NetBSD/sys/net/if.c

1811 lines
42 KiB
C

/* $NetBSD: if.c,v 1.153 2005/01/24 21:25:09 matt Exp $ */
/*-
* Copyright (c) 1999, 2000, 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by William Studenmund and Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1980, 1986, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)if.c 8.5 (Berkeley) 1/9/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if.c,v 1.153 2005/01/24 21:25:09 matt Exp $");
#include "opt_inet.h"
#include "opt_compat_linux.h"
#include "opt_compat_svr4.h"
#include "opt_compat_ultrix.h"
#include "opt_compat_43.h"
#include "opt_atalk.h"
#include "opt_ccitt.h"
#include "opt_natm.h"
#include "opt_pfil_hooks.h"
#include <sys/param.h>
#include <sys/mbuf.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/kernel.h>
#include <sys/ioctl.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net80211/ieee80211.h>
#include <net80211/ieee80211_ioctl.h>
#include <net/if_types.h>
#include <net/radix.h>
#include <net/route.h>
#include <net/netisr.h>
#ifdef NETATALK
#include <netatalk/at_extern.h>
#include <netatalk/at.h>
#endif
#include <net/pfil.h>
#ifdef INET6
#include <netinet/in.h>
#include <netinet6/in6_var.h>
#include <netinet6/nd6.h>
#endif
MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
int ifqmaxlen = IFQ_MAXLEN;
struct callout if_slowtimo_ch;
int netisr; /* scheduling bits for network */
int if_rt_walktree __P((struct radix_node *, void *));
struct if_clone *if_clone_lookup __P((const char *, int *));
int if_clone_list __P((struct if_clonereq *));
LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
int if_cloners_count;
#ifdef PFIL_HOOKS
struct pfil_head if_pfil; /* packet filtering hook for interfaces */
#endif
#if defined(INET) || defined(INET6) || defined(NETATALK) || defined(NS) || \
defined(ISO) || defined(CCITT) || defined(NATM)
static void if_detach_queues __P((struct ifnet *, struct ifqueue *));
#endif
/*
* Network interface utility routines.
*
* Routines with ifa_ifwith* names take sockaddr *'s as
* parameters.
*/
void
ifinit()
{
callout_init(&if_slowtimo_ch);
if_slowtimo(NULL);
#ifdef PFIL_HOOKS
if_pfil.ph_type = PFIL_TYPE_IFNET;
if_pfil.ph_ifnet = NULL;
if (pfil_head_register(&if_pfil) != 0)
printf("WARNING: unable to register pfil hook\n");
#endif
}
/*
* Null routines used while an interface is going away. These routines
* just return an error.
*/
int
if_nulloutput(ifp, m, so, rt)
struct ifnet *ifp;
struct mbuf *m;
struct sockaddr *so;
struct rtentry *rt;
{
return (ENXIO);
}
void
if_nullinput(ifp, m)
struct ifnet *ifp;
struct mbuf *m;
{
/* Nothing. */
}
void
if_nullstart(ifp)
struct ifnet *ifp;
{
/* Nothing. */
}
int
if_nullioctl(ifp, cmd, data)
struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
return (ENXIO);
}
int
if_nullinit(ifp)
struct ifnet *ifp;
{
return (ENXIO);
}
void
if_nullstop(ifp, disable)
struct ifnet *ifp;
int disable;
{
/* Nothing. */
}
void
if_nullwatchdog(ifp)
struct ifnet *ifp;
{
/* Nothing. */
}
void
if_nulldrain(ifp)
struct ifnet *ifp;
{
/* Nothing. */
}
static u_int if_index = 1;
struct ifnet_head ifnet;
size_t if_indexlim = 0;
struct ifaddr **ifnet_addrs = NULL;
struct ifnet **ifindex2ifnet = NULL;
struct ifnet *lo0ifp;
/*
* Allocate the link level name for the specified interface. This
* is an attachment helper. It must be called after ifp->if_addrlen
* is initialized, which may not be the case when if_attach() is
* called.
*/
void
if_alloc_sadl(struct ifnet *ifp)
{
unsigned socksize, ifasize;
int namelen, masklen;
struct sockaddr_dl *sdl;
struct ifaddr *ifa;
/*
* If the interface already has a link name, release it
* now. This is useful for interfaces that can change
* link types, and thus switch link names often.
*/
if (ifp->if_sadl != NULL)
if_free_sadl(ifp);
namelen = strlen(ifp->if_xname);
masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
socksize = masklen + ifp->if_addrlen;
#define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
if (socksize < sizeof(*sdl))
socksize = sizeof(*sdl);
socksize = ROUNDUP(socksize);
ifasize = sizeof(*ifa) + 2 * socksize;
ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK);
memset((caddr_t)ifa, 0, ifasize);
sdl = (struct sockaddr_dl *)(ifa + 1);
sdl->sdl_len = socksize;
sdl->sdl_family = AF_LINK;
bcopy(ifp->if_xname, sdl->sdl_data, namelen);
sdl->sdl_nlen = namelen;
sdl->sdl_alen = ifp->if_addrlen;
sdl->sdl_index = ifp->if_index;
sdl->sdl_type = ifp->if_type;
ifnet_addrs[ifp->if_index] = ifa;
IFAREF(ifa);
ifa->ifa_ifp = ifp;
ifa->ifa_rtrequest = link_rtrequest;
TAILQ_INSERT_HEAD(&ifp->if_addrlist, ifa, ifa_list);
IFAREF(ifa);
ifa->ifa_addr = (struct sockaddr *)sdl;
ifp->if_sadl = sdl;
sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
ifa->ifa_netmask = (struct sockaddr *)sdl;
sdl->sdl_len = masklen;
while (namelen != 0)
sdl->sdl_data[--namelen] = 0xff;
}
/*
* Free the link level name for the specified interface. This is
* a detach helper. This is called from if_detach() or from
* link layer type specific detach functions.
