NetBSD/sys/arch/mips/alchemy/dev/if_aumac.c

1073 lines
26 KiB
C

/* $NetBSD: if_aumac.c,v 1.8 2003/01/16 01:14:17 simonb Exp $ */
/*
* Copyright (c) 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Device driver for Alchemy Semiconductor Au1x00 Ethernet Media
* Access Controller.
*
* TODO:
*
* Better Rx buffer management; we want to get new Rx buffers
* to the chip more quickly than we currently do.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_aumac.c,v 1.8 2003/01/16 01:14:17 simonb Exp $");
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <uvm/uvm_extern.h> /* for PAGE_SIZE */
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <machine/endian.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <mips/alchemy/include/aureg.h>
#include <mips/alchemy/include/auvar.h>
#include <mips/alchemy/include/aubusvar.h>
#include <mips/alchemy/dev/if_aumacreg.h>
/*
* The Au1X00 MAC has 4 transmit and receive descriptors. Each buffer
* must consist of a single DMA segment, and must be aligned to a 2K
* boundary. Therefore, this driver does not perform DMA directly
* to/from mbufs. Instead, we copy the data to/from buffers allocated
* at device attach time.
*
* We also skip the bus_dma dance. The MAC is built in to the CPU, so
* there's little point in not making assumptions based on the CPU type.
* We also program the Au1X00 cache to be DMA coherent, so the buffers
* are accessed via KSEG0 addresses.
*/
#define AUMAC_NTXDESC 4
#define AUMAC_NTXDESC_MASK (AUMAC_NTXDESC - 1)
#define AUMAC_NRXDESC 4
#define AUMAC_NRXDESC_MASK (AUMAC_NRXDESC - 1)
#define AUMAC_NEXTTX(x) (((x) + 1) & AUMAC_NTXDESC_MASK)
#define AUMAC_NEXTRX(x) (((x) + 1) & AUMAC_NRXDESC_MASK)
#define AUMAC_TXBUF_OFFSET 0
#define AUMAC_RXBUF_OFFSET (MAC_BUFLEN * AUMAC_NTXDESC)
#define AUMAC_BUFSIZE (MAC_BUFLEN * (AUMAC_NTXDESC + AUMAC_NRXDESC))
struct aumac_buf {
caddr_t buf_vaddr; /* virtual address of buffer */
bus_addr_t buf_paddr; /* DMA address of buffer */
};
/*
* Software state per device.
*/
struct aumac_softc {
struct device sc_dev; /* generic device information */
bus_space_tag_t sc_st; /* bus space tag */
bus_space_handle_t sc_mac_sh; /* MAC space handle */
bus_space_handle_t sc_macen_sh; /* MAC enable space handle */
bus_space_handle_t sc_dma_sh; /* DMA space handle */
struct ethercom sc_ethercom; /* Ethernet common data */
void *sc_sdhook; /* shutdown hook */
void *sc_ih; /* interrupt cookie */
struct mii_data sc_mii; /* MII/media information */
struct callout sc_tick_ch; /* tick callout */
/* Transmit and receive buffers */
struct aumac_buf sc_txbufs[AUMAC_NTXDESC];
struct aumac_buf sc_rxbufs[AUMAC_NRXDESC];
caddr_t sc_bufaddr;
int sc_txfree; /* number of free Tx descriptors */
int sc_txnext; /* next Tx descriptor to use */
int sc_txdirty; /* first dirty Tx descriptor */
int sc_rxptr; /* next ready Rx descriptor */
#ifdef AUMAC_EVENT_COUNTERS
struct evcnt sc_ev_txstall; /* Tx stalled */
struct evcnt sc_ev_rxstall; /* Rx stalled */
struct evcnt sc_ev_txintr; /* Tx interrupts */
struct evcnt sc_ev_rxintr; /* Rx interrupts */
#endif
uint32_t sc_control; /* MAC_CONTROL contents */
uint32_t sc_flowctrl; /* MAC_FLOWCTRL contents */
};
#ifdef AUMAC_EVENT_COUNTERS
#define AUMAC_EVCNT_INCR(ev) (ev)->ev_count++
#else
#define AUMAC_EVCNT_INCR(ev) /* nothing */
#endif
#define AUMAC_INIT_RXDESC(sc, x) \
do { \
bus_space_write_4((sc)->sc_st, (sc)->sc_dma_sh, \
MACDMA_RX_STAT((x)), 0); \
bus_space_write_4((sc)->sc_st, (sc)->sc_dma_sh, \
MACDMA_RX_ADDR((x)), \
(sc)->sc_rxbufs[(x)].buf_paddr | RX_ADDR_EN); \
} while (/*CONSTCOND*/0)
static void aumac_start(struct ifnet *);
