVCNT_DECR(static_bt_inuse);
|
|
} else {
|
|
LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
|
|
}
|
|
}
|
|
|
|
VMEM_UNLOCK(vm);
|
|
while (!LIST_EMPTY(&tofree)) {
|
|
t = LIST_FIRST(&tofree);
|
|
LIST_REMOVE(t, bt_freelist);
|
|
pool_put(&vmem_btag_pool, t);
|
|
}
|
|
}
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
/*
|
|
* freelist[0] ... [1, 1]
|
|
* freelist[1] ... [2, 3]
|
|
* freelist[2] ... [4, 7]
|
|
* freelist[3] ... [8, 15]
|
|
* :
|
|
* freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
|
|
* :
|
|
*/
|
|
|
|
static struct vmem_freelist *
|
|
bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
|
|
{
|
|
const vmem_size_t qsize = size >> vm->vm_quantum_shift;
|
|
const int idx = SIZE2ORDER(qsize);
|
|
|
|
KASSERT(size != 0 && qsize != 0);
|
|
KASSERT((size & vm->vm_quantum_mask) == 0);
|
|
KASSERT(idx >= 0);
|
|
KASSERT(idx < VMEM_MAXORDER);
|
|
|
|
return &vm->vm_freelist[idx];
|
|
}
|
|
|
|
/*
|
|
* bt_freehead_toalloc: return the freelist for the given size and allocation
|
|
* strategy.
|
|
*
|
|
* for VM_INSTANTFIT, return the list in which any blocks are large enough
|
|
* for the requested size. otherwise, return the list which can have blocks
|
|
* large enough for the requested size.
|
|
*/
|
|
|
|
static struct vmem_freelist *
|
|
bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
|
|
{
|
|
const vmem_size_t qsize = size >> vm->vm_quantum_shift;
|
|
int idx = SIZE2ORDER(qsize);
|
|
|
|
KASSERT(size != 0 && qsize != 0);
|
|
KASSERT((size & vm->vm_quantum_mask) == 0);
|
|
|
|
if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
|
|
idx++;
|
|
/* check too large request? */
|
|
}
|
|
KASSERT(idx >= 0);
|
|
KASSERT(idx < VMEM_MAXORDER);
|
|
|
|
return &vm->vm_freelist[idx];
|
|
}
|
|
|
|
/* ---- boundary tag hash */
|
|
|
|
static struct vmem_hashlist *
|
|
bt_hashhead(vmem_t *vm, vmem_addr_t addr)
|
|
{
|
|
struct vmem_hashlist *list;
|
|
unsigned int hash;
|
|
|
|
hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
|
|
list = &vm->vm_hashlist[hash % vm->vm_hashsize];
|
|
|
|
return list;
|
|
}
|
|
|
|
static bt_t *
|
|
bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
|
|
{
|
|
struct vmem_hashlist *list;
|
|
bt_t *bt;
|
|
|
|
list = bt_hashhead(vm, addr);
|
|
LIST_FOREACH(bt, list, bt_hashlist) {
|
|
if (bt->bt_start == addr) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return bt;
|
|
}
|
|
|
|
static void
|
|
bt_rembusy(vmem_t *vm, bt_t *bt)
|
|
{
|
|
|
|
KASSERT(vm->vm_nbusytag > 0);
|
|
vm->vm_inuse -= bt->bt_size;
|
|
vm->vm_nbusytag--;
|
|
LIST_REMOVE(bt, bt_hashlist);
|
|
}
|
|
|
|
static void
|
|
bt_insbusy(vmem_t *vm, bt_t *bt)
|
|
{
|
|
struct vmem_hashlist *list;
|
|
|
|
KASSERT(bt->bt_type == BT_TYPE_BUSY);
|
|
|
|
list = bt_hashhead(vm, bt->bt_start);
|
|
LIST_INSERT_HEAD(list, bt, bt_hashlist);
|
|
vm->vm_nbusytag++;
|
|
vm->vm_inuse += bt->bt_size;
|
|
}
|
|
|
|
/* ---- boundary tag list */
|
|
|
|
static void
|
|
bt_remseg(vmem_t *vm, bt_t *bt)
|
|
{
|
|
|
|
TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
|
|
}
|
|
|
|
static void
|
|
bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
|
|
{
|
|
|
|
TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
|
|
}
|
|
|
|
static void
|
|
bt_insseg_tail(vmem_t *vm, bt_t *bt)
|
|
{
|
|
|
|
TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
|
|
}
|
|
|
|
static void
|
|
bt_remfree(vmem_t *vm, bt_t *bt)
|
|
{
|
|
|
|
KASSERT(bt->bt_type == BT_TYPE_FREE);
|
|
|
|
LIST_REMOVE(bt, bt_freelist);
|
|
}
|
|
|
|
static void
|
|
bt_insfree(vmem_t *vm, bt_t *bt)
|
|
{
|
|
struct vmem_freelist *list;
|
|
|
|
list = bt_freehead_tofree(vm, bt->bt_size);
|
|
LIST_INSERT_HEAD(list, bt, bt_freelist);
|
|
}
|
|
|
|
/* ---- vmem internal functions */
|
|
|
|
#if defined(QCACHE)
|
|
static inline vm_flag_t
|
|
prf_to_vmf(int prflags)
|
|
{
|
|
vm_flag_t vmflags;
|
|
|
|
KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
|
|
if ((prflags & PR_WAITOK) != 0) {
|
|
vmflags = VM_SLEEP;
|
|
} else {
|
|
vmflags = VM_NOSLEEP;
|
|
}
|
|
return vmflags;
|
|
}
|
|
|
|
static inline int
|
|
vmf_to_prf(vm_flag_t vmflags)
|
|
{
|
|
int prflags;
|
|
|
|
if ((vmflags & VM_SLEEP) != 0) {
|
|
prflags = PR_WAITOK;
|
|
} else {
|
|
prflags = PR_NOWAIT;
|
|
}
|
|
return prflags;
|
|
}
|
|
|
|
static size_t
|
|