*/
void
if_free_sadl(struct ifnet *ifp)
{
struct ifaddr *ifa;
int s;
ifa = ifnet_addrs[ifp->if_index];
if (ifa == NULL) {
KASSERT(ifp->if_sadl == NULL);
return;
}
KASSERT(ifp->if_sadl != NULL);
s = splnet();
rtinit(ifa, RTM_DELETE, 0);
TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
IFAFREE(ifa);
ifp->if_sadl = NULL;
ifnet_addrs[ifp->if_index] = NULL;
IFAFREE(ifa);
splx(s);
}
/*
* Attach an interface to the
* list of "active" interfaces.
*/
void
if_attach(ifp)
struct ifnet *ifp;
{
int indexlim = 0;
if (if_indexlim == 0) {
TAILQ_INIT(&ifnet);
if_indexlim = 8;
}
TAILQ_INIT(&ifp->if_addrlist);
TAILQ_INSERT_TAIL(&ifnet, ifp, if_list);
ifp->if_index = if_index;
if (ifindex2ifnet == 0)
if_index++;
else
while (ifp->if_index < if_indexlim &&
ifindex2ifnet[ifp->if_index] != NULL) {
++if_index;
if (if_index == 0)
if_index = 1;
/*
* If we hit USHRT_MAX, we skip back to 0 since
* there are a number of places where the value
* of if_index or if_index itself is compared
* to or stored in an unsigned short. By
* jumping back, we won't botch those assignments
* or comparisons.
*/
else if (if_index == USHRT_MAX) {
/*
* However, if we have to jump back to
* zero *twice* without finding an empty
* slot in ifindex2ifnet[], then there
* there are too many (>65535) interfaces.
*/
if (indexlim++)
panic("too many interfaces");
else
if_index = 1;
}
ifp->if_index = if_index;
}
/*
* We have some arrays that should be indexed by if_index.
* since if_index will grow dynamically, they should grow too.
* struct ifadd **ifnet_addrs
* struct ifnet **ifindex2ifnet
*/
if (ifnet_addrs == 0 || ifindex2ifnet == 0 ||
ifp->if_index >= if_indexlim) {
size_t m, n, oldlim;
caddr_t q;
oldlim = if_indexlim;
while (ifp->if_index >= if_indexlim)
if_indexlim <<= 1;
/* grow ifnet_addrs */
m = oldlim * sizeof(struct ifaddr *);
n = if_indexlim * sizeof(struct ifaddr *);
q = (caddr_t)malloc(n, M_IFADDR, M_WAITOK);
memset(q, 0, n);
if (ifnet_addrs) {
bcopy((caddr_t)ifnet_addrs, q, m);
free((caddr_t)ifnet_addrs, M_IFADDR);
}
ifnet_addrs = (struct ifaddr **)q;
/* grow ifindex2ifnet */
m = oldlim * sizeof(struct ifnet *);
n = if_indexlim * sizeof(struct ifnet *);
q = (caddr_t)malloc(n, M_IFADDR, M_WAITOK);
memset(q, 0, n);
if (ifindex2ifnet) {
bcopy((caddr_t)ifindex2ifnet, q, m);
free((caddr_t)ifindex2ifnet, M_IFADDR);
}
ifindex2ifnet = (struct ifnet **)q;
}
ifindex2ifnet[ifp->if_index] = ifp;
/*
* Link level name is allocated later by a separate call to
* if_alloc_sadl().
*/
if (ifp->if_snd.ifq_maxlen == 0)
ifp->if_snd.ifq_maxlen = ifqmaxlen;
ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
ifp->if_link_state = LINK_STATE_UNKNOWN;
ifp->if_capenable = 0;
ifp->if_csum_flags_tx = 0;
ifp->if_csum_flags_rx = 0;
#ifdef ALTQ
ifp->if_snd.altq_type = 0;
ifp->if_snd.altq_disc = NULL;
ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
ifp->if_snd.altq_tbr = NULL;
ifp->if_snd.altq_ifp = ifp;
#endif
#ifdef PFIL_HOOKS
ifp->if_pfil.ph_type = PFIL_TYPE_IFNET;
ifp->if_pfil.ph_ifnet = ifp;
if (pfil_head_register(&ifp->if_pfil) != 0)
printf("%s: WARNING: unable to register pfil hook\n",
ifp->if_xname);
(void)pfil_run_hooks(&if_pfil,
(struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
#endif
if (!STAILQ_EMPTY(&domains))
if_attachdomain1(ifp);
/* Announce the interface. */
rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
}
void
if_attachdomain()
{
struct ifnet *ifp;
int s;
s = splnet();
for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
if_attachdomain1(ifp);
splx(s);
}
void
if_attachdomain1(ifp)
struct ifnet *ifp;
{
struct domain *dp;
int s;
s = splnet();
/* address family dependent data region */
memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
DOMAIN_FOREACH(dp) {
if (dp->dom_ifattach)
ifp->if_afdata[dp->dom_family] =
(*dp->dom_ifattach)(ifp);
}
splx(s);
}
/*
* Deactivate an interface. This points all of the procedure
* handles at error stubs. May be called from interrupt context.
