1224 lines
32 KiB
C
1224 lines
32 KiB
C
/* $NetBSD: lfs_syscalls.c,v 1.135 2009/09/13 05:17:37 tsutsui Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007, 2008
|
|
* The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Konrad E. Schroder <perseant@hhhh.org>.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*-
|
|
* Copyright (c) 1991, 1993, 1994
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)lfs_syscalls.c 8.10 (Berkeley) 5/14/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: lfs_syscalls.c,v 1.135 2009/09/13 05:17:37 tsutsui Exp $");
|
|
|
|
#ifndef LFS
|
|
# define LFS /* for prototypes in syscallargs.h */
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/syscallargs.h>
|
|
|
|
#include <ufs/ufs/inode.h>
|
|
#include <ufs/ufs/ufsmount.h>
|
|
#include <ufs/ufs/ufs_extern.h>
|
|
|
|
#include <ufs/lfs/lfs.h>
|
|
#include <ufs/lfs/lfs_extern.h>
|
|
|
|
struct buf *lfs_fakebuf(struct lfs *, struct vnode *, int, size_t, void *);
|
|
int lfs_fasthashget(dev_t, ino_t, struct vnode **);
|
|
|
|
pid_t lfs_cleaner_pid = 0;
|
|
|
|
/*
|
|
* sys_lfs_markv:
|
|
*
|
|
* This will mark inodes and blocks dirty, so they are written into the log.
|
|
* It will block until all the blocks have been written. The segment create
|
|
* time passed in the block_info and inode_info structures is used to decide
|
|
* if the data is valid for each block (in case some process dirtied a block
|
|
* or inode that is being cleaned between the determination that a block is
|
|
* live and the lfs_markv call).
|
|
*
|
|
* 0 on success
|
|
* -1/errno is return on error.
|
|
*/
|
|
#ifdef USE_64BIT_SYSCALLS
|
|
int
|
|
sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(fsid_t *) fsidp;
|
|
syscallarg(struct block_info *) blkiov;
|
|
syscallarg(int) blkcnt;
|
|
} */
|
|
BLOCK_INFO *blkiov;
|
|
int blkcnt, error;
|
|
fsid_t fsid;
|
|
struct lfs *fs;
|
|
struct mount *mntp;
|
|
|
|
if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
|
|
NULL)) != 0)
|
|
return (error);
|
|
|
|
if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
|
|
return (error);
|
|
|
|
if ((mntp = vfs_getvfs(fsidp)) == NULL)
|
|
return (ENOENT);
|
|
fs = VFSTOUFS(mntp)->um_lfs;
|
|
|
|
blkcnt = SCARG(uap, blkcnt);
|
|
if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
|
|
return (EINVAL);
|
|
|
|
KERNEL_LOCK(1, NULL);
|
|
blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
|
|
if ((error = copyin(SCARG(uap, blkiov), blkiov,
|
|
blkcnt * sizeof(BLOCK_INFO))) != 0)
|
|
goto out;
|
|
|
|
if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0)
|
|
copyout(blkiov, SCARG(uap, blkiov),
|
|
blkcnt * sizeof(BLOCK_INFO));
|
|
out:
|
|
lfs_free(fs, blkiov, LFS_NB_BLKIOV);
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
return error;
|
|
}
|
|
#else
|
|
int
|
|
sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(fsid_t *) fsidp;
|
|
syscallarg(struct block_info *) blkiov;
|
|
syscallarg(int) blkcnt;
|
|
} */
|
|
BLOCK_INFO *blkiov;
|
|
BLOCK_INFO_15 *blkiov15;
|
|
int i, blkcnt, error;
|
|
fsid_t fsid;
|
|
struct lfs *fs;
|
|
struct mount *mntp;
|
|
|
|
if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
|
|
NULL)) != 0)
|
|
return (error);
|
|
|
|
if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
|
|
return (error);
|
|
|
|
if ((mntp = vfs_getvfs(&fsid)) == NULL)
|
|
return (ENOENT);
|
|
fs = VFSTOUFS(mntp)->um_lfs;
|
|
|
|
blkcnt = SCARG(uap, blkcnt);
|
|
if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
|
|
return (EINVAL);
|
|
|
|
KERNEL_LOCK(1, NULL);
|
|
blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
|
|
blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
|
|
if ((error = copyin(SCARG(uap, blkiov), blkiov15,
|
|
blkcnt * sizeof(BLOCK_INFO_15))) != 0)
|
|
goto out;
|
|
|
|
for (i = 0; i < blkcnt; i++) {
|
|
blkiov[i].bi_inode = blkiov15[i].bi_inode;
|
|
blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
|
|
blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
|
|
blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
|
|
blkiov[i].bi_version = blkiov15[i].bi_version;
|
|
blkiov[i].bi_bp = blkiov15[i].bi_bp;
