47869c118a
PR kern/48592 from Kengo NAKAHARA.
507 lines
10 KiB
C
507 lines
10 KiB
C
/* $NetBSD: subr_cpufreq.c,v 1.9 2014/02/12 20:20:15 martin Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2011 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jukka Ruohonen.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: subr_cpufreq.c,v 1.9 2014/02/12 20:20:15 martin Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/cpufreq.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/time.h>
|
|
#include <sys/xcall.h>
|
|
|
|
static int cpufreq_latency(void);
|
|
static uint32_t cpufreq_get_max(void);
|
|
static uint32_t cpufreq_get_min(void);
|
|
static uint32_t cpufreq_get_raw(struct cpu_info *);
|
|
static void cpufreq_get_state_raw(uint32_t, struct cpufreq_state *);
|
|
static void cpufreq_set_raw(struct cpu_info *, uint32_t);
|
|
static void cpufreq_set_all_raw(uint32_t);
|
|
|
|
static kmutex_t cpufreq_lock __cacheline_aligned;
|
|
static struct cpufreq *cf_backend __read_mostly = NULL;
|
|
|
|
void
|
|
cpufreq_init(void)
|
|
{
|
|
|
|
mutex_init(&cpufreq_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
cf_backend = kmem_zalloc(sizeof(*cf_backend), KM_SLEEP);
|
|
}
|
|
|
|
int
|
|
cpufreq_register(struct cpufreq *cf)
|
|
{
|
|
uint32_t c, i, j, k, m;
|
|
int rv;
|
|
|
|
if (cold != 0)
|
|
return EBUSY;
|
|
|
|
KASSERT(cf != NULL);
|
|
KASSERT(cf_backend != NULL);
|
|
KASSERT(cf->cf_get_freq != NULL);
|
|
KASSERT(cf->cf_set_freq != NULL);
|
|
KASSERT(cf->cf_state_count > 0);
|
|
KASSERT(cf->cf_state_count < CPUFREQ_STATE_MAX);
|
|
|
|
mutex_enter(&cpufreq_lock);
|
|
|
|
if (cf_backend->cf_init != false) {
|
|
mutex_exit(&cpufreq_lock);
|
|
return EALREADY;
|
|
}
|
|
|
|
cf_backend->cf_init = true;
|
|
cf_backend->cf_mp = cf->cf_mp;
|
|
cf_backend->cf_cookie = cf->cf_cookie;
|
|
cf_backend->cf_get_freq = cf->cf_get_freq;
|
|
cf_backend->cf_set_freq = cf->cf_set_freq;
|
|
|
|
(void)strlcpy(cf_backend->cf_name, cf->cf_name, sizeof(cf->cf_name));
|
|
|
|
/*
|
|
* Sanity check the values and verify descending order.
|
|
*/
|
|
for (c = i = 0; i < cf->cf_state_count; i++) {
|
|
|
|
CTASSERT(CPUFREQ_STATE_ENABLED != 0);
|
|
CTASSERT(CPUFREQ_STATE_DISABLED != 0);
|
|
|
|
if (cf->cf_state[i].cfs_freq == 0)
|
|
continue;
|
|
|
|
if (cf->cf_state[i].cfs_freq > 9999 &&
|
|
cf->cf_state[i].cfs_freq != CPUFREQ_STATE_ENABLED &&
|
|
cf->cf_state[i].cfs_freq != CPUFREQ_STATE_DISABLED)
|
|
continue;
|
|
|
|
for (j = k = 0; j < i; j++) {
|
|
|
|
if (cf->cf_state[i].cfs_freq >=
|
|
cf->cf_state[j].cfs_freq) {
|
|
k = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (k != 0)
|
|