*/
void
if_deactivate(ifp)
struct ifnet *ifp;
{
int s;
s = splnet();
ifp->if_output = if_nulloutput;
ifp->if_input = if_nullinput;
ifp->if_start = if_nullstart;
ifp->if_ioctl = if_nullioctl;
ifp->if_init = if_nullinit;
ifp->if_stop = if_nullstop;
ifp->if_watchdog = if_nullwatchdog;
ifp->if_drain = if_nulldrain;
/* No more packets may be enqueued. */
ifp->if_snd.ifq_maxlen = 0;
splx(s);
}
/*
* Detach an interface from the list of "active" interfaces,
* freeing any resources as we go along.
*
* NOTE: This routine must be called with a valid thread context,
* as it may block.
*/
void
if_detach(ifp)
struct ifnet *ifp;
{
struct socket so;
struct ifaddr *ifa, **ifap;
#ifdef IFAREF_DEBUG
struct ifaddr *last_ifa = NULL;
#endif
struct domain *dp;
const struct protosw *pr;
struct radix_node_head *rnh;
int s, i, family, purged;
/*
* XXX It's kind of lame that we have to have the
* XXX socket structure...
*/
memset(&so, 0, sizeof(so));
s = splnet();
/*
* Do an if_down() to give protocols a chance to do something.
*/
if_down(ifp);
#ifdef ALTQ
if (ALTQ_IS_ENABLED(&ifp->if_snd))
altq_disable(&ifp->if_snd);
if (ALTQ_IS_ATTACHED(&ifp->if_snd))
altq_detach(&ifp->if_snd);
#endif
#ifdef PFIL_HOOKS
(void)pfil_run_hooks(&if_pfil,
(struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
(void)pfil_head_unregister(&ifp->if_pfil);
#endif
/*
* Rip all the addresses off the interface. This should make
* all of the routes go away.
*/
ifap = &TAILQ_FIRST(&ifp->if_addrlist); /* XXX abstraction violation */
while ((ifa = *ifap)) {
family = ifa->ifa_addr->sa_family;
#ifdef IFAREF_DEBUG
printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
ifa, family, ifa->ifa_refcnt);
if (last_ifa != NULL && ifa == last_ifa)
panic("if_detach: loop detected");
last_ifa = ifa;
#endif
if (family == AF_LINK) {
ifap = &TAILQ_NEXT(ifa, ifa_list);
continue;
}
dp = pffinddomain(family);
#ifdef DIAGNOSTIC
if (dp == NULL)
panic("if_detach: no domain for AF %d",
family);
#endif
purged = 0;
for (pr = dp->dom_protosw;
pr < dp->dom_protoswNPROTOSW; pr++) {
so.so_proto = pr;
if (pr->pr_usrreq != NULL) {
(void) (*pr->pr_usrreq)(&so,
PRU_PURGEIF, NULL, NULL,
(struct mbuf *) ifp, curproc);
purged = 1;
}
}
if (purged == 0) {
/*
* XXX What's really the best thing to do
* XXX here? --thorpej@NetBSD.org
*/
printf("if_detach: WARNING: AF %d not purged\n",
family);
TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
}
}
if_free_sadl(ifp);
/* Walk the routing table looking for straglers. */
for (i = 0; i <= AF_MAX; i++) {
if ((rnh = rt_tables[i]) != NULL)
(void) (*rnh->rnh_walktree)(rnh, if_rt_walktree, ifp);
}
DOMAIN_FOREACH(dp) {
if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
(*dp->dom_ifdetach)(ifp,
ifp->if_afdata[dp->dom_family]);
}
/* Announce that the interface is gone. */
rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
ifindex2ifnet[ifp->if_index] = NULL;
TAILQ_REMOVE(&ifnet, ifp, if_list);
/*
* remove packets came from ifp, from software interrupt queues.
* net/netisr_dispatch.h is not usable, as some of them use
* strange queue names.
*/
#define IF_DETACH_QUEUES(x) \
do { \
extern struct ifqueue x; \
if_detach_queues(ifp, & x); \
} while (/*CONSTCOND*/ 0)
#ifdef INET
#if NARP > 0
IF_DETACH_QUEUES(arpintrq);
#endif
IF_DETACH_QUEUES(ipintrq);
#endif
#ifdef INET6
IF_DETACH_QUEUES(ip6intrq);
#endif
#ifdef NETATALK
IF_DETACH_QUEUES(atintrq1);
IF_DETACH_QUEUES(atintrq2);
#endif
#ifdef NS
IF_DETACH_QUEUES(nsintrq);
#endif
#ifdef ISO
IF_DETACH_QUEUES(clnlintrq);
#endif
#ifdef CCITT
IF_DETACH_QUEUES(llcintrq);
IF_DETACH_QUEUES(hdintrq);
#endif
#ifdef NATM
IF_DETACH_QUEUES(natmintrq);
#endif
#ifdef DECNET
IF_DETACH_QUEUES(decnetintrq);
#endif
#undef IF_DETACH_QUEUES
splx(s);
}
#if defined(INET) || defined(INET6) || defined(NETATALK) || defined(NS) || \
defined(ISO) || defined(CCITT) || defined(NATM) || defined(DECNET)
static void
if_detach_queues(ifp, q)
struct ifnet *ifp;
struct ifqueue *q;
{
struct mbuf *m, *prev, *next;
prev = NULL;
for (m = q->ifq_head; m; m = next) {
next = m->m_nextpkt;
#ifdef DIAGNOSTIC
if ((m->m_flags & M_PKTHDR) == 0) {
prev = m;
continue;
}
#endif
if (m->m_pkthdr.rcvif != ifp) {
prev = m;
continue;
}
if (prev)
prev->m_nextpkt = m->m_nextpkt;
else
q->ifq_head = m->m_nextpkt;
if (q->ifq_tail == m)
q->ifq_tail = prev;
q->ifq_len--;
m->m_nextpkt = NULL;
m_freem(m);
IF_DROP(q);
}
}
#endif /* defined(INET) || ... */
/*
* Callback for a radix tree walk to delete all references to an
* ifnet.