static void aumac_watchdog(struct ifnet *);
static int aumac_ioctl(struct ifnet *, u_long, caddr_t);
static int aumac_init(struct ifnet *);
static void aumac_stop(struct ifnet *, int);
static void aumac_shutdown(void *);
static void aumac_tick(void *);
static void aumac_set_filter(struct aumac_softc *);
static void aumac_powerup(struct aumac_softc *);
static void aumac_powerdown(struct aumac_softc *);
static int aumac_intr(void *);
static void aumac_txintr(struct aumac_softc *);
static void aumac_rxintr(struct aumac_softc *);
static int aumac_mii_readreg(struct device *, int, int);
static void aumac_mii_writereg(struct device *, int, int, int);
static void aumac_mii_statchg(struct device *);
static int aumac_mii_wait(struct aumac_softc *, const char *);
static int aumac_mediachange(struct ifnet *);
static void aumac_mediastatus(struct ifnet *, struct ifmediareq *);
static int aumac_match(struct device *, struct cfdata *, void *);
static void aumac_attach(struct device *, struct device *, void *);
int aumac_copy_small = 0;
CFATTACH_DECL(aumac, sizeof(struct aumac_softc),
aumac_match, aumac_attach, NULL, NULL);
static int
aumac_match(struct device *parent, struct cfdata *cf, void *aux)
{
struct aubus_attach_args *aa = aux;
if (strcmp(aa->aa_name, cf->cf_name) == 0)
return (1);
return (0);
}
static void
aumac_attach(struct device *parent, struct device *self, void *aux)
{
char prop_name[sizeof("0xffffffff:mac-addr") + 1];
uint8_t enaddr[ETHER_ADDR_LEN];
struct aumac_softc *sc = (void *) self;
struct aubus_attach_args *aa = aux;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct pglist pglist;
paddr_t bufaddr;
caddr_t vbufaddr;
int i;
callout_init(&sc->sc_tick_ch);
printf(": Au1X00 10/100 Ethernet\n");
sc->sc_st = aa->aa_st;
/* Get the MAC address. */
snprintf(prop_name, sizeof(prop_name), "%p:mac-addr", self);
if (alchemy_info_get(prop_name, enaddr, sizeof(enaddr)) == -1) {
printf("%s: unable to determine MAC address\n",
sc->sc_dev.dv_xname);
return;
}
printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
ether_sprintf(enaddr));
/* Map the device. */
if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_BASE],
MACx_SIZE, 0, &sc->sc_mac_sh) != 0) {
printf("%s: unable to map MAC registers\n",
sc->sc_dev.dv_xname);
return;
}
if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_ENABLE],
MACENx_SIZE, 0, &sc->sc_macen_sh) != 0) {
printf("%s: unable to map MACEN registers\n",
sc->sc_dev.dv_xname);
return;
}
if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_DMA_BASE],
MACx_DMA_SIZE, 0, &sc->sc_dma_sh) != 0) {
printf("%s: unable to map MACDMA registers\n",
sc->sc_dev.dv_xname);
return;
}
/* Make sure the MAC is powered off. */
aumac_powerdown(sc);
/* Hook up the interrupt handler. */
sc->sc_ih = au_intr_establish(aa->aa_irq[0], 1, IPL_NET, IST_LEVEL,
aumac_intr, sc);
if (sc->sc_ih == NULL) {
printf("%s: unable to register interrupt handler\n",
sc->sc_dev.dv_xname);
return;
}
/*
* Allocate space for the transmit and receive buffers.
*/
if (uvm_pglistalloc(AUMAC_BUFSIZE, 0, ctob(physmem), PAGE_SIZE, 0,
&pglist, 1, 0))
return;
bufaddr = TAILQ_FIRST(&pglist)->phys_addr;
vbufaddr = (void *)MIPS_PHYS_TO_KSEG0(bufaddr);
for (i = 0; i < AUMAC_NTXDESC; i++) {
int offset = AUMAC_TXBUF_OFFSET + (i * MAC_BUFLEN);
sc->sc_txbufs[i].buf_vaddr = vbufaddr + offset;
sc->sc_txbufs[i].buf_paddr = bufaddr + offset;
}
for (i = 0; i < AUMAC_NRXDESC; i++) {
int offset = AUMAC_RXBUF_OFFSET + (i * MAC_BUFLEN);
sc->sc_rxbufs[i].buf_vaddr = vbufaddr + offset;
sc->sc_rxbufs[i].buf_paddr = bufaddr + offset;
}
/*
* Power up the MAC before accessing any MAC registers (including
* MII configuration.