qc_poolpage_size(size_t qcache_max)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
|
|
/* nothing */
|
|
}
|
|
return ORDER2SIZE(i);
|
|
}
|
|
|
|
static void *
|
|
qc_poolpage_alloc(struct pool *pool, int prflags)
|
|
{
|
|
qcache_t *qc = QC_POOL_TO_QCACHE(pool);
|
|
vmem_t *vm = qc->qc_vmem;
|
|
vmem_addr_t addr;
|
|
|
|
if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
|
|
prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
|
|
return NULL;
|
|
return (void *)addr;
|
|
}
|
|
|
|
static void
|
|
qc_poolpage_free(struct pool *pool, void *addr)
|
|
{
|
|
qcache_t *qc = QC_POOL_TO_QCACHE(pool);
|
|
vmem_t *vm = qc->qc_vmem;
|
|
|
|
vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
|
|
}
|
|
|
|
static void
|
|
qc_init(vmem_t *vm, size_t qcache_max, int ipl)
|
|
{
|
|
qcache_t *prevqc;
|
|
struct pool_allocator *pa;
|
|
int qcache_idx_max;
|
|
int i;
|
|
|
|
KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
|
|
if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
|
|
qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
|
|
}
|
|
vm->vm_qcache_max = qcache_max;
|
|
pa = &vm->vm_qcache_allocator;
|
|
memset(pa, 0, sizeof(*pa));
|
|
pa->pa_alloc = qc_poolpage_alloc;
|
|
pa->pa_free = qc_poolpage_free;
|
|
pa->pa_pagesz = qc_poolpage_size(qcache_max);
|
|
|
|
qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
|
|
prevqc = NULL;
|
|
for (i = qcache_idx_max; i > 0; i--) {
|
|
qcache_t *qc = &vm->vm_qcache_store[i - 1];
|
|
size_t size = i << vm->vm_quantum_shift;
|
|
pool_cache_t pc;
|
|
|
|
qc->qc_vmem = vm;
|
|
snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
|
|
vm->vm_name, size);
|
|
|
|
pc = pool_cache_init(size,
|
|
ORDER2SIZE(vm->vm_quantum_shift), 0,
|
|
PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
|
|
qc->qc_name, pa, ipl, NULL, NULL, NULL);
|
|
|
|
KASSERT(pc);
|
|
|
|
qc->qc_cache = pc;
|
|
KASSERT(qc->qc_cache != NULL); /* XXX */
|
|
if (prevqc != NULL &&
|
|
qc->qc_cache->pc_pool.pr_itemsperpage ==
|
|
prevqc->qc_cache->pc_pool.pr_itemsperpage) {
|
|
pool_cache_destroy(qc->qc_cache);
|
|
vm->vm_qcache[i - 1] = prevqc;
|
|
continue;
|
|
}
|
|
qc->qc_cache->pc_pool.pr_qcache = qc;
|
|
vm->vm_qcache[i - 1] = qc;
|
|
prevqc = qc;
|
|
}
|
|
}
|
|
|
|
static void
|
|
qc_destroy(vmem_t *vm)
|
|
{
|
|
const qcache_t *prevqc;
|
|
int i;
|
|
int qcache_idx_max;
|
|
|
|
qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
|
|
prevqc = NULL;
|
|
for (i = 0; i < qcache_idx_max; i++) {
|
|
qcache_t *qc = vm->vm_qcache[i];
|
|
|
|
if (prevqc == qc) {
|
|
continue;
|
|
}
|
|
pool_cache_destroy(qc->qc_cache);
|
|
prevqc = qc;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(_KERNEL)
|
|
static void
|
|
vmem_bootstrap(void)
|
|
{
|
|
|
|
mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
|
|
mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
|
|
mutex_init(&vmem_btag_refill_lock, MUTEX_DEFAULT, IPL_VM);
|
|
|
|
while (static_bt_count-- > 0) {
|
|
bt_t *bt = &static_bts[static_bt_count];
|
|
LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
|
|
VMEM_EVCNT_INCR(static_bt_count);
|
|
vmem_btag_freelist_count++;
|
|
}
|
|
vmem_bootstrapped = TRUE;
|
|
}
|
|
|
|
void
|
|
vmem_subsystem_init(vmem_t *vm)
|
|
{
|
|
|
|
kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
|
|
0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
|
|
0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
|
|
IPL_VM);
|
|
|
|
kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
|
|
0, 0, PAGE_SIZE,
|
|
uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
|
|
0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
|
|
|
|
pool_init(&vmem_btag_pool, sizeof(bt_t), 0, 0, PR_PHINPAGE,
|
|
"vmembt", &pool_allocator_vmem_meta, IPL_VM);
|
|
}
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
static int
|
|
vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
|
|
int spanbttype)
|
|
{
|
|
bt_t *btspan;
|
|
bt_t *btfree;
|
|
|
|
KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
|
|
KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
|
|
KASSERT(spanbttype == BT_TYPE_SPAN ||
|
|
spanbttype == BT_TYPE_SPAN_STATIC);
|
|
|
|
btspan = bt_alloc(vm, flags);
|
|
if (btspan == NULL) {
|
|
return ENOMEM;
|
|
}
|
|
btfree = bt_alloc(vm, flags);
|
|
if (btfree == NULL) {
|
|
bt_free(vm, btspan);
|
|
return ENOMEM;
|
|
}
|
|
|
|
btspan->bt_type = spanbttype;
|
|