|
|
blkiov[i].bi_size = blkiov15[i].bi_size;
|
|
}
|
|
|
|
if ((error = lfs_markv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
|
|
for (i = 0; i < blkcnt; i++) {
|
|
blkiov15[i].bi_inode = blkiov[i].bi_inode;
|
|
blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
|
|
blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
|
|
blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
|
|
blkiov15[i].bi_version = blkiov[i].bi_version;
|
|
blkiov15[i].bi_bp = blkiov[i].bi_bp;
|
|
blkiov15[i].bi_size = blkiov[i].bi_size;
|
|
}
|
|
copyout(blkiov15, SCARG(uap, blkiov),
|
|
blkcnt * sizeof(BLOCK_INFO_15));
|
|
}
|
|
out:
|
|
lfs_free(fs, blkiov, LFS_NB_BLKIOV);
|
|
lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
return error;
|
|
}
|
|
#endif
|
|
|
|
#define LFS_MARKV_MAX_BLOCKS (LFS_MAX_BUFS)
|
|
|
|
int
|
|
lfs_markv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov,
|
|
int blkcnt)
|
|
{
|
|
BLOCK_INFO *blkp;
|
|
IFILE *ifp;
|
|
struct buf *bp;
|
|
struct inode *ip = NULL;
|
|
struct lfs *fs;
|
|
struct mount *mntp;
|
|
struct vnode *vp = NULL;
|
|
ino_t lastino;
|
|
daddr_t b_daddr, v_daddr;
|
|
int cnt, error;
|
|
int do_again = 0;
|
|
int numrefed = 0;
|
|
ino_t maxino;
|
|
size_t obsize;
|
|
|
|
/* number of blocks/inodes that we have already bwrite'ed */
|
|
int nblkwritten, ninowritten;
|
|
|
|
if ((mntp = vfs_getvfs(fsidp)) == NULL)
|
|
return (ENOENT);
|
|
|
|
fs = VFSTOUFS(mntp)->um_lfs;
|
|
|
|
if (fs->lfs_ronly)
|
|
return EROFS;
|
|
|
|
maxino = (fragstoblks(fs, fsbtofrags(fs, VTOI(fs->lfs_ivnode)->i_ffs1_blocks)) -
|
|
fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb;
|
|
|
|
cnt = blkcnt;
|
|
|
|
if ((error = vfs_busy(mntp, NULL)) != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* This seglock is just to prevent the fact that we might have to sleep
|
|
* from allowing the possibility that our blocks might become
|
|
* invalid.
|
|
*
|
|
* It is also important to note here that unless we specify SEGM_CKP,
|
|
* any Ifile blocks that we might be asked to clean will never get
|
|
* to the disk.
|
|
*/
|
|
lfs_seglock(fs, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
|
|
|
|
/* Mark blocks/inodes dirty. */
|
|
error = 0;
|
|
|
|
/* these were inside the initialization for the for loop */
|
|
v_daddr = LFS_UNUSED_DADDR;
|
|
lastino = LFS_UNUSED_INUM;
|
|
nblkwritten = ninowritten = 0;
|
|
for (blkp = blkiov; cnt--; ++blkp)
|
|
{
|
|
/* Bounds-check incoming data, avoid panic for failed VGET */
|
|
if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) {
|
|
error = EINVAL;
|
|
goto err3;
|
|
}
|
|
/*
|
|
* Get the IFILE entry (only once) and see if the file still
|
|
* exists.
|
|
*/
|
|
if (lastino != blkp->bi_inode) {
|
|
/*
|
|
* Finish the old file, if there was one. The presence
|
|
* of a usable vnode in vp is signaled by a valid v_daddr.
|
|
*/
|
|
if (v_daddr != LFS_UNUSED_DADDR) {
|
|
lfs_vunref(vp);
|
|
numrefed--;
|
|
}
|
|
|
|
/*
|
|
* Start a new file
|
|
*/
|
|
lastino = blkp->bi_inode;
|
|
if (blkp->bi_inode == LFS_IFILE_INUM)
|
|
v_daddr = fs->lfs_idaddr;
|
|
else {
|
|
LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
|
|
/* XXX fix for force write */
|
|
v_daddr = ifp->if_daddr;
|
|
brelse(bp, 0);
|
|
}
|
|
if (v_daddr == LFS_UNUSED_DADDR)
|
|
continue;
|
|
|
|
/* Get the vnode/inode. */
|
|
error = lfs_fastvget(mntp, blkp->bi_inode, v_daddr,
|
|
&vp,
|
|
(blkp->bi_lbn == LFS_UNUSED_LBN
|
|
? blkp->bi_bp
|
|
: NULL));
|
|
|
|
if (!error) {
|
|
numrefed++;
|
|
}
|
|
if (error) {
|
|
DLOG((DLOG_CLEAN, "lfs_markv: lfs_fastvget"
|
|
" failed with %d (ino %d, segment %d)\n",
|
|
error, blkp->bi_inode,
|
|
dtosn(fs, blkp->bi_daddr)));
|
|
/*
|
|
* If we got EAGAIN, that means that the
|
|
* Inode was locked. This is
|
|
* recoverable: just clean the rest of
|
|
* this segment, and let the cleaner try
|
|
* again with another. (When the
|
|
* cleaner runs again, this segment will
|
|
* sort high on the list, since it is
|
|
* now almost entirely empty.) But, we
|
|
* still set v_daddr = LFS_UNUSED_ADDR
|
|
* so as not to test this over and over
|
|
* again.
