NetBSD/sys/dev/pci/emuxki.c
toshii 45469b1ffc Fix a memory leak in emuxki_voice_new.
Pointed out by Izumi Tsutsui in the current-users mailing list.
2003-03-17 12:29:09 +00:00

2253 lines
61 KiB
C

/* $NetBSD: emuxki.c,v 1.24 2003/03/17 12:29:09 toshii Exp $ */
/*-
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Yannick Montulet.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Driver for Creative Labs SBLive! series and probably PCI512.
*
* Known bugs:
* - inversed stereo at ac97 codec level
* (XXX jdolecek - don't see the problem? maybe because auvia(4) has
* it swapped too?)
* - bass disapear when you plug rear jack-in on Cambridge FPS2000 speakers
* (and presumably all speakers that support front and rear jack-in)
*
* TODO:
* - Digital Outputs
* - (midi/mpu),joystick support
* - Multiple voices play (problem with /dev/audio architecture)
* - Multiple sources recording (Pb with audio(4))
* - Independant modification of each channel's parameters (via mixer ?)
* - DSP FX patches (to make fx like chipmunk)
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: emuxki.c,v 1.24 2003/03/17 12:29:09 toshii Exp $");
#include <sys/param.h>
#include <sys/device.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#include <sys/audioio.h>
#include <sys/select.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/audio_if.h>
#include <dev/audiovar.h>
#include <dev/auconv.h>
#include <dev/mulaw.h>
#include <dev/ic/ac97reg.h>
#include <dev/ic/ac97var.h>
#include <dev/pci/emuxkireg.h>
#include <dev/pci/emuxkivar.h>
/* autconf goo */
static int emuxki_match(struct device *, struct cfdata *, void *);
static void emuxki_attach(struct device *, struct device *, void *);
static int emuxki_detach(struct device *, int);
/* dma mem mgmt */
static struct dmamem *dmamem_alloc(bus_dma_tag_t, size_t, bus_size_t,
int, struct malloc_type *, int);
static void dmamem_free(struct dmamem *, struct malloc_type *);
/* Emu10k1 init & shutdown */
static int emuxki_init(struct emuxki_softc *);
static void emuxki_shutdown(struct emuxki_softc *);
/* Emu10k1 mem mgmt */
static void *emuxki_pmem_alloc(struct emuxki_softc *, size_t,
struct malloc_type *,int);
static void *emuxki_rmem_alloc(struct emuxki_softc *, size_t,
struct malloc_type *,int);
/*
* Emu10k1 channels funcs : There is no direct access to channels, everything
* is done through voices I will at least provide channel based fx params
* modification, later...
*/
/* Emu10k1 voice mgmt */
static struct emuxki_voice *emuxki_voice_new(struct emuxki_softc *,
u_int8_t);
static void emuxki_voice_delete(struct emuxki_voice *);
static int emuxki_voice_set_audioparms(struct emuxki_voice *, u_int8_t,
u_int8_t, u_int32_t);
/* emuxki_voice_set_fxparms will come later, it'll need channel distinction */
static int emuxki_voice_set_bufparms(struct emuxki_voice *,
void *, u_int32_t, u_int16_t);
static void emuxki_voice_commit_parms(struct emuxki_voice *);
static u_int32_t emuxki_voice_curaddr(struct emuxki_voice *);
static void emuxki_voice_start(struct emuxki_voice *,
void (*) (void *), void *);
static void emuxki_voice_halt(struct emuxki_voice *);
/*
* Emu10k1 stream mgmt : not done yet
*/
#if 0
static struct emuxki_stream *emuxki_stream_new(struct emu10k1 *);
static void emuxki_stream_delete(struct emuxki_stream *);
static int emuxki_stream_set_audio_params(struct emuxki_stream *, u_int8_t,
u_int8_t, u_int8_t, u_int16_t);
static void emuxki_stream_start(struct emuxki_stream *);
static void emuxki_stream_halt(struct emuxki_stream *);
#endif
/* audio interface callbacks */
static int emuxki_open(void *, int);
static void emuxki_close(void *);
static int emuxki_query_encoding(void *, struct audio_encoding *);
static int emuxki_set_params(void *, int, int,
struct audio_params *,
struct audio_params *);
static int emuxki_round_blocksize(void *, int);
static size_t emuxki_round_buffersize(void *, int, size_t);
static int emuxki_trigger_output(void *, void *, void *, int,
void (*)(void *), void *,
struct audio_params *);
static int emuxki_trigger_input(void *, void *, void *, int,
void (*) (void *), void *,
struct audio_params *);
static int emuxki_halt_output(void *);
static int emuxki_halt_input(void *);
static int emuxki_getdev(void *, struct audio_device *);
static int emuxki_set_port(void *, mixer_ctrl_t *);
static int emuxki_get_port(void *, mixer_ctrl_t *);
static int emuxki_query_devinfo(void *, mixer_devinfo_t *);
static void *emuxki_allocm(void *, int, size_t, struct malloc_type *, int);
static void emuxki_freem(void *, void *, struct malloc_type *);
static paddr_t emuxki_mappage(void *, void *, off_t, int);
static int emuxki_get_props(void *);
/* Interrupt handler */
static int emuxki_intr(void *);
/* Emu10k1 AC97 interface callbacks */
static int emuxki_ac97_attach(void *, struct ac97_codec_if *);
static int emuxki_ac97_read(void *, u_int8_t, u_int16_t *);
static int emuxki_ac97_write(void *, u_int8_t, u_int16_t);
static void emuxki_ac97_reset(void *);
static enum ac97_host_flags emuxki_ac97_flags(void *);
/*
* Autoconfig goo.
*/
CFATTACH_DECL(emuxki, sizeof(struct emuxki_softc),
emuxki_match, emuxki_attach, emuxki_detach, NULL);
static struct audio_hw_if emuxki_hw_if = {
emuxki_open,
emuxki_close,
NULL, /* drain */
emuxki_query_encoding,
emuxki_set_params,
emuxki_round_blocksize,
NULL, /* commit settings */
NULL, /* init_output */
NULL, /* init_input */
NULL, /* start_output */
NULL, /* start_input */
emuxki_halt_output,
emuxki_halt_input,
NULL, /* speaker_ctl */
emuxki_getdev,
NULL, /* setfd */
emuxki_set_port,
emuxki_get_port,
emuxki_query_devinfo,
emuxki_allocm,
emuxki_freem,
emuxki_round_buffersize,
emuxki_mappage,
emuxki_get_props,
emuxki_trigger_output,
emuxki_trigger_input,
NULL, /* dev_ioctl */
};
static const int emuxki_recsrc_adcrates[] =
{ 48000, 44100, 32000, 24000, 22050, 16000, 11025, 8000, -1 };
#if 0
static const int emuxki_recsrc_intrmasks[EMU_NUMRECSRCS] =
{ EMU_INTE_MICBUFENABLE, EMU_INTE_ADCBUFENABLE, EMU_INTE_EFXBUFENABLE };
#endif
static const u_int32_t emuxki_recsrc_bufaddrreg[EMU_NUMRECSRCS] =
{ EMU_MICBA, EMU_ADCBA, EMU_FXBA };
static const u_int32_t emuxki_recsrc_idxreg[EMU_NUMRECSRCS] =
{ EMU_RECIDX(EMU_MICIDX), EMU_RECIDX(EMU_ADCIDX), EMU_RECIDX(EMU_FXIDX) };
static const u_int32_t emuxki_recsrc_szreg[EMU_NUMRECSRCS] =
{ EMU_MICBS, EMU_ADCBS, EMU_FXBS };
static const int emuxki_recbuf_sz[] = {
0, 384, 448, 512, 640, 768, 896, 1024, 1280, 1536, 1792,
2048, 2560, 3072, 3584, 4096, 5120, 6144, 7168, 8192, 10240,
12288, 14366, 16384, 20480, 24576, 28672, 32768, 40960, 49152,
57344, 65536
};
/*
* Dma memory mgmt
*/
static void
dmamem_delete(struct dmamem *mem, struct malloc_type *type)
{
free(mem->segs, type);
free(mem, type);
}
static struct dmamem *
dmamem_alloc(bus_dma_tag_t dmat, size_t size, bus_size_t align,
int nsegs, struct malloc_type *type, int flags)
{
struct dmamem *mem;
int bus_dma_flags;
/* Allocate memory for structure */
if ((mem = malloc(sizeof(*mem), type, flags)) == NULL)
return (NULL);
mem->dmat = dmat;
mem->size = size;
mem->align = align;