*/
aumac_powerup(sc);
/*
* Initialize the media structures and probe the MII.
*/
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = aumac_mii_readreg;
sc->sc_mii.mii_writereg = aumac_mii_writereg;
sc->sc_mii.mii_statchg = aumac_mii_statchg;
ifmedia_init(&sc->sc_mii.mii_media, 0, aumac_mediachange,
aumac_mediastatus);
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = aumac_ioctl;
ifp->if_start = aumac_start;
ifp->if_watchdog = aumac_watchdog;
ifp->if_init = aumac_init;
ifp->if_stop = aumac_stop;
IFQ_SET_READY(&ifp->if_snd);
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp, enaddr);
#ifdef AUMAC_EVENT_COUNTERS
evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txstall");
evcnt_attach_dynamic(&sc->sc_ev_rxstall, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "rxstall");
evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txintr");
evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txintr");
#endif
/* Make sure the interface is shutdown during reboot. */
sc->sc_sdhook = shutdownhook_establish(aumac_shutdown, sc);
if (sc->sc_sdhook == NULL)
printf("%s: WARNING: unable to establish shutdown hook\n",
sc->sc_dev.dv_xname);
return;
}
/*
* aumac_shutdown:
*
* Make sure the interface is stopped at reboot time.
*/
static void
aumac_shutdown(void *arg)
{
struct aumac_softc *sc = arg;
aumac_stop(&sc->sc_ethercom.ec_if, 1);
/*
* XXX aumac_stop leaves device powered up at the moment
* XXX but this still isn't enough to keep yamon happy... :-(
*/
bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, 0);
}
/*
* aumac_start: [ifnet interface function]
*
* Start packet transmission on the interface.
*/
static void
aumac_start(struct ifnet *ifp)
{
struct aumac_softc *sc = ifp->if_softc;
struct mbuf *m;
int nexttx;
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
/*
* Loop through the send queue, setting up transmit descriptors
* unitl we drain the queue, or use up all available transmit
* descriptors.
*/
for (;;) {
/* Grab a packet off the queue. */
IFQ_POLL(&ifp->if_snd, m);
if (m == NULL)
return;
/* Get a spare descriptor. */
if (sc->sc_txfree == 0) {
/* No more slots left; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
AUMAC_EVCNT_INCR(&sc->sc_ev_txstall);
return;
}
nexttx = sc->sc_txnext;
IFQ_DEQUEUE(&ifp->if_snd, m);
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
m_copydata(m, 0, m->m_pkthdr.len,
sc->sc_txbufs[nexttx].buf_vaddr);
bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
MACDMA_TX_STAT(nexttx), 0);
bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
MACDMA_TX_LEN(nexttx),
m->m_pkthdr.len < (ETHER_MIN_LEN - ETHER_CRC_LEN) ?
ETHER_MIN_LEN - ETHER_CRC_LEN : m->m_pkthdr.len);
bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
MACDMA_TX_ADDR(nexttx),
sc->sc_txbufs[nexttx].buf_paddr | TX_ADDR_EN);
/* XXX - needed?? we should be coherent */
bus_space_barrier(sc->sc_st, sc->sc_dma_sh, 0 /* XXX */,
0 /* XXX */, BUS_SPACE_BARRIER_WRITE);
/* Advance the Tx pointer. */
sc->sc_txfree--;
sc->sc_txnext = AUMAC_NEXTTX(nexttx);
#if NBPFILTER > 0
/* Pass the packet to any BPF listeners. */
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif /* NBPFILTER */
m_freem(m);
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
}
/* NOTREACHED */
}
/*
* aumac_watchdog: [ifnet interface function]
*
* Watchdog timer handler.
*/
static void
aumac_watchdog(struct ifnet *ifp)
{
struct aumac_softc *sc = ifp->if_softc;
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
(void) aumac_init(ifp);
/* Try to get more packets going. */
aumac_start(ifp);
}
/*
* aumac_ioctl: [ifnet interface function]
*
* Handle control requests from the operator.