|
|
*/
|
|
if (error == EAGAIN) {
|
|
error = 0;
|
|
do_again++;
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
else if (error != ENOENT)
|
|
panic("lfs_markv VFS_VGET FAILED");
|
|
#endif
|
|
/* lastino = LFS_UNUSED_INUM; */
|
|
v_daddr = LFS_UNUSED_DADDR;
|
|
vp = NULL;
|
|
ip = NULL;
|
|
continue;
|
|
}
|
|
ip = VTOI(vp);
|
|
ninowritten++;
|
|
} else if (v_daddr == LFS_UNUSED_DADDR) {
|
|
/*
|
|
* This can only happen if the vnode is dead (or
|
|
* in any case we can't get it...e.g., it is
|
|
* inlocked). Keep going.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
/* Past this point we are guaranteed that vp, ip are valid. */
|
|
|
|
/* Can't clean VU_DIROP directories in case of truncation */
|
|
/* XXX - maybe we should mark removed dirs specially? */
|
|
if (vp->v_type == VDIR && (vp->v_uflag & VU_DIROP)) {
|
|
do_again++;
|
|
continue;
|
|
}
|
|
|
|
/* If this BLOCK_INFO didn't contain a block, keep going. */
|
|
if (blkp->bi_lbn == LFS_UNUSED_LBN) {
|
|
/* XXX need to make sure that the inode gets written in this case */
|
|
/* XXX but only write the inode if it's the right one */
|
|
if (blkp->bi_inode != LFS_IFILE_INUM) {
|
|
LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
|
|
if (ifp->if_daddr == blkp->bi_daddr) {
|
|
mutex_enter(&lfs_lock);
|
|
LFS_SET_UINO(ip, IN_CLEANING);
|
|
mutex_exit(&lfs_lock);
|
|
}
|
|
brelse(bp, 0);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
b_daddr = 0;
|
|
if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) ||
|
|
dbtofsb(fs, b_daddr) != blkp->bi_daddr)
|
|
{
|
|
if (dtosn(fs, dbtofsb(fs, b_daddr)) ==
|
|
dtosn(fs, blkp->bi_daddr))
|
|
{
|
|
DLOG((DLOG_CLEAN, "lfs_markv: wrong da same seg: %llx vs %llx\n",
|
|
(long long)blkp->bi_daddr, (long long)dbtofsb(fs, b_daddr)));
|
|
}
|
|
do_again++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Check block sizes. The blocks being cleaned come from
|
|
* disk, so they should have the same size as their on-disk
|
|
* counterparts.
|
|
*/
|
|
if (blkp->bi_lbn >= 0)
|
|
obsize = blksize(fs, ip, blkp->bi_lbn);
|
|
else
|
|
obsize = fs->lfs_bsize;
|
|
/* Check for fragment size change */
|
|
if (blkp->bi_lbn >= 0 && blkp->bi_lbn < NDADDR) {
|
|
obsize = ip->i_lfs_fragsize[blkp->bi_lbn];
|
|
}
|
|
if (obsize != blkp->bi_size) {
|
|
DLOG((DLOG_CLEAN, "lfs_markv: ino %d lbn %lld wrong"
|
|
" size (%ld != %d), try again\n",
|
|
blkp->bi_inode, (long long)blkp->bi_lbn,
|
|
(long) obsize, blkp->bi_size));
|
|
do_again++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If we get to here, then we are keeping the block. If
|
|
* it is an indirect block, we want to actually put it
|
|
* in the buffer cache so that it can be updated in the
|
|
* finish_meta section. If it's not, we need to
|
|
* allocate a fake buffer so that writeseg can perform
|
|
* the copyin and write the buffer.
|
|
*/
|
|
if (ip->i_number != LFS_IFILE_INUM && blkp->bi_lbn >= 0) {
|
|
/* Data Block */
|
|
bp = lfs_fakebuf(fs, vp, blkp->bi_lbn,
|
|
blkp->bi_size, blkp->bi_bp);
|
|
/* Pretend we used bread() to get it */
|
|
bp->b_blkno = fsbtodb(fs, blkp->bi_daddr);
|
|
} else {
|
|
/* Indirect block or ifile */
|
|
if (blkp->bi_size != fs->lfs_bsize &&
|
|
ip->i_number != LFS_IFILE_INUM)
|
|
panic("lfs_markv: partial indirect block?"
|
|
" size=%d\n", blkp->bi_size);
|
|
bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0);
|
|
if (!(bp->b_oflags & (BO_DONE|BO_DELWRI))) {
|
|
/*
|
|
* The block in question was not found
|
|
* in the cache; i.e., the block that
|
|
* getblk() returned is empty. So, we
|
|
* can (and should) copy in the
|
|
* contents, because we've already
|
|
* determined that this was the right
|
|
* version of this block on disk.
|
|
*
|
|
* And, it can't have changed underneath
|
|
* us, because we have the segment lock.
|
|
*/
|
|
error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size);
|
|
if (error)
|
|
goto err2;
|
|
}
|
|
}
|
|
if ((error = lfs_bwrite_ext(bp, BW_CLEAN)) != 0)
|
|
goto err2;
|
|
|
|
nblkwritten++;
|
|
/*
|
|
* XXX should account indirect blocks and ifile pages as well
|
|
*/
|
|
if (nblkwritten + lblkno(fs, ninowritten * sizeof (struct ufs1_dinode))
|
|
> LFS_MARKV_MAX_BLOCKS) {
|
|
DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos\n",
|
|
nblkwritten, ninowritten));
|
|
lfs_segwrite(mntp, SEGM_CLEAN);
|
|
nblkwritten = ninowritten = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finish the old file, if there was one
|
|
*/
|
|
if (v_daddr != LFS_UNUSED_DADDR) {
|
|
lfs_vunref(vp);
|
|
numrefed--;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (numrefed != 0)
|
|
panic("lfs_markv: numrefed=%d", numrefed);
|
|
#endif
|
|
DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos (check point)\n",
|
|
nblkwritten, ninowritten));
|
|
|
|
/*
|
|
* The last write has to be SEGM_SYNC, because of calling semantics.