btspan->bt_start = addr;
|
|
btspan->bt_size = size;
|
|
|
|
btfree->bt_type = BT_TYPE_FREE;
|
|
btfree->bt_start = addr;
|
|
btfree->bt_size = size;
|
|
|
|
VMEM_LOCK(vm);
|
|
bt_insseg_tail(vm, btspan);
|
|
bt_insseg(vm, btfree, btspan);
|
|
bt_insfree(vm, btfree);
|
|
vm->vm_size += size;
|
|
VMEM_UNLOCK(vm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
vmem_destroy1(vmem_t *vm)
|
|
{
|
|
|
|
#if defined(QCACHE)
|
|
qc_destroy(vm);
|
|
#endif /* defined(QCACHE) */
|
|
if (vm->vm_hashlist != NULL) {
|
|
int i;
|
|
|
|
for (i = 0; i < vm->vm_hashsize; i++) {
|
|
bt_t *bt;
|
|
|
|
while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
|
|
KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
|
|
bt_free(vm, bt);
|
|
}
|
|
}
|
|
if (vm->vm_hashlist != &vm->vm_hash0) {
|
|
xfree(vm->vm_hashlist,
|
|
sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
|
|
}
|
|
}
|
|
|
|
bt_freetrim(vm, 0);
|
|
|
|
VMEM_CONDVAR_DESTROY(vm);
|
|
VMEM_LOCK_DESTROY(vm);
|
|
xfree(vm, sizeof(*vm));
|
|
}
|
|
|
|
static int
|
|
vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
|
|
{
|
|
vmem_addr_t addr;
|
|
int rc;
|
|
|
|
if (vm->vm_importfn == NULL) {
|
|
return EINVAL;
|
|
}
|
|
|
|
if (vm->vm_flags & VM_LARGEIMPORT) {
|
|
size *= 16;
|
|
}
|
|
|
|
if (vm->vm_flags & VM_XIMPORT) {
|
|
rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
|
|
&size, flags, &addr);
|
|
} else {
|
|
rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
|
|
}
|
|
if (rc) {
|
|
return ENOMEM;
|
|
}
|
|
|
|
if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
|
|
(*vm->vm_releasefn)(vm->vm_arg, addr, size);
|
|
return ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
|
|
{
|
|
bt_t *bt;
|
|
int i;
|
|
struct vmem_hashlist *newhashlist;
|
|
struct vmem_hashlist *oldhashlist;
|
|
size_t oldhashsize;
|
|
|
|
KASSERT(newhashsize > 0);
|
|
|
|
newhashlist =
|
|
xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
|
|
if (newhashlist == NULL) {
|
|
return ENOMEM;
|
|
}
|
|
for (i = 0; i < newhashsize; i++) {
|
|
LIST_INIT(&newhashlist[i]);
|
|
}
|
|
|
|
if (!VMEM_TRYLOCK(vm)) {
|
|
xfree(newhashlist,
|
|
sizeof(struct vmem_hashlist *) * newhashsize);
|
|
return EBUSY;
|
|
}
|
|
oldhashlist = vm->vm_hashlist;
|
|
oldhashsize = vm->vm_hashsize;
|
|
vm->vm_hashlist = newhashlist;
|
|
vm->vm_hashsize = newhashsize;
|
|
if (oldhashlist == NULL) {
|
|
VMEM_UNLOCK(vm);
|
|
return 0;
|
|
}
|
|
for (i = 0; i < oldhashsize; i++) {
|
|
while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
|
|
bt_rembusy(vm, bt); /* XXX */
|
|
bt_insbusy(vm, bt);
|
|
}
|
|
}
|
|
VMEM_UNLOCK(vm);
|
|
|
|
if (oldhashlist != &vm->vm_hash0) {
|
|
xfree(oldhashlist,
|
|
sizeof(struct vmem_hashlist *) * oldhashsize);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* vmem_fit: check if a bt can satisfy the given restrictions.
|
|
*
|
|
* it's a caller's responsibility to ensure the region is big enough
|
|
* before calling us.
|
|
*/
|
|
|
|
static int
|
|
vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
|
|
vmem_size_t phase, vmem_size_t nocross,
|
|
vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
|
|
{
|
|
vmem_addr_t start;
|
|
vmem_addr_t end;
|
|
|
|
KASSERT(size > 0);
|
|
KASSERT(bt->bt_size >= size); /* caller's responsibility */
|
|
|
|
/*
|
|
* XXX assumption: vmem_addr_t and vmem_size_t are
|
|
* unsigned integer of the same size.
|
|
*/
|
|
|
|
start = bt->bt_start;
|
|
if (start < minaddr) {
|
|
start = minaddr;
|
|
}
|
|
end = BT_END(bt);
|
|
if (end > maxaddr) {
|
|
end = maxaddr;
|
|
}
|
|
if (start > end) {
|
|
return ENOMEM;
|
|
}
|
|
|
|
start = VMEM_ALIGNUP(start - phase, align) + phase;
|
|
if (start < bt->bt_start) {
|
|
start += align;
|
|
}
|
|
if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
|
|
KASSERT(align < nocross);
|
|
start = VMEM_ALIGNUP(start - phase, nocross) + phase;
|
|
}
|
|
if (start <= end && end - start >= size - 1) {
|
|
KASSERT((start & (align - 1)) == phase);
|
|
KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
|
|
KASSERT(minaddr <= start);
|
|
KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
|
|
KASSERT(bt->bt_start <= start);
|
|
KASSERT(BT_END(bt) - start >= size - 1);
|
|
*addrp = start;
|
|
return 0;
|
|
}
|
|
return ENOMEM;
|
|
}
|
|
|
|
/* ---- vmem API */
|
|
|
|
/*
|
|
* vmem_create_internal: creates a vmem arena.