*/
int
if_rt_walktree(rn, v)
struct radix_node *rn;
void *v;
{
struct ifnet *ifp = (struct ifnet *)v;
struct rtentry *rt = (struct rtentry *)rn;
int error;
if (rt->rt_ifp == ifp) {
/* Delete the entry. */
error = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
rt_mask(rt), rt->rt_flags, NULL);
if (error)
printf("%s: warning: unable to delete rtentry @ %p, "
"error = %d\n", ifp->if_xname, rt, error);
}
return (0);
}
/*
* Create a clone network interface.
*/
int
if_clone_create(name)
const char *name;
{
struct if_clone *ifc;
int unit;
ifc = if_clone_lookup(name, &unit);
if (ifc == NULL)
return (EINVAL);
if (ifunit(name) != NULL)
return (EEXIST);
return ((*ifc->ifc_create)(ifc, unit));
}
/*
* Destroy a clone network interface.
*/
int
if_clone_destroy(name)
const char *name;
{
struct if_clone *ifc;
struct ifnet *ifp;
ifc = if_clone_lookup(name, NULL);
if (ifc == NULL)
return (EINVAL);
ifp = ifunit(name);
if (ifp == NULL)
return (ENXIO);
if (ifc->ifc_destroy == NULL)
return (EOPNOTSUPP);
return ((*ifc->ifc_destroy)(ifp));
}
/*
* Look up a network interface cloner.
*/
struct if_clone *
if_clone_lookup(name, unitp)
const char *name;
int *unitp;
{
struct if_clone *ifc;
const char *cp;
int unit;
/* separate interface name from unit */
for (cp = name;
cp - name < IFNAMSIZ && *cp && (*cp < '0' || *cp > '9');
cp++)
continue;
if (cp == name || cp - name == IFNAMSIZ || !*cp)
return (NULL); /* No name or unit number */
LIST_FOREACH(ifc, &if_cloners, ifc_list) {
if (strlen(ifc->ifc_name) == cp - name &&
!strncmp(name, ifc->ifc_name, cp - name))
break;
}
if (ifc == NULL)
return (NULL);
unit = 0;
while (cp - name < IFNAMSIZ && *cp) {
if (*cp < '0' || *cp > '9' || unit > INT_MAX / 10) {
/* Bogus unit number. */
return (NULL);
}
unit = (unit * 10) + (*cp++ - '0');
}
if (unitp != NULL)
*unitp = unit;
return (ifc);
}
/*
* Register a network interface cloner.
*/
void
if_clone_attach(ifc)
struct if_clone *ifc;
{
LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
if_cloners_count++;
}
/*
* Unregister a network interface cloner.
*/
void
if_clone_detach(ifc)
struct if_clone *ifc;
{
LIST_REMOVE(ifc, ifc_list);
if_cloners_count--;
}
/*
* Provide list of interface cloners to userspace.
*/
int
if_clone_list(ifcr)
struct if_clonereq *ifcr;
{
char outbuf[IFNAMSIZ], *dst;
struct if_clone *ifc;
int count, error = 0;
ifcr->ifcr_total = if_cloners_count;
if ((dst = ifcr->ifcr_buffer) == NULL) {
/* Just asking how many there are. */
return (0);
}
if (ifcr->ifcr_count < 0)
return (EINVAL);
count = (if_cloners_count < ifcr->ifcr_count) ?
if_cloners_count : ifcr->ifcr_count;
for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
strncpy(outbuf, ifc->ifc_name, IFNAMSIZ);
outbuf[IFNAMSIZ - 1] = '\0'; /* sanity */
error = copyout(outbuf, dst, IFNAMSIZ);
if (error)
break;
}
return (error);
}
/*
* Locate an interface based on a complete address.
*/
/*ARGSUSED*/
struct ifaddr *
ifa_ifwithaddr(addr)
const struct sockaddr *addr;
{
struct ifnet *ifp;
struct ifaddr *ifa;
#define equal(a1, a2) \
(bcmp((caddr_t)(a1), (caddr_t)(a2), ((struct sockaddr *)(a1))->sa_len) == 0)
for (ifp = TAILQ_FIRST(&ifnet); ifp != NULL;
ifp = TAILQ_NEXT(ifp, if_list)) {
if (ifp->if_output == if_nulloutput)
continue;
for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL;
ifa = TAILQ_NEXT(ifa, ifa_list)) {
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if (equal(addr, ifa->ifa_addr))
return (ifa);
if ((ifp->if_flags & IFF_BROADCAST) &&
ifa->ifa_broadaddr &&
/* IP6 doesn't have broadcast */
ifa->ifa_broadaddr->sa_len != 0 &&
equal(ifa->ifa_broadaddr, addr))
return (ifa);
}
}
return (NULL);
}
/*
* Locate the point to point interface with a given destination address.
*/
/*ARGSUSED*/
struct ifaddr *
ifa_ifwithdstaddr(addr)
const struct sockaddr *addr;
{
struct ifnet *ifp;
struct ifaddr *ifa;
for (ifp = TAILQ_FIRST(&ifnet); ifp != NULL;
ifp = TAILQ_NEXT(ifp, if_list)) {
if (ifp->if_output == if_nulloutput)
continue;
if (ifp->if_flags & IFF_POINTOPOINT) {
for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL;
ifa = TAILQ_NEXT(ifa, ifa_list)) {
if (ifa->ifa_addr->sa_family !=
addr->sa_family ||
ifa->ifa_dstaddr == NULL)
continue;
if (equal(addr, ifa->ifa_dstaddr))
return (ifa);
}
}
}
return (NULL);
}
/*
* Find an interface on a specific network. If many, choice
* is most specific found.