|
|
* It also has to be SEGM_CKP, because otherwise we could write
|
|
* over the newly cleaned data contained in a checkpoint, and then
|
|
* we'd be unhappy at recovery time.
|
|
*/
|
|
lfs_segwrite(mntp, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
|
|
|
|
lfs_segunlock(fs);
|
|
|
|
vfs_unbusy(mntp, false, NULL);
|
|
if (error)
|
|
return (error);
|
|
else if (do_again)
|
|
return EAGAIN;
|
|
|
|
return 0;
|
|
|
|
err2:
|
|
DLOG((DLOG_CLEAN, "lfs_markv err2\n"));
|
|
|
|
/*
|
|
* XXX we're here because copyin() failed.
|
|
* XXX it means that we can't trust the cleanerd. too bad.
|
|
* XXX how can we recover from this?
|
|
*/
|
|
|
|
err3:
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
/*
|
|
* XXX should do segwrite here anyway?
|
|
*/
|
|
|
|
if (v_daddr != LFS_UNUSED_DADDR) {
|
|
lfs_vunref(vp);
|
|
--numrefed;
|
|
}
|
|
|
|
lfs_segunlock(fs);
|
|
vfs_unbusy(mntp, false, NULL);
|
|
#ifdef DIAGNOSTIC
|
|
if (numrefed != 0)
|
|
panic("lfs_markv: numrefed=%d", numrefed);
|
|
#endif
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* sys_lfs_bmapv:
|
|
*
|
|
* This will fill in the current disk address for arrays of blocks.
|
|
*
|
|
* 0 on success
|
|
* -1/errno is return on error.
|
|
*/
|
|
#ifdef USE_64BIT_SYSCALLS
|
|
int
|
|
sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(fsid_t *) fsidp;
|
|
syscallarg(struct block_info *) blkiov;
|
|
syscallarg(int) blkcnt;
|
|
} */
|
|
BLOCK_INFO *blkiov;
|
|
int blkcnt, error;
|
|
fsid_t fsid;
|
|
struct lfs *fs;
|
|
struct mount *mntp;
|
|
|
|
if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
|
|
NULL)) != 0)
|
|
return (error);
|
|
|
|
if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
|
|
return (error);
|
|
|
|
if ((mntp = vfs_getvfs(&fsid)) == NULL)
|
|
return (ENOENT);
|
|
fs = VFSTOUFS(mntp)->um_lfs;
|
|
|
|
blkcnt = SCARG(uap, blkcnt);
|
|
if ((u_int) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
|
|
return (EINVAL);
|
|
KERNEL_LOCK(1, NULL);
|
|
blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
|
|
if ((error = copyin(SCARG(uap, blkiov), blkiov,
|
|
blkcnt * sizeof(BLOCK_INFO))) != 0)
|
|
goto out;
|
|
|
|
if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0)
|
|
copyout(blkiov, SCARG(uap, blkiov),
|
|
blkcnt * sizeof(BLOCK_INFO));
|
|
out:
|
|
lfs_free(fs, blkiov, LFS_NB_BLKIOV);
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
return error;
|
|
}
|
|
#else
|
|
int
|
|
sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(fsid_t *) fsidp;
|
|
syscallarg(struct block_info *) blkiov;
|
|
syscallarg(int) blkcnt;
|
|
} */
|
|
BLOCK_INFO *blkiov;
|
|
BLOCK_INFO_15 *blkiov15;
|
|
int i, blkcnt, error;
|
|
fsid_t fsid;
|
|
struct lfs *fs;
|
|
struct mount *mntp;
|
|
|
|
if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
|
|
NULL)) != 0)
|
|
return (error);
|
|
|
|
if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
|
|
return (error);
|
|
|
|
if ((mntp = vfs_getvfs(&fsid)) == NULL)
|
|
return (ENOENT);
|
|
fs = VFSTOUFS(mntp)->um_lfs;
|
|
|
|
blkcnt = SCARG(uap, blkcnt);
|
|
if ((size_t) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
|
|
return (EINVAL);
|
|
KERNEL_LOCK(1, NULL);
|
|
blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
|
|
blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
|
|
if ((error = copyin(SCARG(uap, blkiov), blkiov15,
|
|
blkcnt * sizeof(BLOCK_INFO_15))) != 0)
|
|
goto out;
|
|
|
|
for (i = 0; i < blkcnt; i++) {
|
|
blkiov[i].bi_inode = blkiov15[i].bi_inode;
|
|
blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
|
|
blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
|
|
blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
|
|
blkiov[i].bi_version = blkiov15[i].bi_version;
|
|
blkiov[i].bi_bp = blkiov15[i].bi_bp;
|
|
blkiov[i].bi_size = blkiov15[i].bi_size;
|
|
}
|
|
|
|