mem->nsegs = nsegs;
mem->bound = 0;
mem->segs = malloc(mem->nsegs * sizeof(*(mem->segs)), type, flags);
if (mem->segs == NULL) {
free(mem, type);
return (NULL);
}
bus_dma_flags = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
if (bus_dmamem_alloc(dmat, mem->size, mem->align, mem->bound,
mem->segs, mem->nsegs, &(mem->rsegs),
bus_dma_flags)) {
dmamem_delete(mem, type);
return (NULL);
}
if (bus_dmamem_map(dmat, mem->segs, mem->nsegs, mem->size,
&(mem->kaddr), bus_dma_flags | BUS_DMA_COHERENT)) {
bus_dmamem_free(dmat, mem->segs, mem->nsegs);
dmamem_delete(mem, type);
return (NULL);
}
if (bus_dmamap_create(dmat, mem->size, mem->nsegs, mem->size,
mem->bound, bus_dma_flags, &(mem->map))) {
bus_dmamem_unmap(dmat, mem->kaddr, mem->size);
bus_dmamem_free(dmat, mem->segs, mem->nsegs);
dmamem_delete(mem, type);
return (NULL);
}
if (bus_dmamap_load(dmat, mem->map, mem->kaddr,
mem->size, NULL, bus_dma_flags)) {
bus_dmamap_destroy(dmat, mem->map);
bus_dmamem_unmap(dmat, mem->kaddr, mem->size);
bus_dmamem_free(dmat, mem->segs, mem->nsegs);
dmamem_delete(mem, type);
return (NULL);
}
return (mem);
}
static void
dmamem_free(struct dmamem *mem, struct malloc_type *type)
{
bus_dmamap_unload(mem->dmat, mem->map);
bus_dmamap_destroy(mem->dmat, mem->map);
bus_dmamem_unmap(mem->dmat, mem->kaddr, mem->size);
bus_dmamem_free(mem->dmat, mem->segs, mem->nsegs);
dmamem_delete(mem, type);
}
/*
* Autoconf device callbacks : attach and detach
*/
static void
emuxki_pci_shutdown(struct emuxki_softc *sc)
{
if (sc->sc_ih != NULL)
pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
if (sc->sc_ios)
bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
}
static int
emuxki_scinit(struct emuxki_softc *sc)
{
int err;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, EMU_HCFG,
EMU_HCFG_LOCKSOUNDCACHE | EMU_HCFG_LOCKTANKCACHE_MASK |
EMU_HCFG_MUTEBUTTONENABLE);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, EMU_INTE,
EMU_INTE_SAMPLERATER | EMU_INTE_PCIERRENABLE);
if ((err = emuxki_init(sc)))
return (err);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, EMU_HCFG,
EMU_HCFG_AUDIOENABLE | EMU_HCFG_JOYENABLE |
EMU_HCFG_LOCKTANKCACHE_MASK | EMU_HCFG_AUTOMUTE);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, EMU_INTE,
bus_space_read_4(sc->sc_iot, sc->sc_ioh, EMU_INTE) |
EMU_INTE_VOLINCRENABLE | EMU_INTE_VOLDECRENABLE |
EMU_INTE_MUTEENABLE);
/* No multiple voice support for now */
sc->pvoice = sc->rvoice = NULL;
return (0);
}
static int
emuxki_ac97_init(struct emuxki_softc *sc)
{
sc->hostif.arg = sc;
sc->hostif.attach = emuxki_ac97_attach;
sc->hostif.read = emuxki_ac97_read;
sc->hostif.write = emuxki_ac97_write;
sc->hostif.reset = emuxki_ac97_reset;
sc->hostif.flags = emuxki_ac97_flags;
return (ac97_attach(&(sc->hostif)));
}
static int
emuxki_match(struct device *parent, struct cfdata *match, void *aux)
{
struct pci_attach_args *pa = aux;
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CREATIVELABS &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CREATIVELABS_SBLIVE)
return (1);
return (0);
}
static void
emuxki_attach(struct device *parent, struct device *self, void *aux)
{
struct emuxki_softc *sc = (struct emuxki_softc *) self;
struct pci_attach_args *pa = aux;
char devinfo[256];
pci_intr_handle_t ih;
const char *intrstr;
aprint_naive(": Audio controller\n");
if (pci_mapreg_map(pa, EMU_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
&(sc->sc_iot), &(sc->sc_ioh), &(sc->sc_iob),
&(sc->sc_ios))) {
aprint_error(": can't map iospace\n");
return;
}
pci_devinfo(pa->pa_id, pa->pa_class, 1, devinfo);
aprint_normal(": %s\n", devinfo);
sc->sc_pc = pa->pa_pc;
sc->sc_dmat = pa->pa_dmat;
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
pci_conf_read(pa->pa_pc, pa->pa_tag,
(PCI_COMMAND_STATUS_REG) | PCI_COMMAND_MASTER_ENABLE));
if (pci_intr_map(pa, &ih)) {
aprint_error("%s: couldn't map interrupt\n",
sc->sc_dev.dv_xname);
bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
return;
}
intrstr = pci_intr_string(pa->pa_pc, ih);
sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, emuxki_intr,
sc);
if (sc->sc_ih == NULL) {
aprint_error("%s: couldn't establish interrupt",
sc->sc_dev.dv_xname);
if (intrstr != NULL)
aprint_normal(" at %s", intrstr);
aprint_normal("\n");
bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
return;
}
aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
if (emuxki_scinit(sc) || emuxki_ac97_init(sc) ||
(sc->sc_audev = audio_attach_mi(&emuxki_hw_if, sc, self)) == NULL) {
emuxki_pci_shutdown(sc);
return;
}
#if 0
sc->rsourcectl.dev =
sc->codecif->vtbl->get_portnum_by_name(sc->codec_if, AudioCrecord,
AudioNsource, NULL);
sc->rsourcectl.cp = AUDIO_MIXER_ENUM;
#endif
}
static int
emuxki_detach(struct device *self, int flags)
{
struct emuxki_softc *sc = (struct emuxki_softc *) self;
int err = 0;
if (sc->sc_audev != NULL) /* Test in case audio didn't attach */
err = config_detach(sc->sc_audev, 0);
/* All voices should be stopped now but add some code here if not */
bus_space_write_4(sc->sc_iot, sc->sc_ioh, EMU_HCFG,
EMU_HCFG_LOCKSOUNDCACHE | EMU_HCFG_LOCKTANKCACHE_MASK |
EMU_HCFG_MUTEBUTTONENABLE);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, EMU_INTE, 0);
emuxki_shutdown(sc);
emuxki_pci_shutdown(sc);
return (0);
}
/* Misc stuff relative to emu10k1 */
static u_int32_t
emuxki_rate_to_pitch(u_int32_t rate)
{
static const u_int32_t logMagTable[128] = {
0x00000, 0x02dfc, 0x05b9e, 0x088e6, 0x0b5d6, 0x0e26f, 0x10eb3,
0x13aa2, 0x1663f, 0x1918a, 0x1bc84, 0x1e72e, 0x2118b, 0x23b9a,
0x2655d, 0x28ed5, 0x2b803, 0x2e0e8, 0x30985, 0x331db, 0x359eb,
0x381b6, 0x3a93d, 0x3d081, 0x3f782, 0x41e42, 0x444c1, 0x46b01,
0x49101, 0x4b6c4, 0x4dc49, 0x50191, 0x5269e, 0x54b6f, 0x57006,
0x59463, 0x5b888, 0x5dc74, 0x60029, 0x623a7, 0x646ee, 0x66a00,
0x68cdd, 0x6af86, 0x6d1fa, 0x6f43c, 0x7164b, 0x73829, 0x759d4,
0x77b4f, 0x79c9a, 0x7bdb5, 0x7dea1, 0x7ff5e, 0x81fed, 0x8404e,
0x86082, 0x88089, 0x8a064, 0x8c014, 0x8df98, 0x8fef1, 0x91e20,
0x93d26, 0x95c01, 0x97ab4, 0x9993e, 0x9b79f, 0x9d5d9, 0x9f3ec,
0xa11d8, 0xa2f9d, 0xa4d3c, 0xa6ab5, 0xa8808, 0xaa537, 0xac241,
0xadf26, 0xafbe7, 0xb1885, 0xb3500, 0xb5157, 0xb6d8c, 0xb899f,
0xba58f, 0xbc15e, 0xbdd0c, 0xbf899, 0xc1404, 0xc2f50, 0xc4a7b,
0xc6587, 0xc8073, 0xc9b3f, 0xcb5ed, 0xcd07c, 0xceaec, 0xd053f,
0xd1f73, 0xd398a, 0xd5384, 0xd6d60, 0xd8720, 0xda0c3, 0xdba4a,
0xdd3b4, 0xded03, 0xe0636, 0xe1f4e, 0xe384a, 0xe512c, 0xe69f3,
0xe829f, 0xe9b31, 0xeb3a9, 0xecc08, 0xee44c, 0xefc78, 0xf148a,
0xf2c83, 0xf4463, 0xf5c2a, 0xf73da, 0xf8b71, 0xfa2f0, 0xfba57,
0xfd1a7, 0xfe8df
};
static const u_int8_t logSlopeTable[128] = {
0x5c, 0x5c, 0x5b, 0x5a, 0x5a, 0x59, 0x58, 0x58,
0x57, 0x56, 0x56, 0x55, 0x55, 0x54, 0x53, 0x53,
0x52, 0x52, 0x51, 0x51, 0x50, 0x50, 0x4f, 0x4f,
0x4e, 0x4d, 0x4d, 0x4d, 0x4c, 0x4c, 0x4b, 0x4b,
0x4a, 0x4a, 0x49, 0x49, 0x48, 0x48, 0x47, 0x47,
0x47, 0x46, 0x46, 0x45, 0x45, 0x45, 0x44, 0x44,
0x43, 0x43, 0x43, 0x42, 0x42, 0x42, 0x41, 0x41,
0x41, 0x40, 0x40, 0x40, 0x3f, 0x3f, 0x3f, 0x3e,
0x3e, 0x3e, 0x3d, 0x3d, 0x3d, 0x3c, 0x3c, 0x3c,
0x3b, 0x3b, 0x3b, 0x3b, 0x3a, 0x3a, 0x3a, 0x39,