*/
struct ifaddr *
ifa_ifwithnet(addr)
const struct sockaddr *addr;
{
struct ifnet *ifp;
struct ifaddr *ifa;
const struct sockaddr_dl *sdl;
struct ifaddr *ifa_maybe = 0;
u_int af = addr->sa_family;
char *addr_data = addr->sa_data, *cplim;
if (af == AF_LINK) {
sdl = (struct sockaddr_dl *)addr;
if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
ifindex2ifnet[sdl->sdl_index] &&
ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput)
return (ifnet_addrs[sdl->sdl_index]);
}
#ifdef NETATALK
if (af == AF_APPLETALK) {
const struct sockaddr_at *sat, *sat2;
sat = (struct sockaddr_at *)addr;
for (ifp = TAILQ_FIRST(&ifnet); ifp != NULL;
ifp = TAILQ_NEXT(ifp, if_list)) {
if (ifp->if_output == if_nulloutput)
continue;
ifa = at_ifawithnet((struct sockaddr_at *)addr, ifp);
if (ifa == NULL)
continue;
sat2 = (struct sockaddr_at *)ifa->ifa_addr;
if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
return (ifa); /* exact match */
if (ifa_maybe == NULL) {
/* else keep the if with the right range */
ifa_maybe = ifa;
}
}
return (ifa_maybe);
}
#endif
for (ifp = TAILQ_FIRST(&ifnet); ifp != NULL;
ifp = TAILQ_NEXT(ifp, if_list)) {
if (ifp->if_output == if_nulloutput)
continue;
for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL;
ifa = TAILQ_NEXT(ifa, ifa_list)) {
char *cp, *cp2, *cp3;
if (ifa->ifa_addr->sa_family != af ||
ifa->ifa_netmask == 0)
next: continue;
cp = addr_data;
cp2 = ifa->ifa_addr->sa_data;
cp3 = ifa->ifa_netmask->sa_data;
cplim = (char *)ifa->ifa_netmask +
ifa->ifa_netmask->sa_len;
while (cp3 < cplim) {
if ((*cp++ ^ *cp2++) & *cp3++) {
/* want to continue for() loop */
goto next;
}
}
if (ifa_maybe == 0 ||
rn_refines((caddr_t)ifa->ifa_netmask,
(caddr_t)ifa_maybe->ifa_netmask))
ifa_maybe = ifa;
}
}
return (ifa_maybe);
}
/*
* Find the interface of the addresss.
*/
struct ifaddr *
ifa_ifwithladdr(addr)
const struct sockaddr *addr;
{
struct ifaddr *ia;
if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
(ia = ifa_ifwithnet(addr)))
return (ia);
return (NULL);
}
/*
* Find an interface using a specific address family
*/
struct ifaddr *
ifa_ifwithaf(af)
int af;
{
struct ifnet *ifp;
struct ifaddr *ifa;
for (ifp = TAILQ_FIRST(&ifnet); ifp != NULL;
ifp = TAILQ_NEXT(ifp, if_list)) {
if (ifp->if_output == if_nulloutput)
continue;
for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL;
ifa = TAILQ_NEXT(ifa, ifa_list)) {
if (ifa->ifa_addr->sa_family == af)
return (ifa);
}
}
return (NULL);
}
/*
* Find an interface address specific to an interface best matching
* a given address.
*/
struct ifaddr *
ifaof_ifpforaddr(addr, ifp)
const struct sockaddr *addr;
struct ifnet *ifp;
{
struct ifaddr *ifa;
const char *cp, *cp2, *cp3;
const char *cplim;
struct ifaddr *ifa_maybe = 0;
u_int af = addr->sa_family;
if (ifp->if_output == if_nulloutput)
return (NULL);
if (af >= AF_MAX)
return (NULL);
for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL;
ifa = TAILQ_NEXT(ifa, ifa_list)) {
if (ifa->ifa_addr->sa_family != af)
continue;
ifa_maybe = ifa;
if (ifa->ifa_netmask == 0) {
if (equal(addr, ifa->ifa_addr) ||
(ifa->ifa_dstaddr &&
equal(addr, ifa->ifa_dstaddr)))
return (ifa);
continue;
}
cp = addr->sa_data;
cp2 = ifa->ifa_addr->sa_data;
cp3 = ifa->ifa_netmask->sa_data;
cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
for (; cp3 < cplim; cp3++) {
if ((*cp++ ^ *cp2++) & *cp3)
break;
}
if (cp3 == cplim)
return (ifa);
}
return (ifa_maybe);
}
/*
* Default action when installing a route with a Link Level gateway.
* Lookup an appropriate real ifa to point to.
* This should be moved to /sys/net/link.c eventually.
*/
void
link_rtrequest(cmd, rt, info)
int cmd;
struct rtentry *rt;
struct rt_addrinfo *info;
{
struct ifaddr *ifa;
struct sockaddr *dst;
struct ifnet *ifp;
if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) ||
((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0))
return;
if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
IFAFREE(rt->rt_ifa);
rt->rt_ifa = ifa;
IFAREF(ifa);
if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
ifa->ifa_rtrequest(cmd, rt, info);
}
}
/*
* Mark an interface down and notify protocols of
* the transition.
* NOTE: must be called at splsoftnet or equivalent.