if ((error = lfs_bmapv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
|
|
for (i = 0; i < blkcnt; i++) {
|
|
blkiov15[i].bi_inode = blkiov[i].bi_inode;
|
|
blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
|
|
blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
|
|
blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
|
|
blkiov15[i].bi_version = blkiov[i].bi_version;
|
|
blkiov15[i].bi_bp = blkiov[i].bi_bp;
|
|
blkiov15[i].bi_size = blkiov[i].bi_size;
|
|
}
|
|
copyout(blkiov15, SCARG(uap, blkiov),
|
|
blkcnt * sizeof(BLOCK_INFO_15));
|
|
}
|
|
out:
|
|
lfs_free(fs, blkiov, LFS_NB_BLKIOV);
|
|
lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
return error;
|
|
}
|
|
#endif
|
|
|
|
int
|
|
lfs_bmapv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
|
|
{
|
|
BLOCK_INFO *blkp;
|
|
IFILE *ifp;
|
|
struct buf *bp;
|
|
struct inode *ip = NULL;
|
|
struct lfs *fs;
|
|
struct mount *mntp;
|
|
struct ufsmount *ump;
|
|
struct vnode *vp;
|
|
ino_t lastino;
|
|
daddr_t v_daddr;
|
|
int cnt, error;
|
|
int numrefed = 0;
|
|
|
|
lfs_cleaner_pid = p->p_pid;
|
|
|
|
if ((mntp = vfs_getvfs(fsidp)) == NULL)
|
|
return (ENOENT);
|
|
|
|
ump = VFSTOUFS(mntp);
|
|
if ((error = vfs_busy(mntp, NULL)) != 0)
|
|
return (error);
|
|
|
|
cnt = blkcnt;
|
|
|
|
fs = VFSTOUFS(mntp)->um_lfs;
|
|
|
|
error = 0;
|
|
|
|
/* these were inside the initialization for the for loop */
|
|
v_daddr = LFS_UNUSED_DADDR;
|
|
lastino = LFS_UNUSED_INUM;
|
|
for (blkp = blkiov; cnt--; ++blkp)
|
|
{
|
|
/*
|
|
* Get the IFILE entry (only once) and see if the file still
|
|
* exists.
|
|
*/
|
|
if (lastino != blkp->bi_inode) {
|
|
/*
|
|
* Finish the old file, if there was one. The presence
|
|
* of a usable vnode in vp is signaled by a valid
|
|
* v_daddr.
|
|
*/
|
|
if (v_daddr != LFS_UNUSED_DADDR) {
|
|
lfs_vunref(vp);
|
|
numrefed--;
|
|
}
|
|
|
|
/*
|
|
* Start a new file
|
|
*/
|
|
lastino = blkp->bi_inode;
|
|
if (blkp->bi_inode == LFS_IFILE_INUM)
|
|
v_daddr = fs->lfs_idaddr;
|
|
else {
|
|
LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
|
|
v_daddr = ifp->if_daddr;
|
|
brelse(bp, 0);
|
|
}
|
|
if (v_daddr == LFS_UNUSED_DADDR) {
|
|
blkp->bi_daddr = LFS_UNUSED_DADDR;
|
|
continue;
|
|
}
|
|
/*
|
|
* A regular call to VFS_VGET could deadlock
|
|
* here. Instead, we try an unlocked access.
|
|
*/
|
|
mutex_enter(&ufs_ihash_lock);
|
|
vp = ufs_ihashlookup(ump->um_dev, blkp->bi_inode);
|
|
if (vp != NULL && !(vp->v_iflag & VI_XLOCK)) {
|
|
ip = VTOI(vp);
|
|
mutex_enter(&vp->v_interlock);
|
|
mutex_exit(&ufs_ihash_lock);
|
|
if (lfs_vref(vp)) {
|
|
v_daddr = LFS_UNUSED_DADDR;
|
|
continue;
|
|
}
|
|
numrefed++;
|
|
} else {
|
|
mutex_exit(&ufs_ihash_lock);
|
|
/*
|
|
* Don't VFS_VGET if we're being unmounted,
|
|
* since we hold vfs_busy().
|
|
*/
|
|
if (mntp->mnt_iflag & IMNT_UNMOUNT) {
|
|
v_daddr = LFS_UNUSED_DADDR;
|
|
continue;
|
|
}
|
|
error = VFS_VGET(mntp, blkp->bi_inode, &vp);
|
|
if (error) {
|
|
DLOG((DLOG_CLEAN, "lfs_bmapv: vget ino"
|
|
"%d failed with %d",
|
|
blkp->bi_inode,error));
|
|
v_daddr = LFS_UNUSED_DADDR;
|
|
continue;
|
|
} else {
|
|
KASSERT(VOP_ISLOCKED(vp));
|
|
VOP_UNLOCK(vp, 0);
|
|
numrefed++;
|
|
}
|
|
}
|
|
ip = VTOI(vp);
|
|
} else if (v_daddr == LFS_UNUSED_DADDR) {
|
|
/*
|
|
* This can only happen if the vnode is dead.
|
|
* Keep going. Note that we DO NOT set the
|
|
* bi_addr to anything -- if we failed to get
|
|
* the vnode, for example, we want to assume
|
|
* conservatively that all of its blocks *are*
|
|
* located in the segment in question.
|
|
* lfs_markv will throw them out if we are
|
|
* wrong.
|
|
*/
|
|
/* blkp->bi_daddr = LFS_UNUSED_DADDR; */
|
|
continue;
|
|
}
|
|
|
|
/* Past this point we are guaranteed that vp, ip are valid. */
|
|
|
|
if (blkp->bi_lbn == LFS_UNUSED_LBN) {
|
|
/*
|
|
* We just want the inode address, which is
|
|
* conveniently in v_daddr.