continue;
|
|
|
|
cf_backend->cf_state[c].cfs_index = c;
|
|
cf_backend->cf_state[c].cfs_freq = cf->cf_state[i].cfs_freq;
|
|
cf_backend->cf_state[c].cfs_power = cf->cf_state[i].cfs_power;
|
|
|
|
c++;
|
|
}
|
|
|
|
cf_backend->cf_state_count = c;
|
|
|
|
if (cf_backend->cf_state_count == 0) {
|
|
mutex_exit(&cpufreq_lock);
|
|
cpufreq_deregister();
|
|
return EINVAL;
|
|
}
|
|
|
|
rv = cpufreq_latency();
|
|
|
|
if (rv != 0) {
|
|
mutex_exit(&cpufreq_lock);
|
|
cpufreq_deregister();
|
|
return rv;
|
|
}
|
|
|
|
m = cpufreq_get_max();
|
|
cpufreq_set_all_raw(m);
|
|
mutex_exit(&cpufreq_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
cpufreq_deregister(void)
|
|
{
|
|
|
|
mutex_enter(&cpufreq_lock);
|
|
memset(cf_backend, 0, sizeof(*cf_backend));
|
|
mutex_exit(&cpufreq_lock);
|
|
}
|
|
|
|
static int
|
|
cpufreq_latency(void)
|
|
{
|
|
struct cpufreq *cf = cf_backend;
|
|
struct timespec nta, ntb;
|
|
const uint32_t n = 10;
|
|
uint32_t i, j, l, m;
|
|
uint64_t s;
|
|
|
|
l = cpufreq_get_min();
|
|
m = cpufreq_get_max();
|
|
|
|
/*
|
|
* For each state, sample the average transition
|
|
* latency required to set the state for all CPUs.
|
|
*/
|
|
for (i = 0; i < cf->cf_state_count; i++) {
|
|
|
|
for (s = 0, j = 0; j < n; j++) {
|
|
|
|
/*
|
|
* Attempt to exclude possible
|
|
* caching done by the backend.
|
|
*/
|
|
if (i == 0)
|
|
cpufreq_set_all_raw(l);
|
|
else {
|
|
cpufreq_set_all_raw(m);
|
|
}
|
|
|
|
nanotime(&nta);
|
|
cpufreq_set_all_raw(cf->cf_state[i].cfs_freq);
|
|
nanotime(&ntb);
|
|
timespecsub(&ntb, &nta, &ntb);
|
|
|
|
if (ntb.tv_sec != 0 ||
|
|
ntb.tv_nsec > CPUFREQ_LATENCY_MAX)
|
|
continue;
|
|
|
|
if (s >= UINT64_MAX - CPUFREQ_LATENCY_MAX)
|
|
break;
|
|
|
|
/* Convert to microseconds to prevent overflow */
|
|
s += ntb.tv_nsec / 1000;
|
|
}
|
|
|
|
/*
|
|
* Consider the backend unsuitable if
|
|
* the transition latency was too high.
|
|
*/
|
|
if (s == 0)
|
|
return EMSGSIZE;
|
|
|
|
cf->cf_state[i].cfs_latency = s / n;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
cpufreq_suspend(struct cpu_info *ci)
|
|
{
|
|
struct cpufreq *cf = cf_backend;
|
|
uint32_t l, s;
|
|
|
|
mutex_enter(&cpufreq_lock);
|
|
|
|
if (cf->cf_init != true) {
|
|
mutex_exit(&cpufreq_lock);
|
|
return;
|
|
}
|
|
|
|
l = cpufreq_get_min();
|
|
s = cpufreq_get_raw(ci);
|
|
|
|
cpufreq_set_raw(ci, l);
|
|
cf->cf_state_saved = s;
|
|
|
|
mutex_exit(&cpufreq_lock);
|
|
}
|
|
|
|
void
|
|
cpufreq_resume(struct cpu_info *ci)
|
|
{
|
|
struct cpufreq *cf = cf_backend;
|
|
|
|
mutex_enter(&cpufreq_lock);
|
|
|
|
if (cf->cf_init != true || cf->cf_state_saved == 0) {
|
|