|
|
*/
|
|
|
|
vmem_t *
|
|
vmem_init(vmem_t *vm, const char *name,
|
|
vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
|
|
vmem_import_t *importfn, vmem_release_t *releasefn,
|
|
vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
|
|
{
|
|
int i;
|
|
|
|
KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
|
|
KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
|
|
KASSERT(quantum > 0);
|
|
|
|
#if defined(_KERNEL)
|
|
/* XXX: SMP, we get called early... */
|
|
if (!vmem_bootstrapped) {
|
|
vmem_bootstrap();
|
|
}
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
if (vm == NULL) {
|
|
vm = xmalloc(sizeof(*vm), flags);
|
|
}
|
|
if (vm == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
VMEM_CONDVAR_INIT(vm, "vmem");
|
|
VMEM_LOCK_INIT(vm, ipl);
|
|
vm->vm_flags = flags;
|
|
vm->vm_nfreetags = 0;
|
|
LIST_INIT(&vm->vm_freetags);
|
|
strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
|
|
vm->vm_quantum_mask = quantum - 1;
|
|
vm->vm_quantum_shift = SIZE2ORDER(quantum);
|
|
KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
|
|
vm->vm_importfn = importfn;
|
|
vm->vm_releasefn = releasefn;
|
|
vm->vm_arg = arg;
|
|
vm->vm_nbusytag = 0;
|
|
vm->vm_size = 0;
|
|
vm->vm_inuse = 0;
|
|
#if defined(QCACHE)
|
|
qc_init(vm, qcache_max, ipl);
|
|
#endif /* defined(QCACHE) */
|
|
|
|
TAILQ_INIT(&vm->vm_seglist);
|
|
for (i = 0; i < VMEM_MAXORDER; i++) {
|
|
LIST_INIT(&vm->vm_freelist[i]);
|
|
}
|
|
memset(&vm->vm_hash0, 0, sizeof(struct vmem_hashlist));
|
|
vm->vm_hashsize = 1;
|
|
vm->vm_hashlist = &vm->vm_hash0;
|
|
|
|
if (size != 0) {
|
|
if (vmem_add(vm, base, size, flags) != 0) {
|
|
vmem_destroy1(vm);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
if (flags & VM_BOOTSTRAP) {
|
|
bt_refill(vm, VM_NOSLEEP);
|
|
}
|
|
|
|
mutex_enter(&vmem_list_lock);
|
|
LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
|
|
mutex_exit(&vmem_list_lock);
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
return vm;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* vmem_create: create an arena.
|
|
*
|
|
* => must not be called from interrupt context.
|
|
*/
|
|
|
|
vmem_t *
|
|
vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
|
|
vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
|
|
vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
|
|
{
|
|
|
|
KASSERT((flags & (VM_XIMPORT)) == 0);
|
|
|
|
return vmem_init(NULL, name, base, size, quantum,
|
|
importfn, releasefn, source, qcache_max, flags, ipl);
|
|
}
|
|
|
|
/*
|
|
* vmem_xcreate: create an arena takes alternative import func.
|
|
*
|
|
* => must not be called from interrupt context.
|
|
*/
|
|
|
|
vmem_t *
|
|
vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
|
|
vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
|
|
vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
|
|
{
|
|
|
|
KASSERT((flags & (VM_XIMPORT)) == 0);
|
|
|
|
return vmem_init(NULL, name, base, size, quantum,
|
|
(vmem_import_t *)importfn, releasefn, source,
|
|
qcache_max, flags | VM_XIMPORT, ipl);
|
|
}
|
|
|
|
void
|
|
vmem_destroy(vmem_t *vm)
|
|
{
|
|
|
|
#if defined(_KERNEL)
|
|
mutex_enter(&vmem_list_lock);
|
|
LIST_REMOVE(vm, vm_alllist);
|
|
mutex_exit(&vmem_list_lock);
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
vmem_destroy1(vm);
|
|
}
|
|
|
|
vmem_size_t
|
|
vmem_roundup_size(vmem_t *vm, vmem_size_t size)
|
|
{
|
|
|
|
return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
|
|
}
|
|
|
|
/*
|
|
* vmem_alloc: allocate resource from the arena.
|
|
*/
|
|
|
|
int
|
|
vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
|
|
{
|
|
const vm_flag_t strat __diagused = flags & VM_FITMASK;
|
|
|
|
KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
|
|
KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
|
|
|
|
KASSERT(size > 0);
|
|
KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
|
|
if ((flags & VM_SLEEP) != 0) {
|
|
ASSERT_SLEEPABLE();
|
|
}
|
|
|
|
#if defined(QCACHE)
|
|
if (size <= vm->vm_qcache_max) {
|
|
void *p;
|
|
int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
|
|
qcache_t *qc = vm->vm_qcache[qidx - 1];
|
|
|
|
p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
|
|
if (addrp != NULL)
|
|
*addrp = (vmem_addr_t)p;
|
|
return (p == NULL) ? ENOMEM : 0;
|
|
}
|
|
#endif /* defined(QCACHE) */
|
|
|
|
return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
|
|
flags, addrp);
|
|
}
|
|
|
|
int
|
|
vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
|
|
const vmem_size_t phase, const vmem_size_t nocross,
|
|
const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
|
|
vmem_addr_t *addrp)
|
|
{
|
|
struct vmem_freelist *list;
|
|
struct vmem_freelist *first;
|
|
struct vmem_freelist *end;
|
|
bt_t *bt;
|
|
bt_t *btnew;
|
|
bt_t *btnew2;
|
|
const vmem_size_t size = vmem_roundup_size(vm, size0);
|
|
vm_flag_t strat = flags & VM_FITMASK;
|
|
vmem_addr_t start;
|
|
int rc;
|
|
|
|
KASSERT(size0 > 0);
|
|
KASSERT(size > 0);
|
|
KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
|
|
if ((flags & VM_SLEEP) != 0) {
|
|
ASSERT_SLEEPABLE();
|
|
}
|
|
KASSERT((align & vm->vm_quantum_mask) == 0);
|
|
KASSERT((align & (align - 1)) == 0);
|
|
KASSERT((phase & vm->vm_quantum_mask) == 0);
|
|
KASSERT((nocross & vm->vm_quantum_mask) == 0);
|
|
KASSERT((nocross & (nocross - 1)) == 0);
|
|
KASSERT((align == 0 && phase == 0) || phase < align);
|
|
KASSERT(nocross == 0 || nocross >= size);
|
|
KASSERT(minaddr <= maxaddr);
|
|
KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
|
|
|
|
if (align == 0) {
|
|
align = vm->vm_quantum_mask + 1;
|
|
}
|
|
|
|
/*
|
|
* allocate boundary tags before acquiring the vmem lock.