0x39, 0x39, 0x39, 0x38, 0x38, 0x38, 0x38, 0x37,
0x37, 0x37, 0x37, 0x36, 0x36, 0x36, 0x36, 0x35,
0x35, 0x35, 0x35, 0x34, 0x34, 0x34, 0x34, 0x34,
0x33, 0x33, 0x33, 0x33, 0x32, 0x32, 0x32, 0x32,
0x32, 0x31, 0x31, 0x31, 0x31, 0x31, 0x30, 0x30,
0x30, 0x30, 0x30, 0x2f, 0x2f, 0x2f, 0x2f, 0x2f
};
int8_t i;
if (rate == 0)
return 0; /* Bail out if no leading "1" */
rate *= 11185; /* Scale 48000 to 0x20002380 */
for (i = 31; i > 0; i--) {
if (rate & 0x80000000) { /* Detect leading "1" */
return (((u_int32_t) (i - 15) << 20) +
logMagTable[0x7f & (rate >> 24)] +
(0x7f & (rate >> 17)) *
logSlopeTable[0x7f & (rate >> 24)]);
}
rate <<= 1;
}
return 0; /* Should never reach this point */
}
/* Emu10k1 Low level */
static u_int32_t
emuxki_read(struct emuxki_softc *sc, u_int16_t chano, u_int32_t reg)
{
u_int32_t ptr, mask = 0xffffffff;
u_int8_t size, offset = 0;
int s;
ptr = ((((u_int32_t) reg) << 16) & EMU_PTR_ADDR_MASK) |
(chano & EMU_PTR_CHNO_MASK);
if (reg & 0xff000000) {
size = (reg >> 24) & 0x3f;
offset = (reg >> 16) & 0x1f;
mask = ((1 << size) - 1) << offset;
}
s = splaudio();
bus_space_write_4(sc->sc_iot, sc->sc_ioh, EMU_PTR, ptr);
ptr = (bus_space_read_4(sc->sc_iot, sc->sc_ioh, EMU_DATA) & mask)
>> offset;
splx(s);
return (ptr);
}
static void
emuxki_write(struct emuxki_softc *sc, u_int16_t chano,
u_int32_t reg, u_int32_t data)
{
u_int32_t ptr, mask;
u_int8_t size, offset;
int s;
ptr = ((((u_int32_t) reg) << 16) & EMU_PTR_ADDR_MASK) |
(chano & EMU_PTR_CHNO_MASK);
if (reg & 0xff000000) {
size = (reg >> 24) & 0x3f;
offset = (reg >> 16) & 0x1f;
mask = ((1 << size) - 1) << offset;
data = ((data << offset) & mask) |
(emuxki_read(sc, chano, reg & 0xffff) & ~mask);
}
s = splaudio();
bus_space_write_4(sc->sc_iot, sc->sc_ioh, EMU_PTR, ptr);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, EMU_DATA, data);
splx(s);
}
/* Microcode should this go in /sys/dev/microcode ? */
static void
emuxki_write_micro(struct emuxki_softc *sc, u_int32_t pc, u_int32_t data)
{
emuxki_write(sc, 0, EMU_MICROCODEBASE + pc, data);
}
static void
emuxki_dsp_addop(struct emuxki_softc *sc, u_int16_t *pc, u_int8_t op,
u_int16_t r, u_int16_t a, u_int16_t x, u_int16_t y)
{
emuxki_write_micro(sc, *pc << 1,
((x << 10) & EMU_DSP_LOWORD_OPX_MASK) |
(y & EMU_DSP_LOWORD_OPY_MASK));
emuxki_write_micro(sc, (*pc << 1) + 1,
((op << 20) & EMU_DSP_HIWORD_OPCODE_MASK) |
((r << 10) & EMU_DSP_HIWORD_RESULT_MASK) |
(a & EMU_DSP_HIWORD_OPA_MASK));
(*pc)++;
}
/* init and shutdown */
static void
emuxki_initfx(struct emuxki_softc *sc)
{
u_int16_t pc;
/* Set all GPRs to 0 */
for (pc = 0; pc < 256; pc++)
emuxki_write(sc, 0, EMU_DSP_GPR(pc), 0);
for (pc = 0; pc < 160; pc++) {
emuxki_write(sc, 0, EMU_TANKMEMDATAREGBASE + pc, 0);
emuxki_write(sc, 0, EMU_TANKMEMADDRREGBASE + pc, 0);
}
pc = 0;
/* AC97 Out (l/r) = AC97 In (l/r) + FX[0/1] * 4 */
emuxki_dsp_addop(sc, &pc, EMU_DSP_OP_MACINTS,
EMU_DSP_OUTL(EMU_DSP_OUT_AC97),
EMU_DSP_CST(0),
EMU_DSP_FX(0), EMU_DSP_CST(4));
emuxki_dsp_addop(sc, &pc, EMU_DSP_OP_MACINTS,
EMU_DSP_OUTR(EMU_DSP_OUT_AC97),
EMU_DSP_CST(0),
EMU_DSP_FX(1), EMU_DSP_CST(4));
/* Rear channel OUT (l/r) = FX[2/3] * 4 */
#if 0
emuxki_dsp_addop(sc, &pc, EMU_DSP_OP_MACINTS,
EMU_DSP_OUTL(EMU_DSP_OUT_RCHAN),
EMU_DSP_OUTL(EMU_DSP_OUT_AC97),
EMU_DSP_FX(0), EMU_DSP_CST(4));
emuxki_dsp_addop(sc, &pc, EMU_DSP_OP_MACINTS,
EMU_DSP_OUTR(EMU_DSP_OUT_RCHAN),
EMU_DSP_OUTR(EMU_DSP_OUT_AC97),
EMU_DSP_FX(1), EMU_DSP_CST(4));
#endif
/* ADC recording (l/r) = AC97 In (l/r) */
emuxki_dsp_addop(sc, &pc, EMU_DSP_OP_ACC3,
EMU_DSP_OUTL(EMU_DSP_OUT_ADC),
EMU_DSP_INL(EMU_DSP_IN_AC97),
EMU_DSP_CST(0), EMU_DSP_CST(0));
emuxki_dsp_addop(sc, &pc, EMU_DSP_OP_ACC3,
EMU_DSP_OUTR(EMU_DSP_OUT_ADC),
EMU_DSP_INR(EMU_DSP_IN_AC97),
EMU_DSP_CST(0), EMU_DSP_CST(0));
/* zero out the rest of the microcode */
while (pc < 512)
emuxki_dsp_addop(sc, &pc, EMU_DSP_OP_ACC3,
EMU_DSP_CST(0), EMU_DSP_CST(0),
EMU_DSP_CST(0), EMU_DSP_CST(0));
emuxki_write(sc, 0, EMU_DBG, 0); /* Is it really necessary ? */
}
static int
emuxki_init(struct emuxki_softc *sc)
{
u_int16_t i;
u_int32_t spcs, *ptb;
bus_addr_t silentpage;
/* disable any channel interrupt */
emuxki_write(sc, 0, EMU_CLIEL, 0);
emuxki_write(sc, 0, EMU_CLIEH, 0);
emuxki_write(sc, 0, EMU_SOLEL, 0);
emuxki_write(sc, 0, EMU_SOLEH, 0);
/* Set recording buffers sizes to zero */
emuxki_write(sc, 0, EMU_MICBS, EMU_RECBS_BUFSIZE_NONE);
emuxki_write(sc, 0, EMU_MICBA, 0);
emuxki_write(sc, 0, EMU_FXBS, EMU_RECBS_BUFSIZE_NONE);
emuxki_write(sc, 0, EMU_FXBA, 0);
emuxki_write(sc, 0, EMU_ADCBS, EMU_RECBS_BUFSIZE_NONE);
emuxki_write(sc, 0, EMU_ADCBA, 0);
/* Initialize all channels to stopped and no effects */
for (i = 0; i < EMU_NUMCHAN; i++) {
emuxki_write(sc, i, EMU_CHAN_DCYSUSV, 0);
emuxki_write(sc, i, EMU_CHAN_IP, 0);
emuxki_write(sc, i, EMU_CHAN_VTFT, 0xffff);
emuxki_write(sc, i, EMU_CHAN_CVCF, 0xffff);
emuxki_write(sc, i, EMU_CHAN_PTRX, 0);
emuxki_write(sc, i, EMU_CHAN_CPF, 0);
emuxki_write(sc, i, EMU_CHAN_CCR, 0);
emuxki_write(sc, i, EMU_CHAN_PSST, 0);
emuxki_write(sc, i, EMU_CHAN_DSL, 0x10); /* Why 16 ? */
emuxki_write(sc, i, EMU_CHAN_CCCA, 0);
emuxki_write(sc, i, EMU_CHAN_Z1, 0);
emuxki_write(sc, i, EMU_CHAN_Z2, 0);
emuxki_write(sc, i, EMU_CHAN_FXRT, 0x32100000);
emuxki_write(sc, i, EMU_CHAN_ATKHLDM, 0);
emuxki_write(sc, i, EMU_CHAN_DCYSUSM, 0);
emuxki_write(sc, i, EMU_CHAN_IFATN, 0xffff);
emuxki_write(sc, i, EMU_CHAN_PEFE, 0);
emuxki_write(sc, i, EMU_CHAN_FMMOD, 0);
emuxki_write(sc, i, EMU_CHAN_TREMFRQ, 24);
emuxki_write(sc, i, EMU_CHAN_FM2FRQ2, 24);
emuxki_write(sc, i, EMU_CHAN_TEMPENV, 0);
/* these are last so OFF prevents writing */
emuxki_write(sc, i, EMU_CHAN_LFOVAL2, 0);
emuxki_write(sc, i, EMU_CHAN_LFOVAL1, 0);
emuxki_write(sc, i, EMU_CHAN_ATKHLDV, 0);
emuxki_write(sc, i, EMU_CHAN_ENVVOL, 0);
emuxki_write(sc, i, EMU_CHAN_ENVVAL, 0);
}
/* set digital outputs format */
spcs = (EMU_SPCS_CLKACCY_1000PPM | EMU_SPCS_SAMPLERATE_48 |
EMU_SPCS_CHANNELNUM_LEFT | EMU_SPCS_SOURCENUM_UNSPEC |
EMU_SPCS_GENERATIONSTATUS | 0x00001200 /* Cat code. */ |
0x00000000 /* IEC-958 Mode */ | EMU_SPCS_EMPHASIS_NONE |
EMU_SPCS_COPYRIGHT);
emuxki_write(sc, 0, EMU_SPCS0, spcs);
emuxki_write(sc, 0, EMU_SPCS1, spcs);
emuxki_write(sc, 0, EMU_SPCS2, spcs);
/* Let's play with sound processor */
emuxki_initfx(sc);
/* Here is our Page Table */
if ((sc->ptb = dmamem_alloc(sc->sc_dmat,
EMU_MAXPTE * sizeof(u_int32_t),
EMU_DMA_ALIGN, EMU_DMAMEM_NSEG,
M_DEVBUF, M_WAITOK)) == NULL)
return (ENOMEM);
/* This is necessary unless you like Metallic noise... */
if ((sc->silentpage = dmamem_alloc(sc->sc_dmat, EMU_PTESIZE,
EMU_DMA_ALIGN, EMU_DMAMEM_NSEG, M_DEVBUF, M_WAITOK))==NULL){
dmamem_free(sc->ptb, M_DEVBUF);
return (ENOMEM);
}
/* Zero out the silent page */
/* This might not be always true, it might be 128 for 8bit channels */
memset(KERNADDR(sc->silentpage), 0, DMASIZE(sc->silentpage));
/*
* Set all the PTB Entries to the silent page We shift the physical
* address by one and OR it with the page number. I don't know what
* the ORed index is for, might be a very useful unused feature...