*/
static int
aumac_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct aumac_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error;
s = splnet();
switch (cmd) {
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
aumac_set_filter(sc);
}
break;
}
/* Try to get more packets going. */
aumac_start(ifp);
splx(s);
return (error);
}
/*
* aumac_intr:
*
* Interrupt service routine.
*/
static int
aumac_intr(void *arg)
{
struct aumac_softc *sc = arg;
/*
* There aren't really any interrupt status bits on the
* Au1X00 MAC, and each MAC has a dedicated interrupt
* in the CPU's built-in interrupt controller. Just
* check for new incoming packets, and then Tx completions
* (for status updating).
*/
if ((sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
return (0);
aumac_rxintr(sc);
aumac_txintr(sc);
return (1);
}
/*
* aumac_txintr:
*
* Helper; handle transmit interrupts.
*/
static void
aumac_txintr(struct aumac_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint32_t stat;
int i;
#ifdef AUMAC_EVENT_COUNTERS
int gotone = 0;
#endif
for (i = sc->sc_txdirty; sc->sc_txfree != AUMAC_NTXDESC;
i = AUMAC_NEXTTX(i)) {
if ((bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
MACDMA_TX_ADDR(i)) & TX_ADDR_DN) == 0)
break;
#ifdef AUMAC_EVENT_COUNTERS
gotone = 1;
#endif
/* ACK interrupt. */
bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
MACDMA_TX_ADDR(i), 0);
stat = bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
MACDMA_TX_STAT(i));
if (stat & TX_STAT_FA) {
/* XXX STATS */
ifp->if_oerrors++;
} else
ifp->if_opackets++;
if (stat & TX_STAT_EC)
ifp->if_collisions += 16;
else
ifp->if_collisions += TX_STAT_CC(stat);
sc->sc_txfree++;
ifp->if_flags &= ~IFF_OACTIVE;
/* Try to queue more packets. */
aumac_start(ifp);
}
if (gotone)
AUMAC_EVCNT_INCR(&sc->sc_ev_txintr);
/* Update the dirty descriptor pointer. */
sc->sc_txdirty = i;
/*
* If there are no more pending transmissions, cancel the watchdog
* timer.
*/
if (sc->sc_txfree == AUMAC_NTXDESC)
ifp->if_timer = 0;
}
/*
* aumac_rxintr:
*
* Helper; handle receive interrupts.
*/
static void
aumac_rxintr(struct aumac_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mbuf *m;
uint32_t stat;
int i, len;
#ifdef AUMAC_EVENT_COUNTERS
int pkts = 0;
#endif
for (i = sc->sc_rxptr;; i = AUMAC_NEXTRX(i)) {
if ((bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
MACDMA_RX_ADDR(i)) & RX_ADDR_DN) == 0)
break;
#ifdef AUMAC_EVENT_COUNTERS
pkts++;
#endif
stat = bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
MACDMA_RX_STAT(i));
#define PRINTERR(str) \
do { \
error++; \
printf("%s: %s\n", sc->sc_dev.dv_xname, str); \
} while (0)
if (stat & RX_STAT_ERRS) {
int error = 0;
if (stat & RX_STAT_MI)
PRINTERR("missed frame");
if (stat & RX_STAT_UC)
PRINTERR("unknown control frame");
if (stat & RX_STAT_LE)
PRINTERR("short frame");
if (stat & RX_STAT_CR)
PRINTERR("CRC error");
if (stat & RX_STAT_ME)
PRINTERR("medium error");
if (stat & RX_STAT_CS)
PRINTERR("late collision");
if (stat & RX_STAT_FL)
PRINTERR("frame too big");
if (stat & RX_STAT_RF)
PRINTERR("runt frame (collision)");
if (stat & RX_STAT_WT)
PRINTERR("watch dog");
if (stat & RX_STAT_DB) {
if (stat & (RX_STAT_CS | RX_STAT_RF |
RX_STAT_CR)) {
if (!error)
goto pktok;
} else
PRINTERR("dribbling bit");
}
#undef PRINTERR
ifp->if_ierrors++;
dropit:
/* reuse the current descriptor */
AUMAC_INIT_RXDESC(sc, i);
continue;
}
pktok:
len = RX_STAT_L(stat);
/*
* The Au1X00 MAC includes the CRC with every packet;
* trim it off here.