|
|
*/
|
|
btnew = bt_alloc(vm, flags);
|
|
if (btnew == NULL) {
|
|
return ENOMEM;
|
|
}
|
|
btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
|
|
if (btnew2 == NULL) {
|
|
bt_free(vm, btnew);
|
|
return ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* choose a free block from which we allocate.
|
|
*/
|
|
retry_strat:
|
|
first = bt_freehead_toalloc(vm, size, strat);
|
|
end = &vm->vm_freelist[VMEM_MAXORDER];
|
|
retry:
|
|
bt = NULL;
|
|
VMEM_LOCK(vm);
|
|
vmem_check(vm);
|
|
if (strat == VM_INSTANTFIT) {
|
|
/*
|
|
* just choose the first block which satisfies our restrictions.
|
|
*
|
|
* note that we don't need to check the size of the blocks
|
|
* because any blocks found on these list should be larger than
|
|
* the given size.
|
|
*/
|
|
for (list = first; list < end; list++) {
|
|
bt = LIST_FIRST(list);
|
|
if (bt != NULL) {
|
|
rc = vmem_fit(bt, size, align, phase,
|
|
nocross, minaddr, maxaddr, &start);
|
|
if (rc == 0) {
|
|
goto gotit;
|
|
}
|
|
/*
|
|
* don't bother to follow the bt_freelist link
|
|
* here. the list can be very long and we are
|
|
* told to run fast. blocks from the later free
|
|
* lists are larger and have better chances to
|
|
* satisfy our restrictions.
|
|
*/
|
|
}
|
|
}
|
|
} else { /* VM_BESTFIT */
|
|
/*
|
|
* we assume that, for space efficiency, it's better to
|
|
* allocate from a smaller block. thus we will start searching
|
|
* from the lower-order list than VM_INSTANTFIT.
|
|
* however, don't bother to find the smallest block in a free
|
|
* list because the list can be very long. we can revisit it
|
|
* if/when it turns out to be a problem.
|
|
*
|
|
* note that the 'first' list can contain blocks smaller than
|
|
* the requested size. thus we need to check bt_size.
|
|
*/
|
|
for (list = first; list < end; list++) {
|
|
LIST_FOREACH(bt, list, bt_freelist) {
|
|
if (bt->bt_size >= size) {
|
|
rc = vmem_fit(bt, size, align, phase,
|
|
nocross, minaddr, maxaddr, &start);
|
|
if (rc == 0) {
|
|
goto gotit;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
VMEM_UNLOCK(vm);
|
|
#if 1
|
|
if (strat == VM_INSTANTFIT) {
|
|
strat = VM_BESTFIT;
|
|
goto retry_strat;
|
|
}
|
|
#endif
|
|
if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
|
|
|
|
/*
|
|
* XXX should try to import a region large enough to
|
|
* satisfy restrictions?
|
|
*/
|
|
|
|
goto fail;
|
|
}
|
|
/* XXX eeek, minaddr & maxaddr not respected */
|
|
if (vmem_import(vm, size, flags) == 0) {
|
|
goto retry;
|
|
}
|
|
/* XXX */
|
|
|
|
if ((flags & VM_SLEEP) != 0) {
|
|
#if defined(_KERNEL)
|
|
mutex_spin_enter(&uvm_fpageqlock);
|
|
uvm_kick_pdaemon();
|
|
mutex_spin_exit(&uvm_fpageqlock);
|
|
#endif
|
|
VMEM_LOCK(vm);
|
|
VMEM_CONDVAR_WAIT(vm);
|
|
VMEM_UNLOCK(vm);
|
|
goto retry;
|
|
}
|
|
fail:
|
|
bt_free(vm, btnew);
|
|
bt_free(vm, btnew2);
|
|
return ENOMEM;
|
|
|
|
gotit:
|
|
KASSERT(bt->bt_type == BT_TYPE_FREE);
|
|
KASSERT(bt->bt_size >= size);
|
|
bt_remfree(vm, bt);
|
|
vmem_check(vm);
|
|
if (bt->bt_start != start) {
|
|
btnew2->bt_type = BT_TYPE_FREE;
|
|
btnew2->bt_start = bt->bt_start;
|
|
btnew2->bt_size = start - bt->bt_start;
|
|
bt->bt_start = start;
|
|
bt->bt_size -= btnew2->bt_size;
|
|
bt_insfree(vm, btnew2);
|
|
bt_insseg(vm, btnew2, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
|
|
btnew2 = NULL;
|
|
vmem_check(vm);
|
|
}
|
|
KASSERT(bt->bt_start == start);
|
|
if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
|
|
/* split */
|
|
btnew->bt_type = BT_TYPE_BUSY;
|
|
btnew->bt_start = bt->bt_start;
|
|
btnew->bt_size = size;
|
|
bt->bt_start = bt->bt_start + size;
|
|
bt->bt_size -= size;
|
|
bt_insfree(vm, bt);
|
|
bt_insseg(vm, btnew, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
|
|
bt_insbusy(vm, btnew);
|
|
vmem_check(vm);
|
|
VMEM_UNLOCK(vm);
|
|
} else {
|
|
bt->bt_type = BT_TYPE_BUSY;
|
|
bt_insbusy(vm, bt);
|
|
vmem_check(vm);
|
|
VMEM_UNLOCK(vm);
|
|
bt_free(vm, btnew);
|
|
btnew = bt;
|
|
}
|
|
if (btnew2 != NULL) {
|
|
bt_free(vm, btnew2);
|
|
}
|
|
KASSERT(btnew->bt_size >= size);
|
|
btnew->bt_type = BT_TYPE_BUSY;
|
|
|
|
if (addrp != NULL)
|
|
*addrp = btnew->bt_start;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* vmem_free: free the resource to the arena.