|
|
*/
|
|
blkp->bi_daddr = v_daddr;
|
|
} else {
|
|
daddr_t bi_daddr;
|
|
|
|
/* XXX ondisk32 */
|
|
error = VOP_BMAP(vp, blkp->bi_lbn, NULL,
|
|
&bi_daddr, NULL);
|
|
if (error)
|
|
{
|
|
blkp->bi_daddr = LFS_UNUSED_DADDR;
|
|
continue;
|
|
}
|
|
blkp->bi_daddr = dbtofsb(fs, bi_daddr);
|
|
/* Fill in the block size, too */
|
|
if (blkp->bi_lbn >= 0)
|
|
blkp->bi_size = blksize(fs, ip, blkp->bi_lbn);
|
|
else
|
|
blkp->bi_size = fs->lfs_bsize;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finish the old file, if there was one. The presence
|
|
* of a usable vnode in vp is signaled by a valid v_daddr.
|
|
*/
|
|
if (v_daddr != LFS_UNUSED_DADDR) {
|
|
lfs_vunref(vp);
|
|
numrefed--;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (numrefed != 0)
|
|
panic("lfs_bmapv: numrefed=%d", numrefed);
|
|
#endif
|
|
|
|
vfs_unbusy(mntp, false, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* sys_lfs_segclean:
|
|
*
|
|
* Mark the segment clean.
|
|
*
|
|
* 0 on success
|
|
* -1/errno is return on error.
|
|
*/
|
|
int
|
|
sys_lfs_segclean(struct lwp *l, const struct sys_lfs_segclean_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(fsid_t *) fsidp;
|
|
syscallarg(u_long) segment;
|
|
} */
|
|
struct lfs *fs;
|
|
struct mount *mntp;
|
|
fsid_t fsid;
|
|
int error;
|
|
unsigned long segnum;
|
|
|
|
if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
|
|
NULL)) != 0)
|
|
return (error);
|
|
|
|
if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
|
|
return (error);
|
|
if ((mntp = vfs_getvfs(&fsid)) == NULL)
|
|
return (ENOENT);
|
|
|
|
fs = VFSTOUFS(mntp)->um_lfs;
|
|
segnum = SCARG(uap, segment);
|
|
|
|
if ((error = vfs_busy(mntp, NULL)) != 0)
|
|
return (error);
|
|
|
|
KERNEL_LOCK(1, NULL);
|
|
lfs_seglock(fs, SEGM_PROT);
|
|
error = lfs_do_segclean(fs, segnum);
|
|
lfs_segunlock(fs);
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
vfs_unbusy(mntp, false, NULL);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Actually mark the segment clean.
|
|
* Must be called with the segment lock held.
|
|
*/
|
|
int
|
|
lfs_do_segclean(struct lfs *fs, unsigned long segnum)
|
|
{
|
|
extern int lfs_dostats;
|
|
struct buf *bp;
|
|
CLEANERINFO *cip;
|
|
SEGUSE *sup;
|
|
|
|
if (dtosn(fs, fs->lfs_curseg) == segnum) {
|
|
return (EBUSY);
|
|
}
|
|
|
|
LFS_SEGENTRY(sup, fs, segnum, bp);
|
|
if (sup->su_nbytes) {
|
|
DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
|
|
" %d live bytes\n", segnum, sup->su_nbytes));
|
|
brelse(bp, 0);
|
|
return (EBUSY);
|
|
}
|
|
if (sup->su_flags & SEGUSE_ACTIVE) {
|
|
DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
|
|
" segment is active\n", segnum));
|
|
brelse(bp, 0);
|
|
return (EBUSY);
|
|
}
|
|
if (!(sup->su_flags & SEGUSE_DIRTY)) {
|
|
DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
|
|
" segment is already clean\n", segnum));
|
|
brelse(bp, 0);
|
|
return (EALREADY);
|
|
}
|
|
|
|
fs->lfs_avail += segtod(fs, 1);
|
|
if (sup->su_flags & SEGUSE_SUPERBLOCK)
|
|
fs->lfs_avail -= btofsb(fs, LFS_SBPAD);
|
|
if (fs->lfs_version > 1 && segnum == 0 &&
|
|
fs->lfs_start < btofsb(fs, LFS_LABELPAD))
|
|
fs->lfs_avail -= btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
|
|
mutex_enter(&lfs_lock);
|
|
fs->lfs_bfree += sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
|
|
btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
|
|
fs->lfs_dmeta -= sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
|
|
btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
|
|
if (fs->lfs_dmeta < 0)
|
|
fs->lfs_dmeta = 0;
|
|
mutex_exit(&lfs_lock);
|
|
sup->su_flags &= ~SEGUSE_DIRTY;
|
|
LFS_WRITESEGENTRY(sup, fs, segnum, bp);
|
|
|
|
LFS_CLEANERINFO(cip, fs, bp);
|
|
++cip->clean;
|
|
--cip->dirty;
|
|
fs->lfs_nclean = cip->clean;
|
|
cip->bfree = fs->lfs_bfree;
|
|
mutex_enter(&lfs_lock);
|
|
cip->avail = fs->lfs_avail - fs->lfs_ravail - fs->lfs_favail;
|
|
wakeup(&fs->lfs_avail);
|
|
mutex_exit(&lfs_lock);
|
|
(void) LFS_BWRITE_LOG(bp);
|
|
|
|
if (lfs_dostats)
|
|
++lfs_stats.segs_reclaimed;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This will block until a segment in file system fsid is written. A timeout
|
|
* in milliseconds may be specified which will awake the cleaner automatically.