*/
len -= ETHER_CRC_LEN;
/*
* Truncate the packet if it's too big to fit in
* a single mbuf cluster.
*/
if (len > MCLBYTES - 2)
len = MCLBYTES - 2;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
printf("%s: unable to allocate Rx mbuf\n",
sc->sc_dev.dv_xname);
goto dropit;
}
if (len > MHLEN - 2) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
printf("%s: unable to allocate Rx cluster\n",
sc->sc_dev.dv_xname);
m_freem(m);
goto dropit;
}
}
m->m_data += 2; /* align payload */
memcpy(mtod(m, caddr_t),
sc->sc_rxbufs[i].buf_vaddr, len);
AUMAC_INIT_RXDESC(sc, i);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
#if NBPFILTER > 0
/* Pass this up to any BPF listeners. */
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif /* NBPFILTER > 0 */
/* Pass it on. */
(*ifp->if_input)(ifp, m);
ifp->if_ipackets++;
}
if (pkts)
AUMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
if (pkts == AUMAC_NRXDESC)
AUMAC_EVCNT_INCR(&sc->sc_ev_rxstall);
/* Update the receive pointer. */
sc->sc_rxptr = i;
}
/*
* aumac_tick:
*
* One second timer, used to tick the MII.
*/
static void
aumac_tick(void *arg)
{
struct aumac_softc *sc = arg;
int s;
s = splnet();
mii_tick(&sc->sc_mii);
splx(s);
callout_reset(&sc->sc_tick_ch, hz, aumac_tick, sc);
}
/*
* aumac_init: [ifnet interface function]
*
* Initialize the interface. Must be called at splnet().
*/
static int
aumac_init(struct ifnet *ifp)
{
struct aumac_softc *sc = ifp->if_softc;
int i, error = 0;
/* Cancel any pending I/O, reset MAC. */
aumac_stop(ifp, 0);
/* Set up the transmit ring. */
for (i = 0; i < AUMAC_NTXDESC; i++) {
bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
MACDMA_TX_STAT(i), 0);
bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
MACDMA_TX_LEN(i), 0);
bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
MACDMA_TX_ADDR(i), sc->sc_txbufs[i].buf_paddr);
}
sc->sc_txfree = AUMAC_NTXDESC;
sc->sc_txnext = TX_ADDR_CB(bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
MACDMA_TX_ADDR(0)));
sc->sc_txdirty = sc->sc_txnext;
/* Set up the receive ring. */
for (i = 0; i < AUMAC_NRXDESC; i++)
AUMAC_INIT_RXDESC(sc, i);
sc->sc_rxptr = RX_ADDR_CB(bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
MACDMA_RX_ADDR(0)));
/*
* Power up the MAC.
*/
aumac_powerup(sc);
sc->sc_control |= CONTROL_DO | CONTROL_TE | CONTROL_RE;
#if _BYTE_ORDER == _BIG_ENDIAN
sc->sc_control |= CONTROL_EM;
#endif
/* Set the media. */
aumac_mediachange(ifp);
/*
* Set the receive filter. This will actually start the transmit
* and receive processes.
*/
aumac_set_filter(sc);
/* Start the one second clock. */
callout_reset(&sc->sc_tick_ch, hz, aumac_tick, sc);
/* ...all done! */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
if (error)
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
return (error);
}
/*
* aumac_stop: [ifnet interface function]
*
* Stop transmission on the interface.
*/
static void
aumac_stop(struct ifnet *ifp, int disable)
{
struct aumac_softc *sc = ifp->if_softc;
/* Stop the one-second clock. */
callout_stop(&sc->sc_tick_ch);
/* Down the MII. */
mii_down(&sc->sc_mii);
/* Stop the transmit and receive processes. */
bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL, 0);
/* Power down/reset the MAC. */
aumac_powerdown(sc);
/* Mark the interface as down and cancel the watchdog timer. */
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}
/*
* aumac_powerdown:
*
* Power down the MAC.
*/
static void
aumac_powerdown(struct aumac_softc *sc)
{
/* Disable the MAC clocks, and place the device in reset. */
// bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, MACEN_JP);
// delay(10000);
}
/*
* aumac_powerup:
*
* Bring the device out of reset.
*/
static void
aumac_powerup(struct aumac_softc *sc)
{
/* Enable clocks to the MAC. */
bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, MACEN_JP|MACEN_CE);
/* Enable MAC, coherent transactions, pass only valid frames. */
bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0,
MACEN_E2|MACEN_E1|MACEN_E0|MACEN_CE);
delay(20000);
}
/*
* aumac_set_filter:
*
* Set up the receive filter.