|
|
*/
|
|
|
|
void
|
|
vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
|
|
{
|
|
|
|
KASSERT(size > 0);
|
|
|
|
#if defined(QCACHE)
|
|
if (size <= vm->vm_qcache_max) {
|
|
int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
|
|
qcache_t *qc = vm->vm_qcache[qidx - 1];
|
|
|
|
pool_cache_put(qc->qc_cache, (void *)addr);
|
|
return;
|
|
}
|
|
#endif /* defined(QCACHE) */
|
|
|
|
vmem_xfree(vm, addr, size);
|
|
}
|
|
|
|
void
|
|
vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
|
|
{
|
|
bt_t *bt;
|
|
bt_t *t;
|
|
LIST_HEAD(, vmem_btag) tofree;
|
|
|
|
LIST_INIT(&tofree);
|
|
|
|
KASSERT(size > 0);
|
|
|
|
VMEM_LOCK(vm);
|
|
|
|
bt = bt_lookupbusy(vm, addr);
|
|
KASSERT(bt != NULL);
|
|
KASSERT(bt->bt_start == addr);
|
|
KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
|
|
bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
|
|
KASSERT(bt->bt_type == BT_TYPE_BUSY);
|
|
bt_rembusy(vm, bt);
|
|
bt->bt_type = BT_TYPE_FREE;
|
|
|
|
/* coalesce */
|
|
t = TAILQ_NEXT(bt, bt_seglist);
|
|
if (t != NULL && t->bt_type == BT_TYPE_FREE) {
|
|
KASSERT(BT_END(bt) < t->bt_start); /* YYY */
|
|
bt_remfree(vm, t);
|
|
bt_remseg(vm, t);
|
|
bt->bt_size += t->bt_size;
|
|
LIST_INSERT_HEAD(&tofree, t, bt_freelist);
|
|
}
|
|
t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
|
|
if (t != NULL && t->bt_type == BT_TYPE_FREE) {
|
|
KASSERT(BT_END(t) < bt->bt_start); /* YYY */
|
|
bt_remfree(vm, t);
|
|
bt_remseg(vm, t);
|
|
bt->bt_size += t->bt_size;
|
|
bt->bt_start = t->bt_start;
|
|
LIST_INSERT_HEAD(&tofree, t, bt_freelist);
|
|
}
|
|
|
|
t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
|
|
KASSERT(t != NULL);
|
|
KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
|
|
if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
|
|
t->bt_size == bt->bt_size) {
|
|
vmem_addr_t spanaddr;
|
|
vmem_size_t spansize;
|
|
|
|
KASSERT(t->bt_start == bt->bt_start);
|
|
spanaddr = bt->bt_start;
|
|
spansize = bt->bt_size;
|
|
bt_remseg(vm, bt);
|
|
LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
|
|
bt_remseg(vm, t);
|
|
LIST_INSERT_HEAD(&tofree, t, bt_freelist);
|
|
vm->vm_size -= spansize;
|
|
VMEM_CONDVAR_BROADCAST(vm);
|
|
VMEM_UNLOCK(vm);
|
|
(*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
|
|
} else {
|
|
bt_insfree(vm, bt);
|
|
VMEM_CONDVAR_BROADCAST(vm);
|
|
VMEM_UNLOCK(vm);
|
|
}
|
|
|
|
while (!LIST_EMPTY(&tofree)) {
|
|
t = LIST_FIRST(&tofree);
|
|
LIST_REMOVE(t, bt_freelist);
|
|
bt_free(vm, t);
|
|
}
|
|
|
|
bt_freetrim(vm, BT_MAXFREE);
|
|
}
|
|
|
|
/*
|
|
* vmem_add:
|
|
*
|
|
* => caller must ensure appropriate spl,
|
|
* if the arena can be accessed from interrupt context.