*/
silentpage = DMAADDR(sc->silentpage) << 1;
ptb = KERNADDR(sc->ptb);
for (i = 0; i < EMU_MAXPTE; i++)
ptb[i] = silentpage | i;
/* Write PTB address and set TCB to none */
emuxki_write(sc, 0, EMU_PTB, DMAADDR(sc->ptb));
emuxki_write(sc, 0, EMU_TCBS, 0); /* This means 16K TCB */
emuxki_write(sc, 0, EMU_TCB, 0); /* No TCB use for now */
/*
* Set channels MAPs to the silent page.
* I don't know what MAPs are for.
*/
silentpage |= EMU_CHAN_MAP_PTI_MASK;
for (i = 0; i < EMU_NUMCHAN; i++) {
emuxki_write(sc, i, EMU_CHAN_MAPA, silentpage);
emuxki_write(sc, i, EMU_CHAN_MAPB, silentpage);
sc->channel[i] = NULL;
}
/* Init voices list */
LIST_INIT(&(sc->voices));
/* Timer is stopped */
sc->timerstate &= ~EMU_TIMER_STATE_ENABLED;
return (0);
}
static void
emuxki_shutdown(struct emuxki_softc *sc)
{
u_int32_t i;
/* Disable any Channels interrupts */
emuxki_write(sc, 0, EMU_CLIEL, 0);
emuxki_write(sc, 0, EMU_CLIEH, 0);
emuxki_write(sc, 0, EMU_SOLEL, 0);
emuxki_write(sc, 0, EMU_SOLEH, 0);
/*
* Should do some voice(stream) stopping stuff here, that's what will
* stop and deallocate all channels.
*/
/* Stop all channels */
/* XXX This shouldn't be necessary, I'll remove once everything works */
for (i = 0; i < EMU_NUMCHAN; i++)
emuxki_write(sc, i, EMU_CHAN_DCYSUSV, 0);
for (i = 0; i < EMU_NUMCHAN; i++) {
emuxki_write(sc, i, EMU_CHAN_VTFT, 0);
emuxki_write(sc, i, EMU_CHAN_CVCF, 0);
emuxki_write(sc, i, EMU_CHAN_PTRX, 0);
emuxki_write(sc, i, EMU_CHAN_CPF, 0);
}
/*
* Deallocate Emu10k1 caches and recording buffers. Again it will be
* removed because it will be done in voice shutdown.
*/
emuxki_write(sc, 0, EMU_MICBS, EMU_RECBS_BUFSIZE_NONE);
emuxki_write(sc, 0, EMU_MICBA, 0);
emuxki_write(sc, 0, EMU_FXBS, EMU_RECBS_BUFSIZE_NONE);
emuxki_write(sc, 0, EMU_FXBA, 0);
emuxki_write(sc, 0, EMU_FXWC, 0);
emuxki_write(sc, 0, EMU_ADCBS, EMU_RECBS_BUFSIZE_NONE);
emuxki_write(sc, 0, EMU_ADCBA, 0);
/*
* XXX I don't know yet how I will handle tank cache buffer,
* I don't even clearly know what it is for.
*/
emuxki_write(sc, 0, EMU_TCB, 0); /* 16K again */
emuxki_write(sc, 0, EMU_TCBS, 0);
emuxki_write(sc, 0, EMU_DBG, 0x8000); /* necessary ? */
dmamem_free(sc->silentpage, M_DEVBUF);
dmamem_free(sc->ptb, M_DEVBUF);
}
/* Emu10k1 Memory managment */
static struct emuxki_mem *
emuxki_mem_new(struct emuxki_softc *sc, int ptbidx,
size_t size, struct malloc_type *type, int flags)
{
struct emuxki_mem *mem;
if ((mem = malloc(sizeof(*mem), type, flags)) == NULL)
return (NULL);
mem->ptbidx = ptbidx;
if ((mem->dmamem = dmamem_alloc(sc->sc_dmat, size, EMU_DMA_ALIGN,
EMU_DMAMEM_NSEG, type, flags)) == NULL) {
free(mem, type);
return (NULL);
}
return (mem);
}
static void
emuxki_mem_delete(struct emuxki_mem *mem, struct malloc_type *type)
{
dmamem_free(mem->dmamem, type);
free(mem, type);
}
static void *
emuxki_pmem_alloc(struct emuxki_softc *sc, size_t size,
struct malloc_type *type, int flags)
{
int i, j, s;
size_t numblocks;
struct emuxki_mem *mem;
u_int32_t *ptb, silentpage;
ptb = KERNADDR(sc->ptb);
silentpage = DMAADDR(sc->silentpage) << 1;
numblocks = size / EMU_PTESIZE;
if (size % EMU_PTESIZE)
numblocks++;
for (i = 0; i < EMU_MAXPTE; i++)
if ((ptb[i] & EMU_CHAN_MAP_PTE_MASK) == silentpage) {
/* We look for a free PTE */
s = splaudio();
for (j = 0; j < numblocks; j++)
if ((ptb[i + j] & EMU_CHAN_MAP_PTE_MASK)
!= silentpage)
break;
if (j == numblocks) {
if ((mem = emuxki_mem_new(sc, i,
size, type, flags)) == NULL) {
splx(s);
return (NULL);
}
for (j = 0; j < numblocks; j++)
ptb[i + j] =
(((DMAADDR(mem->dmamem) +
j * EMU_PTESIZE)) << 1)
| (i + j);
LIST_INSERT_HEAD(&(sc->mem), mem, next);
splx(s);
return (KERNADDR(mem->dmamem));
} else
i += j;
splx(s);
}
return (NULL);
}
static void *
emuxki_rmem_alloc(struct emuxki_softc *sc, size_t size,
struct malloc_type *type, int flags)
{
struct emuxki_mem *mem;
int s;
mem = emuxki_mem_new(sc, EMU_RMEM, size, type, flags);
if (mem == NULL)
return (NULL);
s = splaudio();
LIST_INSERT_HEAD(&(sc->mem), mem, next);
splx(s);
return (KERNADDR(mem->dmamem));
}
/*
* emuxki_channel_* : Channel managment functions
* emuxki_chanparms_* : Channel parameters modification functions
*/
/*
* is splaudio necessary here, can the same voice be manipulated by two
* different threads at a time ?