*/
static void
aumac_set_filter(struct aumac_softc *sc)
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_multi *enm;
struct ether_multistep step;
const uint8_t *enaddr = LLADDR(ifp->if_sadl);
uint32_t mchash[2], crc;
sc->sc_control &= ~(CONTROL_PM | CONTROL_PR);
/* Stop the receiver. */
bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
sc->sc_control & ~CONTROL_RE);
if (ifp->if_flags & IFF_PROMISC) {
sc->sc_control |= CONTROL_PR;
goto allmulti;
}
/* Set the station address. */
bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_ADDRHIGH,
enaddr[4] | (enaddr[5] << 8));
bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_ADDRLOW,
enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
(enaddr[3] << 24));
sc->sc_control |= CONTROL_HP;
mchash[0] = mchash[1] = 0;
/*
* Set up the multicast address filter by passing all multicast
* addresses through a CRC generator, and then using the high
* order 6 bits as an index into the 64-bit multicast hash table.
* The high order bits select the word, while the rest of the bits
* select the bit within the word.
*/
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is large enough to require all bits set.)
*/
goto allmulti;
}
crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
/* Just want the 6 most significant bits. */
crc >>= 26;
/* Set the corresponding bit in the filter. */
mchash[crc >> 5] |= 1U << (crc & 0x1f);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_HASHHIGH,
mchash[1]);
bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_HASHLOW,
mchash[0]);
bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
sc->sc_control);
return;
allmulti:
sc->sc_control |= CONTROL_PM;
bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
sc->sc_control);
}
/*
* aumac_mediastatus: [ifmedia interface function]
*
* Get the current interface media status.
*/
static void
aumac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct aumac_softc *sc = ifp->if_softc;
mii_pollstat(&sc->sc_mii);
ifmr->ifm_status = sc->sc_mii.mii_media_status;
ifmr->ifm_active = sc->sc_mii.mii_media_active;
}
/*
* aumac_mediachange: [ifmedia interface function]
*
* Set hardware to newly selected media.
*/
static int
aumac_mediachange(struct ifnet *ifp)
{
struct aumac_softc *sc = ifp->if_softc;
if (ifp->if_flags & IFF_UP)
mii_mediachg(&sc->sc_mii);
return (0);
}
/*
* aumac_mii_wait:
*
* Wait for the MII interface to not be busy.
*/
static int
aumac_mii_wait(struct aumac_softc *sc, const char *msg)
{
int i;
for (i = 0; i < 10000; i++) {
if ((bus_space_read_4(sc->sc_st, sc->sc_mac_sh,
MAC_MIICTRL) & MIICTRL_MB) == 0)
return (0);
delay(10);
}
printf("%s: MII failed to %s\n", sc->sc_dev.dv_xname, msg);
return (1);
}
/*
* aumac_mii_readreg: [mii interface function]
*
* Read a PHY register on the MII.
*/
static int
aumac_mii_readreg(struct device *self, int phy, int reg)
{
struct aumac_softc *sc = (void *) self;
if (aumac_mii_wait(sc, "become ready"))
return (0);
bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIICTRL,
MIICTRL_PHYADDR(phy) | MIICTRL_MIIREG(reg));
if (aumac_mii_wait(sc, "complete"))
return (0);
return (bus_space_read_4(sc->sc_st, sc->sc_mac_sh, MAC_MIIDATA) &
MIIDATA_MASK);
}
/*
* aumac_mii_writereg: [mii interface function]
*
* Write a PHY register on the MII.
*/
static void
aumac_mii_writereg(struct device *self, int phy, int reg, int val)
{
struct aumac_softc *sc = (void *) self;
if (aumac_mii_wait(sc, "become ready"))
return;
bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIIDATA, val);
bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIICTRL,
MIICTRL_PHYADDR(phy) | MIICTRL_MIIREG(reg) | MIICTRL_MW);
(void) aumac_mii_wait(sc, "complete");
}
/*
* aumac_mii_statchg: [mii interface function]
*
* Callback from MII layer when media changes.
*/
static void
aumac_mii_statchg(struct device *self)
{
struct aumac_softc *sc = (void *) self;
if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
sc->sc_control |= CONTROL_F;
else
sc->sc_control &= ~CONTROL_F;
bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
sc->sc_control);
}