|
|
*/
|
|
|
|
int
|
|
vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
|
|
{
|
|
|
|
return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
|
|
}
|
|
|
|
/*
|
|
* vmem_size: information about arenas size
|
|
*
|
|
* => return free/allocated size in arena
|
|
*/
|
|
vmem_size_t
|
|
vmem_size(vmem_t *vm, int typemask)
|
|
{
|
|
|
|
switch (typemask) {
|
|
case VMEM_ALLOC:
|
|
return vm->vm_inuse;
|
|
case VMEM_FREE:
|
|
return vm->vm_size - vm->vm_inuse;
|
|
case VMEM_FREE|VMEM_ALLOC:
|
|
return vm->vm_size;
|
|
default:
|
|
panic("vmem_size");
|
|
}
|
|
}
|
|
|
|
/* ---- rehash */
|
|
|
|
#if defined(_KERNEL)
|
|
static struct callout vmem_rehash_ch;
|
|
static int vmem_rehash_interval;
|
|
static struct workqueue *vmem_rehash_wq;
|
|
static struct work vmem_rehash_wk;
|
|
|
|
static void
|
|
vmem_rehash_all(struct work *wk, void *dummy)
|
|
{
|
|
vmem_t *vm;
|
|
|
|
KASSERT(wk == &vmem_rehash_wk);
|
|
mutex_enter(&vmem_list_lock);
|
|
LIST_FOREACH(vm, &vmem_list, vm_alllist) {
|
|
size_t desired;
|
|
size_t current;
|
|
|
|
if (!VMEM_TRYLOCK(vm)) {
|
|
continue;
|
|
}
|
|
desired = vm->vm_nbusytag;
|
|
current = vm->vm_hashsize;
|
|
VMEM_UNLOCK(vm);
|
|
|
|
if (desired > VMEM_HASHSIZE_MAX) {
|
|
desired = VMEM_HASHSIZE_MAX;
|
|
} else if (desired < VMEM_HASHSIZE_MIN) {
|
|
desired = VMEM_HASHSIZE_MIN;
|
|
}
|
|
if (desired > current * 2 || desired * 2 < current) {
|
|
vmem_rehash(vm, desired, VM_NOSLEEP);
|
|
}
|
|
}
|
|
mutex_exit(&vmem_list_lock);
|
|
|
|
callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
|
|
}
|
|
|
|
static void
|
|
vmem_rehash_all_kick(void *dummy)
|
|
{
|
|
|
|
workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
|
|
}
|
|
|
|
void
|
|
vmem_rehash_start(void)
|
|
{
|
|
int error;
|
|
|
|
error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
|
|
vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
|
|
if (error) {
|
|
panic("%s: workqueue_create %d\n", __func__, error);
|
|
}
|
|
callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
|
|
callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
|
|
|
|
vmem_rehash_interval = hz * 10;
|
|
callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
|
|
}
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
/* ---- debug */
|
|
|
|
#if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
|
|
|
|
static void bt_dump(const bt_t *, void (*)(const char *, ...)
|
|
__printflike(1, 2));
|
|
|
|
static const char *
|
|
bt_type_string(int type)
|
|
{
|
|
static const char * const table[] = {
|
|
[BT_TYPE_BUSY] = "busy",
|
|
[BT_TYPE_FREE] = "free",
|
|
[BT_TYPE_SPAN] = "span",
|
|
[BT_TYPE_SPAN_STATIC] = "static span",
|
|
};
|
|
|
|
if (type >= __arraycount(table)) {
|
|
return "BOGUS";
|
|
}
|
|
return table[type];
|
|
}
|
|
|
|
static void
|
|
bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
|
|
{
|
|
|
|
(*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
|
|
bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
|
|
bt->bt_type, bt_type_string(bt->bt_type));
|
|
}
|
|
|
|
static void
|
|
vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2))
|
|
{
|
|
const bt_t *bt;
|
|
int i;
|
|
|
|
(*pr)("vmem %p '%s'\n", vm, vm->vm_name);
|
|
TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
|
|
bt_dump(bt, pr);
|
|
}
|
|
|
|
for (i = 0; i < VMEM_MAXORDER; i++) {
|
|
const struct vmem_freelist *fl = &vm->vm_freelist[i];
|
|
|
|
if (LIST_EMPTY(fl)) {
|
|
continue;
|
|
}
|
|
|
|
(*pr)("freelist[%d]\n", i);
|
|
LIST_FOREACH(bt, fl, bt_freelist) {
|
|
bt_dump(bt, pr);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
|
|
|
|
#if defined(DDB)
|
|
static bt_t *
|
|
vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
|
|
{
|
|
bt_t *bt;
|
|
|
|
TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
|
|
if (BT_ISSPAN_P(bt)) {
|
|
continue;
|
|
}
|
|
if (bt->bt_start <= addr && addr <= BT_END(bt)) {
|
|
return bt;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
|
|
{
|
|
vmem_t *vm;
|
|
|
|
LIST_FOREACH(vm, &vmem_list, vm_alllist) {
|
|
bt_t *bt;
|
|
|
|
bt = vmem_whatis_lookup(vm, addr);
|
|
if (bt == NULL) {
|
|
continue;
|
|
}
|
|
(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
|
|
(void *)addr, (void *)bt->bt_start,
|
|
(size_t)(addr - bt->bt_start), vm->vm_name,
|
|
(bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
|
|
}
|
|
}
|
|
|
|
void
|
|
vmem_printall(const char *modif, void (*pr)(const char *, ...))