*/
static void
emuxki_chanparms_set_defaults(struct emuxki_channel *chan)
{
chan->fxsend.a.level = chan->fxsend.b.level =
chan->fxsend.c.level = chan->fxsend.d.level = 0xc0; /* not max */
chan->fxsend.a.dest = 0x0;
chan->fxsend.b.dest = 0x1;
chan->fxsend.c.dest = 0x2;
chan->fxsend.d.dest = 0x3;
chan->pitch.initial = 0x0000; /* shouldn't it be 0xE000 ? */
chan->pitch.current = 0x0000; /* should it be 0x0400 */
chan->pitch.target = 0x0000; /* the unity pitch shift ? */
chan->pitch.envelope_amount = 0x00; /* none */
chan->initial_attenuation = 0x00; /* no attenuation */
chan->volume.current = 0x0000; /* no volume */
chan->volume.target = 0xffff;
chan->volume.envelope.current_state = 0x8000; /* 0 msec delay */
chan->volume.envelope.hold_time = 0x7f; /* 0 msec */
chan->volume.envelope.attack_time = 0x7F; /* 5.5msec */
chan->volume.envelope.sustain_level = 0x7F; /* full */
chan->volume.envelope.decay_time = 0x7F; /* 22msec */
chan->filter.initial_cutoff_frequency = 0xff; /* no filter */
chan->filter.current_cutoff_frequency = 0xffff; /* no filtering */
chan->filter.target_cutoff_frequency = 0xffff; /* no filtering */
chan->filter.lowpass_resonance_height = 0x0;
chan->filter.interpolation_ROM = 0x1; /* full band */
chan->filter.envelope_amount = 0x7f; /* none */
chan->filter.LFO_modulation_depth = 0x00; /* none */
chan->loop.start = 0x000000;
chan->loop.end = 0x000010; /* Why ? */
chan->modulation.envelope.current_state = 0x8000;
chan->modulation.envelope.hold_time = 0x00; /* 127 better ? */
chan->modulation.envelope.attack_time = 0x00; /* infinite */
chan->modulation.envelope.sustain_level = 0x00; /* off */
chan->modulation.envelope.decay_time = 0x7f; /* 22 msec */
chan->modulation.LFO_state = 0x8000;
chan->vibrato_LFO.state = 0x8000;
chan->vibrato_LFO.modulation_depth = 0x00; /* none */
chan->vibrato_LFO.vibrato_depth = 0x00;
chan->vibrato_LFO.frequency = 0x00; /* Why set to 24 when
* initialized ? */
chan->tremolo_depth = 0x00;
}
/* only call it at splaudio */
static struct emuxki_channel *
emuxki_channel_new(struct emuxki_voice *voice, u_int8_t num)
{
struct emuxki_channel *chan;
chan = malloc(sizeof(struct emuxki_channel), M_DEVBUF, M_WAITOK);
if (chan == NULL)
return (NULL);
chan->voice = voice;
chan->num = num;
emuxki_chanparms_set_defaults(chan);
chan->voice->sc->channel[num] = chan;
return (chan);
}
/* only call it at splaudio */
static void
emuxki_channel_delete(struct emuxki_channel *chan)
{
chan->voice->sc->channel[chan->num] = NULL;
free(chan, M_DEVBUF);
}
static void
emuxki_channel_set_fxsend(struct emuxki_channel *chan,
struct emuxki_chanparms_fxsend *fxsend)
{
/* Could do a memcpy ...*/
chan->fxsend.a.level = fxsend->a.level;
chan->fxsend.b.level = fxsend->b.level;
chan->fxsend.c.level = fxsend->c.level;
chan->fxsend.d.level = fxsend->d.level;
chan->fxsend.a.dest = fxsend->a.dest;
chan->fxsend.b.dest = fxsend->b.dest;
chan->fxsend.c.dest = fxsend->c.dest;
chan->fxsend.d.dest = fxsend->d.dest;
}
static void
emuxki_channel_set_srate(struct emuxki_channel *chan, u_int32_t srate)
{
chan->pitch.target = (srate << 8) / 375;
chan->pitch.target = (chan->pitch.target >> 1) +
(chan->pitch.target & 1);
chan->pitch.target &= 0xffff;
chan->pitch.current = chan->pitch.target;
chan->pitch.initial =
(emuxki_rate_to_pitch(srate) >> 8) & EMU_CHAN_IP_MASK;
}
/* voice params must be set before calling this */
static void
emuxki_channel_set_bufparms(struct emuxki_channel *chan,
u_int32_t start, u_int32_t end)
{
u_int8_t shift;
struct emuxki_voice *voice = chan->voice;
shift = voice->stereo + voice->b16;
chan->loop.start = start & EMU_CHAN_PSST_LOOPSTARTADDR_MASK;
chan->loop.end = end & EMU_CHAN_DSL_LOOPENDADDR_MASK;
}
static void
emuxki_channel_commit_parms(struct emuxki_channel *chan)
{
struct emuxki_voice *voice = chan->voice;
struct emuxki_softc *sc = voice->sc;
u_int32_t start, mapval;
u_int8_t chano = chan->num;
int s;
start = chan->loop.start +
(voice->stereo ? 28 : 30) * (voice->b16 + 1);
mapval = DMAADDR(sc->silentpage) << 1 | EMU_CHAN_MAP_PTI_MASK;
s = splaudio();
emuxki_write(sc, chano, EMU_CHAN_CPF_STEREO, voice->stereo);
emuxki_write(sc, chano, EMU_CHAN_FXRT,
(chan->fxsend.d.dest << 28) | (chan->fxsend.c.dest << 24) |
(chan->fxsend.b.dest << 20) | (chan->fxsend.a.dest << 16));
emuxki_write(sc, chano, 0x10000000 | EMU_CHAN_PTRX,
(chan->fxsend.a.level << 8) | chan->fxsend.b.level);
emuxki_write(sc, chano, EMU_CHAN_DSL,
(chan->fxsend.d.level << 24) | chan->loop.end);
emuxki_write(sc, chano, EMU_CHAN_PSST,
(chan->fxsend.c.level << 24) | chan->loop.start);
emuxki_write(sc, chano, EMU_CHAN_CCCA,
(chan->filter.lowpass_resonance_height << 28) |
(chan->filter.interpolation_ROM << 25) |
(voice->b16 ? 0 : EMU_CHAN_CCCA_8BITSELECT) | start);
emuxki_write(sc, chano, EMU_CHAN_Z1, 0);
emuxki_write(sc, chano, EMU_CHAN_Z2, 0);
emuxki_write(sc, chano, EMU_CHAN_MAPA, mapval);
emuxki_write(sc, chano, EMU_CHAN_MAPB, mapval);
emuxki_write(sc, chano, EMU_CHAN_CVCF_CURRFILTER,
chan->filter.current_cutoff_frequency);
emuxki_write(sc, chano, EMU_CHAN_VTFT_FILTERTARGET,
chan->filter.target_cutoff_frequency);
emuxki_write(sc, chano, EMU_CHAN_ATKHLDM,
(chan->modulation.envelope.hold_time << 8) |
chan->modulation.envelope.attack_time);
emuxki_write(sc, chano, EMU_CHAN_DCYSUSM,
(chan->modulation.envelope.sustain_level << 8) |
chan->modulation.envelope.decay_time);
emuxki_write(sc, chano, EMU_CHAN_LFOVAL1,
chan->modulation.LFO_state);
emuxki_write(sc, chano, EMU_CHAN_LFOVAL2,
chan->vibrato_LFO.state);
emuxki_write(sc, chano, EMU_CHAN_FMMOD,
(chan->vibrato_LFO.modulation_depth << 8) |
chan->filter.LFO_modulation_depth);
emuxki_write(sc, chano, EMU_CHAN_TREMFRQ,
(chan->tremolo_depth << 8));
emuxki_write(sc, chano, EMU_CHAN_FM2FRQ2,
(chan->vibrato_LFO.vibrato_depth << 8) |
chan->vibrato_LFO.frequency);
emuxki_write(sc, chano, EMU_CHAN_ENVVAL,
chan->modulation.envelope.current_state);
emuxki_write(sc, chano, EMU_CHAN_ATKHLDV,
(chan->volume.envelope.hold_time << 8) |
chan->volume.envelope.attack_time);
emuxki_write(sc, chano, EMU_CHAN_ENVVOL,
chan->volume.envelope.current_state);
emuxki_write(sc, chano, EMU_CHAN_PEFE,
(chan->pitch.envelope_amount << 8) |
chan->filter.envelope_amount);
splx(s);
}
static void
emuxki_channel_start(struct emuxki_channel *chan)
{
struct emuxki_voice *voice = chan->voice;
struct emuxki_softc *sc = voice->sc;
u_int8_t cache_sample, cache_invalid_size, chano = chan->num;
u_int32_t sample;
int s;
cache_sample = voice->stereo ? 4 : 2;
sample = voice->b16 ? 0x00000000 : 0x80808080;
cache_invalid_size = (voice->stereo ? 28 : 30) * (voice->b16 + 1);
s = splaudio();
while (cache_sample--) {
emuxki_write(sc, chano, EMU_CHAN_CD0 + cache_sample,
sample);
}
emuxki_write(sc, chano, EMU_CHAN_CCR_CACHEINVALIDSIZE, 0);
emuxki_write(sc, chano, EMU_CHAN_CCR_READADDRESS, 64);
emuxki_write(sc, chano, EMU_CHAN_CCR_CACHEINVALIDSIZE,
cache_invalid_size);
emuxki_write(sc, chano, EMU_CHAN_IFATN,
(chan->filter.target_cutoff_frequency << 8) |
chan->initial_attenuation);
emuxki_write(sc, chano, EMU_CHAN_VTFT_VOLUMETARGET,
chan->volume.target);
emuxki_write(sc, chano, EMU_CHAN_CVCF_CURRVOL,
chan->volume.current);
emuxki_write(sc, 0,
EMU_MKSUBREG(1, chano, EMU_SOLEL + (chano >> 5)),
0); /* Clear stop on loop */
emuxki_write(sc, 0,
EMU_MKSUBREG(1, chano, EMU_CLIEL + (chano >> 5)),
0); /* Clear loop interrupt */
emuxki_write(sc, chano, EMU_CHAN_DCYSUSV,
(chan->volume.envelope.sustain_level << 8) |
chan->volume.envelope.decay_time);
emuxki_write(sc, chano, EMU_CHAN_PTRX_PITCHTARGET,
chan->pitch.target);
emuxki_write(sc, chano, EMU_CHAN_CPF_PITCH,
chan->pitch.current);
emuxki_write(sc, chano, EMU_CHAN_IP, chan->pitch.initial);
splx(s);
}
static void
emuxki_channel_stop(struct emuxki_channel *chan)
{
int s;
u_int8_t chano = chan->num;
struct emuxki_softc *sc = chan->voice->sc;
s = splaudio();