mutex_exit(&cpufreq_lock);
|
|
return;
|
|
}
|
|
|
|
cpufreq_set_raw(ci, cf->cf_state_saved);
|
|
mutex_exit(&cpufreq_lock);
|
|
}
|
|
|
|
uint32_t
|
|
cpufreq_get(struct cpu_info *ci)
|
|
{
|
|
struct cpufreq *cf = cf_backend;
|
|
uint32_t freq;
|
|
|
|
mutex_enter(&cpufreq_lock);
|
|
|
|
if (cf->cf_init != true) {
|
|
mutex_exit(&cpufreq_lock);
|
|
return 0;
|
|
}
|
|
|
|
freq = cpufreq_get_raw(ci);
|
|
mutex_exit(&cpufreq_lock);
|
|
|
|
return freq;
|
|
}
|
|
|
|
static uint32_t
|
|
cpufreq_get_max(void)
|
|
{
|
|
struct cpufreq *cf = cf_backend;
|
|
|
|
KASSERT(cf->cf_init != false);
|
|
KASSERT(mutex_owned(&cpufreq_lock) != 0);
|
|
|
|
return cf->cf_state[0].cfs_freq;
|
|
}
|
|
|
|
static uint32_t
|
|
cpufreq_get_min(void)
|
|
{
|
|
struct cpufreq *cf = cf_backend;
|
|
|
|
KASSERT(cf->cf_init != false);
|
|
KASSERT(mutex_owned(&cpufreq_lock) != 0);
|
|
|
|
return cf->cf_state[cf->cf_state_count - 1].cfs_freq;
|
|
}
|
|
|
|
static uint32_t
|
|
cpufreq_get_raw(struct cpu_info *ci)
|
|
{
|
|
struct cpufreq *cf = cf_backend;
|
|
uint32_t freq = 0;
|
|
uint64_t xc;
|
|
|
|
KASSERT(cf->cf_init != false);
|
|
KASSERT(mutex_owned(&cpufreq_lock) != 0);
|
|
|
|
xc = xc_unicast(0, (*cf->cf_get_freq), cf->cf_cookie, &freq, ci);
|
|
xc_wait(xc);
|
|
|
|
return freq;
|
|
}
|
|
|
|
int
|
|
cpufreq_get_backend(struct cpufreq *dst)
|
|
{
|
|
struct cpufreq *cf = cf_backend;
|
|
|
|
mutex_enter(&cpufreq_lock);
|
|
|
|
if (cf->cf_init != true || dst == NULL) {
|
|
mutex_exit(&cpufreq_lock);
|
|
return ENODEV;
|
|
}
|
|
|
|
memcpy(dst, cf, sizeof(*cf));
|
|
mutex_exit(&cpufreq_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
cpufreq_get_state(uint32_t freq, struct cpufreq_state *cfs)
|
|
{
|
|
struct cpufreq *cf = cf_backend;
|
|
|
|
mutex_enter(&cpufreq_lock);
|
|
|
|
if (cf->cf_init != true || cfs == NULL) {
|
|
mutex_exit(&cpufreq_lock);
|
|
return ENODEV;
|
|
}
|
|
|
|
cpufreq_get_state_raw(freq, cfs);
|
|
mutex_exit(&cpufreq_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
cpufreq_get_state_index(uint32_t index, struct cpufreq_state *cfs)
|
|
{
|
|
struct cpufreq *cf = cf_backend;
|
|
|
|
mutex_enter(&cpufreq_lock);
|
|
|
|
if (cf->cf_init != true || cfs == NULL) {
|
|
mutex_exit(&cpufreq_lock);
|
|
return ENODEV;
|
|
}
|
|
|
|
if (index >= cf->cf_state_count) {
|
|
mutex_exit(&cpufreq_lock);
|
|
return EINVAL;
|
|
}
|
|
|
|
memcpy(cfs, &cf->cf_state[index], sizeof(*cfs));
|
|
mutex_exit(&cpufreq_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
cpufreq_get_state_raw(uint32_t freq, struct cpufreq_state *cfs)
|
|
{
|
|
struct cpufreq *cf = cf_backend;
|
|
uint32_t f, hi, i = 0, lo = 0;