|
|
{
|
|
const vmem_t *vm;
|
|
|
|
LIST_FOREACH(vm, &vmem_list, vm_alllist) {
|
|
vmem_dump(vm, pr);
|
|
}
|
|
}
|
|
|
|
void
|
|
vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
|
|
{
|
|
const vmem_t *vm = (const void *)addr;
|
|
|
|
vmem_dump(vm, pr);
|
|
}
|
|
#endif /* defined(DDB) */
|
|
|
|
#if defined(_KERNEL)
|
|
#define vmem_printf printf
|
|
#else
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
|
|
static void
|
|
vmem_printf(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
vprintf(fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
#endif
|
|
|
|
#if defined(VMEM_SANITY)
|
|
|
|
static bool
|
|
vmem_check_sanity(vmem_t *vm)
|
|
{
|
|
const bt_t *bt, *bt2;
|
|
|
|
KASSERT(vm != NULL);
|
|
|
|
TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
|
|
if (bt->bt_start > BT_END(bt)) {
|
|
printf("corrupted tag\n");
|
|
bt_dump(bt, vmem_printf);
|
|
return false;
|
|
}
|
|
}
|
|
TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
|
|
TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
|
|
if (bt == bt2) {
|
|
continue;
|
|
}
|
|
if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
|
|
continue;
|
|
}
|
|
if (bt->bt_start <= BT_END(bt2) &&
|
|
bt2->bt_start <= BT_END(bt)) {
|
|
printf("overwrapped tags\n");
|
|
bt_dump(bt, vmem_printf);
|
|
bt_dump(bt2, vmem_printf);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
vmem_check(vmem_t *vm)
|
|
{
|
|
|
|
if (!vmem_check_sanity(vm)) {
|
|
panic("insanity vmem %p", vm);
|
|
}
|
|
}
|
|
|
|
#endif /* defined(VMEM_SANITY) */
|
|
|
|
#if defined(UNITTEST)
|
|
int
|
|
main(void)
|
|
{
|
|
int rc;
|
|
vmem_t *vm;
|
|
vmem_addr_t p;
|
|
struct reg {
|
|
vmem_addr_t p;
|
|
vmem_size_t sz;
|
|
bool x;
|
|
} *reg = NULL;
|
|
int nreg = 0;
|
|
int nalloc = 0;
|
|
int nfree = 0;
|
|
vmem_size_t total = 0;
|
|
#if 1
|
|
vm_flag_t strat = VM_INSTANTFIT;
|
|
#else
|
|
vm_flag_t strat = VM_BESTFIT;
|
|
#endif
|
|
|
|
vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
|
|
#ifdef _KERNEL
|
|
IPL_NONE
|
|
#else
|
|
0
|
|
#endif
|
|
);
|
|
if (vm == NULL) {
|
|
printf("vmem_create\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
vmem_dump(vm, vmem_printf);
|
|
|
|
rc = vmem_add(vm, 0, 50, VM_SLEEP);
|
|
assert(rc == 0);
|
|
rc = vmem_add(vm, 100, 200, VM_SLEEP);
|
|
assert(rc == 0);
|
|
rc = vmem_add(vm, 2000, 1, VM_SLEEP);
|
|
assert(rc == 0);
|
|
rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
|
|
assert(rc == 0);
|
|
rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
|
|
assert(rc == 0);
|
|
rc = vmem_add(vm, 500, 1000, VM_SLEEP);
|
|
assert(rc == 0);
|
|
rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
|
|
assert(rc == 0);
|
|
rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
|
|
0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
|
|
assert(rc != 0);
|
|
rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
|
|
assert(rc == 0 && p == 0);
|
|
vmem_xfree(vm, p, 50);
|
|
rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
|
|
assert(rc == 0 && p == 0);
|
|
rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
|
|
0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
|
|
assert(rc != 0);
|
|
rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
|
|
0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
|
|
assert(rc != 0);
|
|
rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
|
|
0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
|
|
assert(rc == 0);
|
|
vmem_dump(vm, vmem_printf);
|
|
for (;;) {
|
|
struct reg *r;
|
|
int t = rand() % 100;
|
|
|
|
if (t > 45) {
|
|
/* alloc */
|
|
vmem_size_t sz = rand() % 500 + 1;
|
|
bool x;
|
|
vmem_size_t align, phase, nocross;
|
|
vmem_addr_t minaddr, maxaddr;
|
|
|
|
if (t > 70) {
|
|
x = true;
|
|
/* XXX */
|
|
align = 1 << (rand() % 15);
|
|
phase = rand() % 65536;
|
|
nocross = 1 << (rand() % 15);
|
|
if (align <= phase) {
|
|
phase = 0;
|
|
}
|
|
if (VMEM_CROSS_P(phase, phase + sz - 1,
|
|
nocross)) {
|
|
nocross = 0;
|
|
}
|
|
do {
|
|
minaddr = rand() % 50000;
|
|
maxaddr = rand() % 70000;
|
|
} while (minaddr > maxaddr);
|
|
printf("=== xalloc %" PRIu64
|
|
" align=%" PRIu64 ", phase=%" PRIu64
|
|
", nocross=%" PRIu64 ", min=%" PRIu64
|
|
", max=%" PRIu64 "\n",
|
|
(uint64_t)sz,
|
|
(uint64_t)align,
|
|
(uint64_t)phase,
|
|
(uint64_t)nocross,
|
|
(uint64_t)minaddr,
|
|
(uint64_t)maxaddr);
|
|
rc = vmem_xalloc(vm, sz, align, phase, nocross,
|
|
minaddr, maxaddr, strat|VM_SLEEP, &p);
|
|
} else {
|
|
x = false;
|
|
printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
|
|
rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
|
|
}
|
|
printf("-> %" PRIu64 "\n", (uint64_t)p);
|
|
vmem_dump(vm, vmem_printf);
|
|
if (rc != 0) {
|
|
if (x) {
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
nreg++;
|
|
reg = realloc(reg, sizeof(*reg) * nreg);
|
|
r = ®[nreg - 1];
|
|
r->p = p;
|
|
r->sz = sz;
|
|
r->x = x;
|
|
total += sz;
|
|
nalloc++;
|
|
} else if (nreg != 0) {
|
|
/* free */
|
|
r = ®[rand() % nreg];
|
|
printf("=== free %" PRIu64 ", %" PRIu64 "\n",
|
|
(uint64_t)r->p, (uint64_t)r->sz);
|
|
if (r->x) {
|
|
vmem_xfree(vm, r->p, r->sz);
|
|
} else {
|
|
vmem_free(vm, r->p, r->sz);
|
|
}
|
|
total -= r->sz;
|
|
vmem_dump(vm, vmem_printf);
|
|
*r = reg[nreg - 1];
|
|
nreg--;
|
|
nfree++;
|
|
}
|
|
printf("total=%" PRIu64 "\n", (uint64_t)total);
|
|
}
|
|
fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
|
|
(uint64_t)total, nalloc, nfree);
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
#endif /* defined(UNITTEST) */
|