*/
void
if_down(ifp)
struct ifnet *ifp;
{
struct ifaddr *ifa;
ifp->if_flags &= ~IFF_UP;
microtime(&ifp->if_lastchange);
for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL;
ifa = TAILQ_NEXT(ifa, ifa_list))
pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
IFQ_PURGE(&ifp->if_snd);
rt_ifmsg(ifp);
}
/*
* Mark an interface up and notify protocols of
* the transition.
* NOTE: must be called at splsoftnet or equivalent.
*/
void
if_up(ifp)
struct ifnet *ifp;
{
#ifdef notyet
struct ifaddr *ifa;
#endif
ifp->if_flags |= IFF_UP;
microtime(&ifp->if_lastchange);
#ifdef notyet
/* this has no effect on IP, and will kill all ISO connections XXX */
for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL;
ifa = TAILQ_NEXT(ifa, ifa_list))
pfctlinput(PRC_IFUP, ifa->ifa_addr);
#endif
rt_ifmsg(ifp);
#ifdef INET6
in6_if_up(ifp);
#endif
}
/*
* Handle interface watchdog timer routines. Called
* from softclock, we decrement timers (if set) and
* call the appropriate interface routine on expiration.
*/
void
if_slowtimo(arg)
void *arg;
{
struct ifnet *ifp;
int s = splnet();
for (ifp = TAILQ_FIRST(&ifnet); ifp != NULL;
ifp = TAILQ_NEXT(ifp, if_list)) {
if (ifp->if_timer == 0 || --ifp->if_timer)
continue;
if (ifp->if_watchdog)
(*ifp->if_watchdog)(ifp);
}
splx(s);
callout_reset(&if_slowtimo_ch, hz / IFNET_SLOWHZ,
if_slowtimo, NULL);
}
/*
* Set/clear promiscuous mode on interface ifp based on the truth value
* of pswitch. The calls are reference counted so that only the first
* "on" request actually has an effect, as does the final "off" request.
* Results are undefined if the "off" and "on" requests are not matched.
*/
int
ifpromisc(ifp, pswitch)
struct ifnet *ifp;
int pswitch;
{
int pcount, ret;
short flags;
struct ifreq ifr;
pcount = ifp->if_pcount;
flags = ifp->if_flags;
if (pswitch) {
/*
* Allow the device to be "placed" into promiscuous
* mode even if it is not configured up. It will
* consult IFF_PROMISC when it is is brought up.
*/
if (ifp->if_pcount++ != 0)
return (0);
ifp->if_flags |= IFF_PROMISC;
if ((ifp->if_flags & IFF_UP) == 0)
return (0);
} else {
if (--ifp->if_pcount > 0)
return (0);
ifp->if_flags &= ~IFF_PROMISC;
/*
* If the device is not configured up, we should not need to
* turn off promiscuous mode (device should have turned it
* off when interface went down; and will look at IFF_PROMISC
* again next time interface comes up).
*/
if ((ifp->if_flags & IFF_UP) == 0)
return (0);
}
memset(&ifr, 0, sizeof(ifr));
ifr.ifr_flags = ifp->if_flags;
ret = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t) &ifr);
/* Restore interface state if not successful. */
if (ret != 0) {
ifp->if_pcount = pcount;
ifp->if_flags = flags;
}
return (ret);
}
/*
* Map interface name to
* interface structure pointer.
*/
struct ifnet *
ifunit(name)
const char *name;
{
struct ifnet *ifp;
const char *cp = name;
u_int unit = 0;
u_int i;
/*
* If the entire name is a number, treat it as an ifindex.
*/
for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
unit = unit * 10 + (*cp - '0');
}
/*
* If the number took all of the name, then it's a valid ifindex.
*/
if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
if (unit >= if_indexlim)
return (NULL);
ifp = ifindex2ifnet[unit];
if (ifp == NULL || ifp->if_output == if_nulloutput)
return (NULL);
return (ifp);
}
for (ifp = TAILQ_FIRST(&ifnet); ifp != NULL;
ifp = TAILQ_NEXT(ifp, if_list)) {
if (ifp->if_output == if_nulloutput)
continue;
if (strcmp(ifp->if_xname, name) == 0)
return (ifp);
}
return (NULL);
}
/*
* Interface ioctls.
*/
int
ifioctl(so, cmd, data, p)
struct socket *so;
u_long cmd;
caddr_t data;
struct proc *p;
{
struct ifnet *ifp;
struct ifreq *ifr;
struct ifcapreq *ifcr;
struct ifdatareq *ifdr;
int s, error = 0;
short oif_flags;
switch (cmd) {
case SIOCGIFCONF:
case OSIOCGIFCONF:
return (ifconf(cmd, data));
}
ifr = (struct ifreq *)data;
ifcr = (struct ifcapreq *)data;
ifdr = (struct ifdatareq *)data;
switch (cmd) {
case SIOCIFCREATE:
case SIOCIFDESTROY:
if (p) {
error = suser(p->p_ucred, &p->p_acflag);
if (error)
return error;
}
return ((cmd == SIOCIFCREATE) ?