emuxki_write(sc, chano, EMU_CHAN_PTRX_PITCHTARGET, 0);
emuxki_write(sc, chano, EMU_CHAN_CPF_PITCH, 0);
emuxki_write(sc, chano, EMU_CHAN_IFATN_ATTENUATION, 0xff);
emuxki_write(sc, chano, EMU_CHAN_VTFT_VOLUMETARGET, 0);
emuxki_write(sc, chano, EMU_CHAN_CVCF_CURRVOL, 0);
emuxki_write(sc, chano, EMU_CHAN_IP, 0);
splx(s);
}
/*
* Voices managment
* emuxki_voice_dataloc : use(play or rec) independant dataloc union helpers
* emuxki_voice_channel_* : play part of dataloc union helpers
* emuxki_voice_recsrc_* : rec part of dataloc union helpers
*/
/* Allocate channels for voice in case of play voice */
static int
emuxki_voice_channel_create(struct emuxki_voice *voice)
{
struct emuxki_channel **channel = voice->sc->channel;
u_int8_t i, stereo = voice->stereo;
int s;
for (i = 0; i < EMU_NUMCHAN; i += stereo + 1) {
if ((stereo && (channel[i + 1] != NULL)) ||
(channel[i] != NULL)) /* Looking for free channels */
continue;
s = splaudio();
if (stereo) {
voice->dataloc.chan[1] =
emuxki_channel_new(voice, i + 1);
if (voice->dataloc.chan[1] == NULL) {
splx(s);
return (ENOMEM);
}
}
voice->dataloc.chan[0] = emuxki_channel_new(voice, i);
if (voice->dataloc.chan[0] == NULL) {
if (stereo) {
emuxki_channel_delete(voice->dataloc.chan[1]);
voice->dataloc.chan[1] = NULL;
}
splx(s);
return (ENOMEM);
}
splx(s);
return (0);
}
return (EAGAIN);
}
/* When calling this function we assume no one can access the voice */
static void
emuxki_voice_channel_destroy(struct emuxki_voice *voice)
{
emuxki_channel_delete(voice->dataloc.chan[0]);
voice->dataloc.chan[0] = NULL;
if (voice->stereo)
emuxki_channel_delete(voice->dataloc.chan[1]);
voice->dataloc.chan[1] = NULL;
}
/*
* Will come back when used in voice_dataloc_create
*/
static int
emuxki_recsrc_reserve(struct emuxki_voice *voice, emuxki_recsrc_t source)
{
if (source < 0 || source >= EMU_NUMRECSRCS) {
#ifdef EMUXKI_DEBUG
printf("Tryed to reserve invalid source: %d\n", source);
#endif
return (EINVAL);
}
if (voice->sc->recsrc[source] == voice)
return (0); /* XXX */
if (voice->sc->recsrc[source] != NULL)
return (EBUSY);
voice->sc->recsrc[source] = voice;
return (0);
}
static int
emuxki_recsrc_rate_to_index(int srate)
{
int index;
for(index = 0; ; index++) {
if (emuxki_recsrc_adcrates[index] == srate)
return (index);
if (emuxki_recsrc_adcrates[index] < 0)
return (-1);
}
}
/* When calling this function we assume the voice is stopped */
static void
emuxki_voice_recsrc_release(struct emuxki_softc *sc, emuxki_recsrc_t source)
{
sc->recsrc[source] = NULL;
}
static int
emuxki_voice_dataloc_create(struct emuxki_voice *voice)
{
int error;
if (voice->use & EMU_VOICE_USE_PLAY) {
if ((error = emuxki_voice_channel_create(voice)))
return (error);
} else {
if ((error =
emuxki_recsrc_reserve(voice, voice->dataloc.source)))
return (error);
}
return (0);
}
static void
emuxki_voice_dataloc_destroy(struct emuxki_voice *voice)
{
if (voice->use & EMU_VOICE_USE_PLAY) {
if (voice->dataloc.chan[0] != NULL)
emuxki_voice_channel_destroy(voice);
} else {
if (voice->dataloc.source != EMU_RECSRC_NOTSET) {
emuxki_voice_recsrc_release(voice->sc,
voice->dataloc.source);
voice->dataloc.source = EMU_RECSRC_NOTSET;
}
}
}
static struct emuxki_voice *
emuxki_voice_new(struct emuxki_softc *sc, u_int8_t use)
{
struct emuxki_voice *voice;
int s;
s = splaudio();
voice = sc->lvoice;
sc->lvoice = NULL;
splx(s);
if (!voice) {
if (!(voice = malloc(sizeof(*voice), M_DEVBUF, M_WAITOK)))
return (NULL);
} else if (voice->use != use)
emuxki_voice_dataloc_destroy(voice);
else
goto skip_initialize;
voice->sc = sc;
voice->state = !EMU_VOICE_STATE_STARTED;
voice->stereo = EMU_VOICE_STEREO_NOTSET;
voice->b16 = 0;
voice->sample_rate = 0;
if (use & EMU_VOICE_USE_PLAY)
voice->dataloc.chan[0] = voice->dataloc.chan[1] = NULL;
else
voice->dataloc.source = EMU_RECSRC_NOTSET;
voice->buffer = NULL;
voice->blksize = 0;
voice->trigblk = 0;
voice->blkmod = 0;
voice->inth = NULL;
voice->inthparam = NULL;
voice->use = use;
skip_initialize:
s = splaudio();
LIST_INSERT_HEAD((&sc->voices), voice, next);
splx(s);
return (voice);
}
static void
emuxki_voice_delete(struct emuxki_voice *voice)
{
struct emuxki_softc *sc = voice->sc;
struct emuxki_voice *lvoice;
int s;
if (voice->state & EMU_VOICE_STATE_STARTED)
emuxki_voice_halt(voice);
s = splaudio();
LIST_REMOVE(voice, next);
lvoice = sc->lvoice;
sc->lvoice = voice;
splx(s);
if (lvoice) {
emuxki_voice_dataloc_destroy(lvoice);
free(lvoice, M_DEVBUF);
}
}
static int
emuxki_voice_set_stereo(struct emuxki_voice *voice, u_int8_t stereo)
{
int error;
emuxki_recsrc_t source;
struct emuxki_chanparms_fxsend fxsend;
if (! (voice->use & EMU_VOICE_USE_PLAY))
source = voice->dataloc.source;
emuxki_voice_dataloc_destroy(voice);
if (! (voice->use & EMU_VOICE_USE_PLAY))
voice->dataloc.source = source;
voice->stereo = stereo;
if ((error = emuxki_voice_dataloc_create(voice)))
return (error);
if (voice->use & EMU_VOICE_USE_PLAY) {
fxsend.a.dest = 0x0;
fxsend.b.dest = 0x1;
fxsend.c.dest = 0x2;
fxsend.d.dest = 0x3;
if (voice->stereo) {
fxsend.a.level = fxsend.c.level = 0xc0;
fxsend.b.level = fxsend.d.level = 0x00;
emuxki_channel_set_fxsend(voice->dataloc.chan[0],
&fxsend);
fxsend.a.level = fxsend.c.level = 0x00;
fxsend.b.level = fxsend.d.level = 0xc0;
emuxki_channel_set_fxsend(voice->dataloc.chan[1],
&fxsend);
} /* No else : default is good for mono */
}
return (0);
}
static int
emuxki_voice_set_srate(struct emuxki_voice *voice, u_int32_t srate)
{
if (voice->use & EMU_VOICE_USE_PLAY) {
if ((srate < 4000) || (srate > 48000))
return (EINVAL);
voice->sample_rate = srate;
emuxki_channel_set_srate(voice->dataloc.chan[0], srate);
if (voice->stereo)
emuxki_channel_set_srate(voice->dataloc.chan[1],
srate);
} else {
if (emuxki_recsrc_rate_to_index(srate) < 0)
return (EINVAL);
voice->sample_rate = srate;
}
return (0);
}
static int
emuxki_voice_set_audioparms(struct emuxki_voice *voice, u_int8_t stereo,
u_int8_t b16, u_int32_t srate)
{
int error;
if (voice->stereo == stereo && voice->b16 == b16 &&
voice->sample_rate == srate)
return (0);
#ifdef EMUXKI_DEBUG
printf("Setting %s voice params : %s, %u bits, %u Hz\n",
(voice->use & EMU_VOICE_USE_PLAY) ? "play" : "record",
stereo ? "stereo" : "mono", (b16 + 1) * 8, srate);
#endif
if (voice->stereo != stereo) {
if ((error = emuxki_voice_set_stereo(voice, stereo)))
return (error);
}
voice->b16 = b16;
if (voice->sample_rate != srate)
error = emuxki_voice_set_srate(voice, srate);
return error;
}
/* voice audio parms (see just before) must be set prior to this */
static int
emuxki_voice_set_bufparms(struct emuxki_voice *voice, void *ptr,
u_int32_t bufsize, u_int16_t blksize)
{
struct emuxki_mem *mem;
struct emuxki_channel **chan;
u_int32_t start, end;
u_int8_t sample_size;
int idx;
int error = EFAULT;
LIST_FOREACH(mem, &voice->sc->mem, next) {
if (KERNADDR(mem->dmamem) != ptr)
continue;
voice->buffer = mem;
sample_size = (voice->b16 + 1) * (voice->stereo + 1);
voice->trigblk = 0; /* This shouldn't be needed */
voice->blkmod = bufsize / blksize;
if (bufsize % blksize) /* This should not happen */
voice->blkmod++;
error = 0;
if (voice->use & EMU_VOICE_USE_PLAY) {
voice->blksize = blksize / sample_size;
chan = voice->dataloc.chan;
start = mem->ptbidx << 12;
end = start + bufsize / sample_size;
emuxki_channel_set_bufparms(chan[0],
start, end);
if (voice->stereo)
emuxki_channel_set_bufparms(chan[1],
start, end);
voice->timerate = (u_int32_t) 48000 *
voice->blksize / voice->sample_rate;
if (voice->timerate < 5)
error = EINVAL;
} else {
voice->blksize = blksize;
for(idx = sizeof(emuxki_recbuf_sz) /
sizeof(emuxki_recbuf_sz[0]); --idx >= 0;)
if (emuxki_recbuf_sz[idx] == bufsize)
break;
if (idx < 0) {
#ifdef EMUXKI_DEBUG
printf("Invalid bufsize: %d\n", bufsize);
#endif
return (EINVAL);
}
emuxki_write(voice->sc, 0,
emuxki_recsrc_szreg[voice->dataloc.source], idx);