|
|
|
|
KASSERT(mutex_owned(&cpufreq_lock) != 0);
|
|
KASSERT(cf->cf_init != false && cfs != NULL);
|
|
|
|
hi = cf->cf_state_count;
|
|
|
|
while (lo < hi) {
|
|
|
|
i = (lo + hi) >> 1;
|
|
f = cf->cf_state[i].cfs_freq;
|
|
|
|
if (freq == f)
|
|
break;
|
|
else if (freq > f)
|
|
hi = i;
|
|
else {
|
|
lo = i + 1;
|
|
}
|
|
}
|
|
|
|
memcpy(cfs, &cf->cf_state[i], sizeof(*cfs));
|
|
}
|
|
|
|
void
|
|
cpufreq_set(struct cpu_info *ci, uint32_t freq)
|
|
{
|
|
struct cpufreq *cf = cf_backend;
|
|
|
|
mutex_enter(&cpufreq_lock);
|
|
|
|
if (__predict_false(cf->cf_init != true)) {
|
|
mutex_exit(&cpufreq_lock);
|
|
return;
|
|
}
|
|
|
|
cpufreq_set_raw(ci, freq);
|
|
mutex_exit(&cpufreq_lock);
|
|
}
|
|
|
|
static void
|
|
cpufreq_set_raw(struct cpu_info *ci, uint32_t freq)
|
|
{
|
|
struct cpufreq *cf = cf_backend;
|
|
uint64_t xc;
|
|
|
|
KASSERT(cf->cf_init != false);
|
|
KASSERT(mutex_owned(&cpufreq_lock) != 0);
|
|
|
|
xc = xc_unicast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq, ci);
|
|
xc_wait(xc);
|
|
}
|
|
|
|
void
|
|
cpufreq_set_all(uint32_t freq)
|
|
{
|
|
struct cpufreq *cf = cf_backend;
|
|
|
|
mutex_enter(&cpufreq_lock);
|
|
|
|
if (__predict_false(cf->cf_init != true)) {
|
|
mutex_exit(&cpufreq_lock);
|
|
return;
|
|
}
|
|
|
|
cpufreq_set_all_raw(freq);
|
|
mutex_exit(&cpufreq_lock);
|
|
}
|
|
|
|
static void
|
|
cpufreq_set_all_raw(uint32_t freq)
|
|
{
|
|
struct cpufreq *cf = cf_backend;
|
|
uint64_t xc;
|
|
|
|
KASSERT(cf->cf_init != false);
|
|
KASSERT(mutex_owned(&cpufreq_lock) != 0);
|
|
|
|
xc = xc_broadcast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq);
|
|
xc_wait(xc);
|
|
}
|
|
|
|
#ifdef notyet
|
|
void
|
|
cpufreq_set_higher(struct cpu_info *ci)
|
|
{
|
|
cpufreq_set_step(ci, -1);
|
|
}
|
|
|
|
void
|
|
cpufreq_set_lower(struct cpu_info *ci)
|
|
{
|
|
cpufreq_set_step(ci, 1);
|
|
}
|
|
|
|
static void
|
|
cpufreq_set_step(struct cpu_info *ci, int32_t step)
|
|
{
|
|
struct cpufreq *cf = cf_backend;
|
|
struct cpufreq_state cfs;
|
|
uint32_t freq;
|
|
int32_t index;
|
|
|
|
mutex_enter(&cpufreq_lock);
|
|
|
|
if (__predict_false(cf->cf_init != true)) {
|
|
mutex_exit(&cpufreq_lock);
|
|
return;
|
|
}
|
|
|
|
freq = cpufreq_get_raw(ci);
|
|
|
|
if (__predict_false(freq == 0)) {
|
|
mutex_exit(&cpufreq_lock);
|
|
return;
|
|
}
|
|
|
|
cpufreq_get_state_raw(freq, &cfs);
|
|
index = cfs.cfs_index + step;
|
|
|
|
if (index < 0 || index >= (int32_t)cf->cf_state_count) {
|
|
mutex_exit(&cpufreq_lock);
|
|
return;
|
|
}
|
|
|
|
cpufreq_set_raw(ci, cf->cf_state[index].cfs_freq);
|
|
mutex_exit(&cpufreq_lock);
|
|
}
|
|
#endif
|