|
|
* An fsid of -1 means any file system, and a timeout of 0 means forever.
|
|
*/
|
|
int
|
|
lfs_segwait(fsid_t *fsidp, struct timeval *tv)
|
|
{
|
|
struct mount *mntp;
|
|
void *addr;
|
|
u_long timeout;
|
|
int error;
|
|
|
|
KERNEL_LOCK(1, NULL);
|
|
if (fsidp == NULL || (mntp = vfs_getvfs(fsidp)) == NULL)
|
|
addr = &lfs_allclean_wakeup;
|
|
else
|
|
addr = &VFSTOUFS(mntp)->um_lfs->lfs_nextseg;
|
|
/*
|
|
* XXX THIS COULD SLEEP FOREVER IF TIMEOUT IS {0,0}!
|
|
* XXX IS THAT WHAT IS INTENDED?
|
|
*/
|
|
timeout = tvtohz(tv);
|
|
error = tsleep(addr, PCATCH | PVFS, "segment", timeout);
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
return (error == ERESTART ? EINTR : 0);
|
|
}
|
|
|
|
/*
|
|
* sys_lfs_segwait:
|
|
*
|
|
* System call wrapper around lfs_segwait().
|
|
*
|
|
* 0 on success
|
|
* 1 on timeout
|
|
* -1/errno is return on error.
|
|
*/
|
|
int
|
|
sys___lfs_segwait50(struct lwp *l, const struct sys___lfs_segwait50_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(fsid_t *) fsidp;
|
|
syscallarg(struct timeval *) tv;
|
|
} */
|
|
struct timeval atv;
|
|
fsid_t fsid;
|
|
int error;
|
|
|
|
/* XXX need we be su to segwait? */
|
|
if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
|
|
NULL)) != 0)
|
|
return (error);
|
|
if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
|
|
return (error);
|
|
|
|
if (SCARG(uap, tv)) {
|
|
error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval));
|
|
if (error)
|
|
return (error);
|
|
if (itimerfix(&atv))
|
|
return (EINVAL);
|
|
} else /* NULL or invalid */
|
|
atv.tv_sec = atv.tv_usec = 0;
|
|
return lfs_segwait(&fsid, &atv);
|
|
}
|
|
|
|
/*
|
|
* VFS_VGET call specialized for the cleaner. The cleaner already knows the
|
|
* daddr from the ifile, so don't look it up again. If the cleaner is
|
|
* processing IINFO structures, it may have the ondisk inode already, so
|
|
* don't go retrieving it again.
|
|
*
|
|
* we lfs_vref, and it is the caller's responsibility to lfs_vunref
|
|
* when finished.
|
|
*/
|
|
|
|
int
|
|
lfs_fasthashget(dev_t dev, ino_t ino, struct vnode **vpp)
|
|
{
|
|
struct vnode *vp;
|
|
|
|
mutex_enter(&ufs_ihash_lock);
|
|
if ((vp = ufs_ihashlookup(dev, ino)) != NULL) {
|
|
mutex_enter(&vp->v_interlock);
|
|
mutex_exit(&ufs_ihash_lock);
|
|
if (vp->v_iflag & VI_XLOCK) {
|
|
DLOG((DLOG_CLEAN, "lfs_fastvget: ino %d VI_XLOCK\n",
|
|
ino));
|
|
lfs_stats.clean_vnlocked++;
|
|
mutex_exit(&vp->v_interlock);
|
|
return EAGAIN;
|
|
}
|
|
if (lfs_vref(vp)) {
|
|
DLOG((DLOG_CLEAN, "lfs_fastvget: lfs_vref failed"
|
|
" for ino %d\n", ino));
|
|
lfs_stats.clean_inlocked++;
|
|
return EAGAIN;
|
|
}
|
|
} else {
|
|
mutex_exit(&ufs_ihash_lock);
|
|
}
|
|
*vpp = vp;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
lfs_fastvget(struct mount *mp, ino_t ino, daddr_t daddr, struct vnode **vpp,
|
|
struct ufs1_dinode *dinp)
|
|
{
|
|
struct inode *ip;
|
|
struct ufs1_dinode *dip;
|
|
struct vnode *vp;
|
|
struct ufsmount *ump;
|
|
dev_t dev;
|
|
int error, retries;
|
|
struct buf *bp;
|
|
struct lfs *fs;
|
|
|
|
ump = VFSTOUFS(mp);
|
|
dev = ump->um_dev;
|
|
fs = ump->um_lfs;
|
|
|
|
/*
|
|
* Wait until the filesystem is fully mounted before allowing vget
|
|
* to complete. This prevents possible problems with roll-forward.
|
|
*/
|
|
mutex_enter(&lfs_lock);
|
|
while (fs->lfs_flags & LFS_NOTYET) {
|
|
mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_fnotyet", 0,
|
|
&lfs_lock);
|
|
}
|
|
mutex_exit(&lfs_lock);
|
|
|
|
/*
|
|
* This is playing fast and loose. Someone may have the inode
|
|
* locked, in which case they are going to be distinctly unhappy
|
|
* if we trash something.