emuxki_write(voice->sc, 0,
emuxki_recsrc_bufaddrreg[voice->dataloc.source],
DMAADDR(mem->dmamem));
/* Use timer to emulate DMA completion interrupt */
voice->timerate = (u_int32_t) 48000 * blksize /
(voice->sample_rate * sample_size);
if (voice->timerate < 5) {
#ifdef EMUXKI_DEBUG
printf("Invalid timerate: %d, blksize %d\n",
voice->timerate, blksize);
#endif
error = EINVAL;
}
}
break;
}
return (error);
}
static void
emuxki_voice_commit_parms(struct emuxki_voice *voice)
{
if (voice->use & EMU_VOICE_USE_PLAY) {
emuxki_channel_commit_parms(voice->dataloc.chan[0]);
if (voice->stereo)
emuxki_channel_commit_parms(voice->dataloc.chan[1]);
}
}
static u_int32_t
emuxki_voice_curaddr(struct emuxki_voice *voice)
{
/* XXX different semantics in these cases */
if (voice->use & EMU_VOICE_USE_PLAY)
/* returns number of samples (an l/r pair counts 1) */
return (emuxki_read(voice->sc,
voice->dataloc.chan[0]->num,
EMU_CHAN_CCCA_CURRADDR) -
voice->dataloc.chan[0]->loop.start);
else
/* returns number of bytes */
return (emuxki_read(voice->sc, 0,
emuxki_recsrc_idxreg[voice->dataloc.source]) &
EMU_RECIDX_MASK);
return (0);
}
static void
emuxki_resched_timer(struct emuxki_softc *sc)
{
struct emuxki_voice *voice;
u_int16_t timerate = 1024;
u_int8_t active = 0;
int s;
s = splaudio();
LIST_FOREACH(voice, &sc->voices, next) {
if ((voice->state & EMU_VOICE_STATE_STARTED) == 0)
continue;
active = 1;
if (voice->timerate < timerate)
timerate = voice->timerate;
}
if (timerate & ~EMU_TIMER_RATE_MASK)
timerate = 0;
bus_space_write_2(sc->sc_iot, sc->sc_ioh, EMU_TIMER, timerate);
if (!active && (sc->timerstate & EMU_TIMER_STATE_ENABLED)) {
bus_space_write_4(sc->sc_iot, sc->sc_ioh, EMU_INTE,
bus_space_read_4(sc->sc_iot, sc->sc_ioh, EMU_INTE) &
~EMU_INTE_INTERTIMERENB);
sc->timerstate &= ~EMU_TIMER_STATE_ENABLED;
} else if (active && !(sc->timerstate & EMU_TIMER_STATE_ENABLED)) {
bus_space_write_4(sc->sc_iot, sc->sc_ioh, EMU_INTE,
bus_space_read_4(sc->sc_iot, sc->sc_ioh, EMU_INTE) |
EMU_INTE_INTERTIMERENB);
sc->timerstate |= EMU_TIMER_STATE_ENABLED;
}
splx(s);
}
static void
emuxki_voice_start(struct emuxki_voice *voice,
void (*inth) (void *), void *inthparam)
{
u_int32_t val;
voice->inth = inth;
voice->inthparam = inthparam;
if (voice->use & EMU_VOICE_USE_PLAY) {
voice->trigblk = 1;
emuxki_channel_start(voice->dataloc.chan[0]);
if (voice->stereo)
emuxki_channel_start(voice->dataloc.chan[1]);
} else {
voice->trigblk = 1;
switch ((int)voice->dataloc.source) {
case EMU_RECSRC_ADC:
val = EMU_ADCCR_LCHANENABLE;
/* XXX need to program DSP to output L+R
* XXX in monaural case? */
if (voice->stereo)
val |= EMU_ADCCR_RCHANENABLE;
val |= emuxki_recsrc_rate_to_index(voice->sample_rate);
emuxki_write(voice->sc, 0, EMU_ADCCR, 0);
emuxki_write(voice->sc, 0, EMU_ADCCR, val);
break;
case EMU_RECSRC_MIC:
case EMU_RECSRC_FX:
printf("unimplemented\n");
break;
}
#if 0
/* DMA completion interrupt is useless; use timer */
int s;
s = splaudio();
val = emu_rd(sc, INTE, 4);
val |= emuxki_recsrc_intrmasks[voice->dataloc.source];
emu_wr(sc, INTE, val, 4);
splx(s);
#endif
}
voice->state |= EMU_VOICE_STATE_STARTED;
emuxki_resched_timer(voice->sc);
}
static void
emuxki_voice_halt(struct emuxki_voice *voice)
{
if (voice->use & EMU_VOICE_USE_PLAY) {
emuxki_channel_stop(voice->dataloc.chan[0]);
if (voice->stereo)
emuxki_channel_stop(voice->dataloc.chan[1]);
} else {
switch (voice->dataloc.source) {
case EMU_RECSRC_ADC:
emuxki_write(voice->sc, 0, EMU_ADCCR, 0);
break;
case EMU_RECSRC_FX:
case EMU_RECSRC_MIC:
printf("unimplemented\n");
break;
case EMU_RECSRC_NOTSET:
printf("Bad dataloc.source\n");
}
/* This should reset buffer pointer */
emuxki_write(voice->sc, 0,
emuxki_recsrc_szreg[voice->dataloc.source],
EMU_RECBS_BUFSIZE_NONE);
#if 0
int s;
s = splaudio();
val = emu_rd(sc, INTE, 4);
val &= ~emuxki_recsrc_intrmasks[voice->dataloc.source];
emu_wr(sc, INTE, val, 4);
splx(s);
#endif
}
voice->state &= ~EMU_VOICE_STATE_STARTED;
emuxki_resched_timer(voice->sc);
}
/*
* The interrupt handler
*/
static int
emuxki_intr(void *arg)
{
struct emuxki_softc *sc = arg;
u_int32_t ipr, curblk;
struct emuxki_voice *voice;
int claim = 0;
while ((ipr = bus_space_read_4(sc->sc_iot, sc->sc_ioh, EMU_IPR))) {
if (ipr & EMU_IPR_INTERVALTIMER) {
LIST_FOREACH(voice, &sc->voices, next) {
if ((voice->state &
EMU_VOICE_STATE_STARTED) == 0)
continue;
curblk = emuxki_voice_curaddr(voice) /
voice->blksize;
#if 0
if (curblk == voice->trigblk) {
voice->inth(voice->inthparam);
voice->trigblk++;
voice->trigblk %= voice->blkmod;
}
#else
while ((curblk >= voice->trigblk &&
curblk < (voice->trigblk + voice->blkmod / 2)) ||
((int)voice->trigblk - (int)curblk) >
(voice->blkmod / 2 + 1)) {
voice->inth(voice->inthparam);
voice->trigblk++;
voice->trigblk %= voice->blkmod;
}
#endif
}
}
/* Got interrupt */
bus_space_write_4(sc->sc_iot, sc->sc_ioh, EMU_IPR, ipr);
claim = 1;
}
return (claim);
}
/*
* Audio Architecture callbacks
*/
static int
emuxki_open(void *addr, int flags)
{
struct emuxki_softc *sc = addr;
#ifdef EMUXKI_DEBUG
printf("%s: emuxki_open called\n", sc->sc_dev.dv_xname);
#endif
/*
* Multiple voice support would be added as soon as I find a way to
* trick the audio arch into supporting multiple voices.
* Or I might integrate a modified audio arch supporting
* multiple voices.
*/
/*
* I did this because i have problems identifying the selected
* recording source(s) which is necessary when setting recording
* params This will be adressed very soon
*/
if (flags & AUOPEN_READ) {
sc->rvoice = emuxki_voice_new(sc, 0 /* EMU_VOICE_USE_RECORD */);
if (sc->rvoice == NULL)
return (EBUSY);
/* XXX Hardcode RECSRC_ADC for now */
sc->rvoice->dataloc.source = EMU_RECSRC_ADC;
}
if (flags & AUOPEN_WRITE) {
sc->pvoice = emuxki_voice_new(sc, EMU_VOICE_USE_PLAY);
if (sc->pvoice == NULL) {
if (sc->rvoice) {
emuxki_voice_delete(sc->rvoice);
sc->rvoice = NULL;
}
return (EBUSY);
}
}
return (0);
}
static void
emuxki_close(void *addr)
{
struct emuxki_softc *sc = addr;
#ifdef EMUXKI_DEBUG
printf("%s: emu10K1_close called\n", sc->sc_dev.dv_xname);
#endif
/* No multiple voice support for now */
if (sc->rvoice != NULL) {
emuxki_voice_delete(sc->rvoice);
sc->rvoice = NULL;
}
if (sc->pvoice != NULL) {
emuxki_voice_delete(sc->pvoice);
sc->pvoice = NULL;
}
}
static int
emuxki_query_encoding(void *addr, struct audio_encoding *fp)
{
#ifdef EMUXKI_DEBUG
struct emuxki_softc *sc = addr;
printf("%s: emuxki_query_encoding called\n", sc->sc_dev.dv_xname);
#endif
switch (fp->index) {
case 0:
strcpy(fp->name, AudioEulinear);
fp->encoding = AUDIO_ENCODING_ULINEAR;
fp->precision = 8;
fp->flags = 0;
break;
case 1:
strcpy(fp->name, AudioEmulaw);
fp->encoding = AUDIO_ENCODING_ULAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 2:
strcpy(fp->name, AudioEalaw);
fp->encoding = AUDIO_ENCODING_ALAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 3:
strcpy(fp->name, AudioEslinear);
fp->encoding = AUDIO_ENCODING_SLINEAR;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 4:
strcpy(fp->name, AudioEslinear_le);
fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
fp->precision = 16;
fp->flags = 0;
break;
case 5:
strcpy(fp->name, AudioEulinear_le);
fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 6:
strcpy(fp->name, AudioEslinear_be);
fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 7:
strcpy(fp->name, AudioEulinear_be);
fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
default:
return (EINVAL);
}
return (0);
}
static int
emuxki_set_vparms(struct emuxki_voice *voice, struct audio_params *p)
{
u_int8_t b16, mode;
mode = (voice->use & EMU_VOICE_USE_PLAY) ?
AUMODE_PLAY : AUMODE_RECORD;
p->factor = 1;
p->sw_code = NULL;
if (p->channels != 1 && p->channels != 2)
return (EINVAL);/* Will change when streams come in use */
/*
* Always use slinear_le for recording, as how to set otherwise
* isn't known.