if_clone_create(ifr->ifr_name) :
if_clone_destroy(ifr->ifr_name));
case SIOCIFGCLONERS:
return (if_clone_list((struct if_clonereq *)data));
}
ifp = ifunit(ifr->ifr_name);
if (ifp == 0)
return (ENXIO);
switch (cmd) {
case SIOCSIFFLAGS:
case SIOCSIFCAP:
case SIOCSIFMETRIC:
case SIOCZIFDATA:
case SIOCSIFMTU:
case SIOCSIFPHYADDR:
case SIOCDIFPHYADDR:
#ifdef INET6
case SIOCSIFPHYADDR_IN6:
#endif
case SIOCSLIFPHYADDR:
case SIOCADDMULTI:
case SIOCDELMULTI:
case SIOCSIFMEDIA:
case SIOCSDRVSPEC:
case SIOCS80211NWID:
case SIOCS80211NWKEY:
case SIOCS80211POWER:
case SIOCS80211BSSID:
case SIOCS80211CHANNEL:
if (p) {
error = suser(p->p_ucred, &p->p_acflag);
if (error)
return error;
}
}
oif_flags = ifp->if_flags;
switch (cmd) {
case SIOCGIFFLAGS:
ifr->ifr_flags = ifp->if_flags;
break;
case SIOCGIFMETRIC:
ifr->ifr_metric = ifp->if_metric;
break;
case SIOCGIFMTU:
ifr->ifr_mtu = ifp->if_mtu;
break;
case SIOCGIFDLT:
ifr->ifr_dlt = ifp->if_dlt;
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
s = splnet();
if_down(ifp);
splx(s);
}
if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
s = splnet();
if_up(ifp);
splx(s);
}
ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
(ifr->ifr_flags &~ IFF_CANTCHANGE);
if (ifp->if_ioctl)
(void) (*ifp->if_ioctl)(ifp, cmd, data);
break;
case SIOCGIFCAP:
ifcr->ifcr_capabilities = ifp->if_capabilities;
ifcr->ifcr_capenable = ifp->if_capenable;
break;
case SIOCSIFCAP:
if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
return (EINVAL);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
/* Must prevent race with packet reception here. */
s = splnet();
if (ifcr->ifcr_capenable != ifp->if_capenable) {
struct ifreq ifrq;
ifrq.ifr_flags = ifp->if_flags;
ifp->if_capenable = ifcr->ifcr_capenable;
/* Pre-compute the checksum flags mask. */
ifp->if_csum_flags_tx = 0;
ifp->if_csum_flags_rx = 0;
if (ifp->if_capenable & IFCAP_CSUM_IPv4) {
ifp->if_csum_flags_tx |= M_CSUM_IPv4;
ifp->if_csum_flags_rx |= M_CSUM_IPv4;
}
if (ifp->if_capenable & IFCAP_CSUM_TCPv4) {
ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
} else if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)
ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
if (ifp->if_capenable & IFCAP_CSUM_UDPv4) {
ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
} else if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)
ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
if (ifp->if_capenable & IFCAP_CSUM_TCPv6) {
ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
}
if (ifp->if_capenable & IFCAP_CSUM_UDPv6) {
ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
}
/*
* Only kick the interface if it's up. If it's
* not up now, it will notice the cap enables
* when it is brought up later.
*/
if (ifp->if_flags & IFF_UP)
(void) (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS,
(caddr_t) &ifrq);
}
splx(s);
break;
case SIOCSIFMETRIC:
ifp->if_metric = ifr->ifr_metric;
break;
case SIOCGIFDATA:
ifdr->ifdr_data = ifp->if_data;
break;
case SIOCZIFDATA:
ifdr->ifdr_data = ifp->if_data;
/*
* Assumes that the volatile counters that can be
* zero'ed are at the end of if_data.
*/
memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
offsetof(struct if_data, ifi_ipackets));
break;
case SIOCSIFMTU:
{
u_long oldmtu = ifp->if_mtu;
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
error = (*ifp->if_ioctl)(ifp, cmd, data);
/*
* If the link MTU changed, do network layer specific procedure.
*/
if (ifp->if_mtu != oldmtu) {
#ifdef INET6
nd6_setmtu(ifp);
#endif
}
break;
}
case SIOCSIFPHYADDR:
case SIOCDIFPHYADDR:
#ifdef INET6
case SIOCSIFPHYADDR_IN6:
#endif
case SIOCSLIFPHYADDR:
case SIOCADDMULTI:
case SIOCDELMULTI:
case SIOCSIFMEDIA:
case SIOCGIFPSRCADDR:
case SIOCGIFPDSTADDR:
case SIOCGLIFPHYADDR:
case SIOCGIFMEDIA:
if (ifp->if_ioctl == 0)
return (EOPNOTSUPP);
error = (*ifp->if_ioctl)(ifp, cmd, data);
break;
case SIOCSDRVSPEC:
case SIOCS80211NWID:
case SIOCS80211NWKEY:
case SIOCS80211POWER:
case SIOCS80211BSSID:
case SIOCS80211CHANNEL:
default:
if (so->so_proto == 0)
return (EOPNOTSUPP);
#if !defined(COMPAT_43) && !defined(COMPAT_LINUX) && !defined(COMPAT_SVR4) && !defined(COMPAT_ULTRIX) && !defined(LKM)
error = ((*so->so_proto->pr_usrreq)(so, PRU_CONTROL,
(struct mbuf *)cmd, (struct mbuf *)data,
(struct mbuf *)ifp, p));
#else
{
int ocmd = cmd;
switch (cmd) {
case SIOCSIFADDR:
case SIOCSIFDSTADDR:
case SIOCSIFBRDADDR:
case SIOCSIFNETMASK:
#if BYTE_ORDER != BIG_ENDIAN
if (ifr->ifr_addr.sa_family == 0 &&
ifr->ifr_addr.sa_len < 16) {
ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
ifr->ifr_addr.sa_len = 16;
}
#else
if (ifr->ifr_addr.sa_len == 0)
ifr->ifr_addr.sa_len = 16;
#endif
break;
case OSIOCGIFADDR:
cmd = SIOCGIFADDR;
break;
case OSIOCGIFDSTADDR:
cmd = SIOCGIFDSTADDR;
break;
case OSIOCGIFBRDADDR:
cmd = SIOCGIFBRDADDR;
break;
case OSIOCGIFNETMASK:
cmd = SIOCGIFNETMASK;
}
error = ((*so->so_proto->pr_usrreq)(so, PRU_CONTROL,
(struct mbuf *)cmd, (struct mbuf *)data,
(struct mbuf *)ifp, p));
switch (ocmd) {
case OSIOCGIFADDR:
case OSIOCGIFDSTADDR:
case OSIOCGIFBRDADDR:
case OSIOCGIFNETMASK:
*(u_int16_t *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
}
}
#endif /* COMPAT_43 */
break;
}
if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
#ifdef INET6
if ((ifp->if_flags & IFF_UP) != 0) {
s = splnet();
in6_if_up(ifp);
splx(s);
}
#endif
}
return (error);
}
/*
* Return interface configuration
* of system. List may be used
* in later ioctl's (above) to get
* other information.