|
|
*/
|
|
|
|
error = lfs_fasthashget(dev, ino, vpp);
|
|
if (error != 0 || *vpp != NULL)
|
|
return (error);
|
|
|
|
/*
|
|
* getnewvnode(9) will call vfs_busy, which will block if the
|
|
* filesystem is being unmounted; but umount(9) is waiting for
|
|
* us because we're already holding the fs busy.
|
|
* XXXMP
|
|
*/
|
|
if (mp->mnt_iflag & IMNT_UNMOUNT) {
|
|
*vpp = NULL;
|
|
return EDEADLK;
|
|
}
|
|
if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
|
|
*vpp = NULL;
|
|
return (error);
|
|
}
|
|
|
|
mutex_enter(&ufs_hashlock);
|
|
error = lfs_fasthashget(dev, ino, vpp);
|
|
if (error != 0 || *vpp != NULL) {
|
|
mutex_exit(&ufs_hashlock);
|
|
ungetnewvnode(vp);
|
|
return (error);
|
|
}
|
|
|
|
/* Allocate new vnode/inode. */
|
|
lfs_vcreate(mp, ino, vp);
|
|
|
|
/*
|
|
* Put it onto its hash chain and lock it so that other requests for
|
|
* this inode will block if they arrive while we are sleeping waiting
|
|
* for old data structures to be purged or for the contents of the
|
|
* disk portion of this inode to be read.
|
|
*/
|
|
ip = VTOI(vp);
|
|
ufs_ihashins(ip);
|
|
mutex_exit(&ufs_hashlock);
|
|
|
|
/*
|
|
* XXX
|
|
* This may not need to be here, logically it should go down with
|
|
* the i_devvp initialization.
|
|
* Ask Kirk.
|
|
*/
|
|
ip->i_lfs = fs;
|
|
|
|
/* Read in the disk contents for the inode, copy into the inode. */
|
|
if (dinp) {
|
|
error = copyin(dinp, ip->i_din.ffs1_din, sizeof (struct ufs1_dinode));
|
|
if (error) {
|
|
DLOG((DLOG_CLEAN, "lfs_fastvget: dinode copyin failed"
|
|
" for ino %d\n", ino));
|
|
ufs_ihashrem(ip);
|
|
|
|
/* Unlock and discard unneeded inode. */
|
|
vlockmgr(&vp->v_lock, LK_RELEASE);
|
|
lfs_vunref(vp);
|
|
*vpp = NULL;
|
|
return (error);
|
|
}
|
|
if (ip->i_number != ino)
|
|
panic("lfs_fastvget: I was fed the wrong inode!");
|
|
} else {
|
|
retries = 0;
|
|
again:
|
|
error = bread(ump->um_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
|
|
NOCRED, 0, &bp);
|
|
if (error) {
|
|
DLOG((DLOG_CLEAN, "lfs_fastvget: bread failed (%d)\n",
|
|
error));
|
|
/*
|
|
* The inode does not contain anything useful, so it
|
|
* would be misleading to leave it on its hash chain.
|
|
* Iput() will return it to the free list.
|
|
*/
|
|
ufs_ihashrem(ip);
|
|
|
|
/* Unlock and discard unneeded inode. */
|
|
vlockmgr(&vp->v_lock, LK_RELEASE);
|
|
lfs_vunref(vp);
|
|
brelse(bp, 0);
|
|
*vpp = NULL;
|
|
return (error);
|
|
}
|
|
dip = lfs_ifind(ump->um_lfs, ino, bp);
|
|
if (dip == NULL) {
|
|
/* Assume write has not completed yet; try again */
|
|
brelse(bp, BC_INVAL);
|
|
++retries;
|
|
if (retries > LFS_IFIND_RETRIES)
|
|
panic("lfs_fastvget: dinode not found");
|
|
DLOG((DLOG_CLEAN, "lfs_fastvget: dinode not found,"
|
|
" retrying...\n"));
|
|
goto again;
|
|
}
|
|
*ip->i_din.ffs1_din = *dip;
|
|
brelse(bp, 0);
|
|
}
|
|
lfs_vinit(mp, &vp);
|
|
|
|
*vpp = vp;
|
|
|
|
KASSERT(VOP_ISLOCKED(vp));
|
|
VOP_UNLOCK(vp, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Make up a "fake" cleaner buffer, copy the data from userland into it.
|
|
*/
|
|
struct buf *
|
|
lfs_fakebuf(struct lfs *fs, struct vnode *vp, int lbn, size_t size, void *uaddr)
|
|
{
|
|
struct buf *bp;
|
|
int error;
|
|
|
|
KASSERT(VTOI(vp)->i_number != LFS_IFILE_INUM);
|
|
|
|
bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, size, LFS_NB_CLEAN);
|
|
error = copyin(uaddr, bp->b_data, size);
|
|
if (error) {
|
|
lfs_freebuf(fs, bp);
|
|
return NULL;
|
|
}
|
|
KDASSERT(bp->b_iodone == lfs_callback);
|
|
|
|
#if 0
|
|
mutex_enter(&lfs_lock);
|
|
++fs->lfs_iocount;
|
|
mutex_exit(&lfs_lock);
|
|
#endif
|
|
bp->b_bufsize = size;
|
|
bp->b_bcount = size;
|
|
return (bp);
|
|
}
|