*/
if (mode == AUMODE_PLAY)
b16 = (p->precision == 16);
else {
p->hw_encoding = AUDIO_ENCODING_SLINEAR_LE;
p->hw_precision = 16;
b16 = 1;
if (p->precision == 8)
p->factor *= 2;
}
switch (p->encoding) {
case AUDIO_ENCODING_ULAW:
if (mode == AUMODE_PLAY) {
p->factor = 2;
p->sw_code = mulaw_to_slinear16_le;
b16 = 1;
} else
p->sw_code = slinear16_to_mulaw_le;
break;
case AUDIO_ENCODING_ALAW:
if (mode == AUMODE_PLAY) {
p->factor = 2;
p->sw_code = alaw_to_slinear16_le;
b16 = 1;
} else
p->sw_code = slinear16_to_alaw_le;
break;
case AUDIO_ENCODING_SLINEAR_LE:
if (p->precision == 8) {
if (mode == AUMODE_PLAY)
p->sw_code = change_sign8;
else
p->sw_code = linear16_to_linear8_le;
}
break;
case AUDIO_ENCODING_ULINEAR_LE:
if (p->precision == 16)
p->sw_code = change_sign16_le;
else if (mode == AUMODE_RECORD)
p->sw_code = slinear16_to_ulinear8_le;
break;
case AUDIO_ENCODING_SLINEAR_BE:
if (p->precision == 16)
p->sw_code = swap_bytes;
else {
if (mode == AUMODE_PLAY)
p->sw_code = change_sign8;
else
p->sw_code = linear16_to_linear8_le;
}
break;
case AUDIO_ENCODING_ULINEAR_BE:
if (p->precision == 16) {
if (mode == AUMODE_PLAY)
p->sw_code = swap_bytes_change_sign16_le;
else
p->sw_code = change_sign16_swap_bytes_le;
} else if (mode == AUMODE_RECORD)
p->sw_code = slinear16_to_ulinear8_le;
break;
default:
return (EINVAL);
}
return (emuxki_voice_set_audioparms(voice, p->channels == 2,
b16, p->sample_rate));
}
static int
emuxki_set_params(void *addr, int setmode, int usemode,
struct audio_params *play, struct audio_params *rec)
{
struct emuxki_softc *sc = addr;
int mode, error;
struct audio_params *p;
struct emuxki_voice *v;
for (mode = AUMODE_RECORD; mode != -1;
mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
if ((usemode & setmode & mode) == 0)
continue;
if (mode == AUMODE_PLAY) {
p = play;
v = sc->pvoice;
} else {
p = rec;
v = sc->rvoice;
}
if (v == NULL) {
continue;
}
/* No multiple voice support for now */
if ((error = emuxki_set_vparms(v, p)))
return (error);
}
return (0);
}
static int
emuxki_halt_output(void *addr)
{
struct emuxki_softc *sc = addr;
/* No multiple voice support for now */
if (sc->pvoice == NULL)
return (ENXIO);
emuxki_voice_halt(sc->pvoice);
return (0);
}
static int
emuxki_halt_input(void *addr)
{
struct emuxki_softc *sc = addr;
#ifdef EMUXKI_DEBUG
printf("%s: emuxki_halt_input called\n", sc->sc_dev.dv_xname);
#endif
/* No multiple voice support for now */
if (sc->rvoice == NULL)
return (ENXIO);
emuxki_voice_halt(sc->rvoice);
return (0);
}
static int
emuxki_getdev(void *addr, struct audio_device *dev)
{
strncpy(dev->name, "Creative EMU10k1", sizeof(dev->name));
strcpy(dev->version, "");
strncpy(dev->config, "emuxki", sizeof(dev->config));
return (0);
}
static int
emuxki_set_port(void *addr, mixer_ctrl_t *mctl)
{
struct emuxki_softc *sc = addr;
return sc->codecif->vtbl->mixer_set_port(sc->codecif, mctl);
}
static int
emuxki_get_port(void *addr, mixer_ctrl_t *mctl)
{
struct emuxki_softc *sc = addr;
return sc->codecif->vtbl->mixer_get_port(sc->codecif, mctl);
}
static int
emuxki_query_devinfo(void *addr, mixer_devinfo_t *minfo)
{
struct emuxki_softc *sc = addr;
return sc->codecif->vtbl->query_devinfo(sc->codecif, minfo);
}
static void *
emuxki_allocm(void *addr, int direction, size_t size,
struct malloc_type *type, int flags)
{
struct emuxki_softc *sc = addr;
if (direction == AUMODE_PLAY)
return emuxki_pmem_alloc(sc, size, type, flags);
else
return emuxki_rmem_alloc(sc, size, type, flags);
}
static void
emuxki_freem(void *addr, void *ptr, struct malloc_type *type)
{
struct emuxki_softc *sc = addr;
int i, s;
struct emuxki_mem *mem;
size_t numblocks;
u_int32_t *ptb, silentpage;
ptb = KERNADDR(sc->ptb);
silentpage = DMAADDR(sc->silentpage) << 1;
LIST_FOREACH(mem, &sc->mem, next) {
if (KERNADDR(mem->dmamem) != ptr)
continue;
s = splaudio();
if (mem->ptbidx != EMU_RMEM) {
numblocks = DMASIZE(mem->dmamem) / EMU_PTESIZE;
if (DMASIZE(mem->dmamem) % EMU_PTESIZE)
numblocks++;
for (i = 0; i < numblocks; i++)
ptb[mem->ptbidx + i] =
silentpage | (mem->ptbidx + i);
}
LIST_REMOVE(mem, next);
splx(s);
emuxki_mem_delete(mem, type);
break;
}
}
/* blocksize should be a divisor of allowable buffersize */
/* XXX probably this could be done better */
static int
emuxki_round_blocksize(void *addr, int blksize)
{
#if 0
struct emuxki_softc *sc = addr;
struct audio_softc *au;
#endif
int bufsize;
#if 0
if (sc == NULL)
return blksize;
au = (void *)sc->sc_audev;
if (au == NULL)
return blksize;
bufsize = emuxki_round_buffersize(sc, AUMODE_RECORD,
au->sc_rr.bufsize);
#else
bufsize = 65536;
#endif
while (bufsize > blksize)
bufsize /= 2;
return bufsize;
}
static size_t
emuxki_round_buffersize(void *addr, int direction, size_t bsize)
{
if (direction == AUMODE_PLAY) {
if (bsize < EMU_PTESIZE)
bsize = EMU_PTESIZE;
else if (bsize > (EMU_PTESIZE * EMU_MAXPTE))
bsize = EMU_PTESIZE * EMU_MAXPTE;
/* Would be better if set to max available */
else if (bsize % EMU_PTESIZE)
bsize = bsize -
(bsize % EMU_PTESIZE) +
EMU_PTESIZE;
} else {
int idx;
/* find nearest lower recbuf size */
for(idx = sizeof(emuxki_recbuf_sz) /
sizeof(emuxki_recbuf_sz[0]); --idx >= 0; ) {
if (bsize >= emuxki_recbuf_sz[idx]) {
bsize = emuxki_recbuf_sz[idx];
break;
}
}
if (bsize == 0)
bsize = 384;
}
return (bsize);
}
static paddr_t
emuxki_mappage(void *addr, void *ptr, off_t off, int prot)
{
struct emuxki_softc *sc = addr;
struct emuxki_mem *mem;
u_int32_t *ptb;
ptb = KERNADDR(sc->ptb);
LIST_FOREACH(mem, &sc->mem, next) {
if (KERNADDR(mem->dmamem) == ptr) {
struct dmamem *dm = mem->dmamem;
return bus_dmamem_mmap(dm->dmat, dm->segs, dm->nsegs,
off, prot, BUS_DMA_WAITOK);
}
}
return (-1);
}
static int
emuxki_get_props(void *addr)
{
return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
AUDIO_PROP_FULLDUPLEX);
}
static int
emuxki_trigger_output(void *addr, void *start, void *end, int blksize,
void (*inth) (void *), void *inthparam,
struct audio_params *params)
{
struct emuxki_softc *sc = addr;
/* No multiple voice support for now */
struct emuxki_voice *voice = sc->pvoice;
int error;
if (voice == NULL)
return (ENXIO);
if ((error = emuxki_set_vparms(voice, params)))
return (error);
if ((error = emuxki_voice_set_bufparms(voice, start,
(caddr_t)end - (caddr_t)start, blksize)))
return (error);
emuxki_voice_commit_parms(voice);
emuxki_voice_start(voice, inth, inthparam);
return (0);
}
static int
emuxki_trigger_input(void *addr, void *start, void *end, int blksize,
void (*inth) (void *), void *inthparam,
struct audio_params *params)
{
struct emuxki_softc *sc = addr;
/* No multiple voice support for now */
struct emuxki_voice *voice = sc->rvoice;
int error;
if (voice == NULL)
return (ENXIO);
if ((error = emuxki_set_vparms(voice, params)))
return (error);
if ((error = emuxki_voice_set_bufparms(voice, start,
(caddr_t)end - (caddr_t)start,
blksize)))
return (error);
emuxki_voice_start(voice, inth, inthparam);
return (0);
}
/*
* AC97 callbacks
*/
static int
emuxki_ac97_attach(void *arg, struct ac97_codec_if *codecif)
{
struct emuxki_softc *sc = arg;
sc->codecif = codecif;
return (0);
}
static int
emuxki_ac97_read(void *arg, u_int8_t reg, u_int16_t *val)
{
struct emuxki_softc *sc = arg;
int s;
s = splaudio();
bus_space_write_1(sc->sc_iot, sc->sc_ioh, EMU_AC97ADDR, reg);
*val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EMU_AC97DATA);
splx(s);
return (0);
}
static int
emuxki_ac97_write(void *arg, u_int8_t reg, u_int16_t val)
{
struct emuxki_softc *sc = arg;
int s;
s = splaudio();
bus_space_write_1(sc->sc_iot, sc->sc_ioh, EMU_AC97ADDR, reg);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, EMU_AC97DATA, val);
splx(s);
return (0);
}
static void
emuxki_ac97_reset(void *arg)
{
}
enum ac97_host_flags
emuxki_ac97_flags(void *arg)
{
return (AC97_HOST_SWAPPED_CHANNELS);
}