*/
/*ARGSUSED*/
int
ifconf(cmd, data)
u_long cmd;
caddr_t data;
{
struct ifconf *ifc = (struct ifconf *)data;
struct ifnet *ifp;
struct ifaddr *ifa;
struct ifreq ifr, *ifrp;
int space = ifc->ifc_len, error = 0;
const int sz = (int)sizeof(ifr);
int sign;
if ((ifrp = ifc->ifc_req) == NULL) {
space = 0;
sign = -1;
} else {
sign = 1;
}
IFNET_FOREACH(ifp) {
bcopy(ifp->if_xname, ifr.ifr_name, IFNAMSIZ);
if ((ifa = TAILQ_FIRST(&ifp->if_addrlist)) == 0) {
memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
if (ifrp != NULL && space >= sz) {
error = copyout(&ifr, ifrp, sz);
if (error)
break;
ifrp++;
}
space -= sizeof(ifr) * sign;
continue;
}
for (; ifa != 0; ifa = TAILQ_NEXT(ifa, ifa_list)) {
struct sockaddr *sa = ifa->ifa_addr;
#if defined(COMPAT_43) || defined(COMPAT_LINUX) || defined(COMPAT_SVR4) || defined(COMPAT_ULTRIX)
if (cmd == OSIOCGIFCONF) {
struct osockaddr *osa =
(struct osockaddr *)&ifr.ifr_addr;
/*
* If it does not fit, we don't bother with it
*/
if (sa->sa_len > sizeof(*osa))
continue;
ifr.ifr_addr = *sa;
osa->sa_family = sa->sa_family;
if (ifrp != NULL && space >= sz) {
error = copyout(&ifr, ifrp, sz);
ifrp++;
}
} else
#endif
if (sa->sa_len <= sizeof(*sa)) {
ifr.ifr_addr = *sa;
if (ifrp != NULL && space >= sz) {
error = copyout(&ifr, ifrp, sz);
ifrp++;
}
} else {
space -= (sa->sa_len - sizeof(*sa)) * sign;
if (ifrp != NULL && space >= sz) {
error = copyout(&ifr, ifrp,
sizeof(ifr.ifr_name));
if (error == 0) {
error = copyout(sa,
&ifrp->ifr_addr,
sa->sa_len);
}
ifrp = (struct ifreq *)
(sa->sa_len +
(caddr_t)&ifrp->ifr_addr);
}
}
if (error)
break;
space -= sz * sign;
}
}
if (ifrp != NULL)
ifc->ifc_len -= space;
else
ifc->ifc_len = space;
return (error);
}
#if defined(INET) || defined(INET6)
static void
sysctl_net_ifq_setup(struct sysctllog **clog,
int pf, const char *pfname,
int ipn, const char *ipname,
int qid, struct ifqueue *ifq)
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "net", NULL,
NULL, 0, NULL, 0,
CTL_NET, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, pfname, NULL,
NULL, 0, NULL, 0,
CTL_NET, pf, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, ipname, NULL,
NULL, 0, NULL, 0,
CTL_NET, pf, ipn, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "ifq",
SYSCTL_DESCR("Protocol input queue controls"),
NULL, 0, NULL, 0,
CTL_NET, pf, ipn, qid, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "len",
SYSCTL_DESCR("Current input queue length"),
NULL, 0, &ifq->ifq_len, 0,
CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxlen",
SYSCTL_DESCR("Maximum allowed input queue length"),
NULL, 0, &ifq->ifq_maxlen, 0,
CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
#ifdef notyet
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "peak",
SYSCTL_DESCR("Highest input queue length"),
NULL, 0, &ifq->ifq_peak, 0,
CTL_NET, pf, ipn, qid, IFQCTL_PEAK, CTL_EOL);
#endif
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "drops",
SYSCTL_DESCR("Packets dropped due to full input queue"),
NULL, 0, &ifq->ifq_drops, 0,
CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
}
#ifdef INET
SYSCTL_SETUP(sysctl_net_inet_ip_ifq_setup,
"sysctl net.inet.ip.ifq subtree setup")
{
extern struct ifqueue ipintrq;
sysctl_net_ifq_setup(clog, PF_INET, "inet", IPPROTO_IP, "ip",
IPCTL_IFQ, &ipintrq);
}
#endif /* INET */
#ifdef INET6
SYSCTL_SETUP(sysctl_net_inet6_ip6_ifq_setup,
"sysctl net.inet6.ip6.ifq subtree setup")
{
extern struct ifqueue ip6intrq;
sysctl_net_ifq_setup(clog, PF_INET6, "inet6", IPPROTO_IPV6, "ip6",
IPV6CTL_IFQ, &ip6intrq);
}
#endif /* INET6 */
#endif /* INET || INET6 */