NetBSD/lib/libm/vax/argred.S

790 lines
21 KiB
ArmAsm
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 1985 Regents of the University of California.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. All advertising materials mentioning features or use of this software
# must display the following acknowledgement:
# This product includes software developed by the University of
# California, Berkeley and its contributors.
# 4. Neither the name of the University nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#
.data
.align 2
;_sccsid:
;.asciz "from: @(#)argred.s 1.1 (Berkeley) 8/21/85; 5.4 (ucb.elefunt) 10/9/90"
_rcsid:
.asciz "$Id: argred.S,v 1.1 1993/08/14 13:44:06 mycroft Exp $"
# libm$argred implements Bob Corbett's argument reduction and
# libm$sincos implements Peter Tang's double precision sin/cos.
#
# Note: The two entry points libm$argred and libm$sincos are meant
# to be used only by _sin, _cos and _tan.
#
# method: true range reduction to [-pi/4,pi/4], P. Tang & B. Corbett
# S. McDonald, April 4, 1985
#
.globl libm$argred
.globl libm$sincos
.text
.align 1
libm$argred:
#
# Compare the argument with the largest possible that can
# be reduced by table lookup. r3 := |x| will be used in table_lookup .
#
movd r0,r3
bgeq abs1
mnegd r3,r3
abs1:
cmpd r3,$0d+4.55530934770520019583e+01
blss small_arg
jsb trigred
rsb
small_arg:
jsb table_lookup
rsb
#
# At this point,
# r0 contains the quadrant number, 0, 1, 2, or 3;
# r2/r1 contains the reduced argument as a D-format number;
# r3 contains a F-format extension to the reduced argument;
# r4 contains a 0 or 1 corresponding to a sin or cos entry.
#
libm$sincos:
#
# Compensate for a cosine entry by adding one to the quadrant number.
#
addl2 r4,r0
#
# Polyd clobbers r5-r0 ; save X in r7/r6 .
# This can be avoided by rewriting trigred .
#
movd r1,r6
#
# Likewise, save alpha in r8 .
# This can be avoided by rewriting trigred .
#
movf r3,r8
#
# Odd or even quadrant? cosine if odd, sine otherwise.
# Save floor(quadrant/2) in r9 ; it determines the final sign.
#
rotl $-1,r0,r9
blss cosine
sine:
muld2 r1,r1 # Xsq = X * X
cmpw $0x2480,r1 # [zl] Xsq > 2^-56?
blss 1f # [zl] yes, go ahead and do polyd
clrq r1 # [zl] work around 11/780 FPA polyd bug
1:
polyd r1,$7,sin_coef # Q = P(Xsq) , of deg 7
mulf3 $0f3.0,r8,r4 # beta = 3 * alpha
mulf2 r0,r4 # beta = Q * beta
addf2 r8,r4 # beta = alpha + beta
muld2 r6,r0 # S(X) = X * Q
# cvtfd r4,r4 ... r5 = 0 after a polyd.
addd2 r4,r0 # S(X) = beta + S(X)
addd2 r6,r0 # S(X) = X + S(X)
brb done
cosine:
muld2 r6,r6 # Xsq = X * X
beql zero_arg
mulf2 r1,r8 # beta = X * alpha
polyd r6,$7,cos_coef # Q = P'(Xsq) , of deg 7
subd3 r0,r8,r0 # beta = beta - Q
subw2 $0x80,r6 # Xsq = Xsq / 2
addd2 r0,r6 # Xsq = Xsq + beta
zero_arg:
subd3 r6,$0d1.0,r0 # C(X) = 1 - Xsq
done:
blbc r9,even
mnegd r0,r0
even:
rsb
.data
.align 2
sin_coef:
.double 0d-7.53080332264191085773e-13 # s7 = 2^-29 -1.a7f2504ffc49f8..
.double 0d+1.60573519267703489121e-10 # s6 = 2^-21 1.611adaede473c8..
.double 0d-2.50520965150706067211e-08 # s5 = 2^-1a -1.ae644921ed8382..
.double 0d+2.75573191800593885716e-06 # s4 = 2^-13 1.71de3a4b884278..
.double 0d-1.98412698411850507950e-04 # s3 = 2^-0d -1.a01a01a0125e7d..
.double 0d+8.33333333333325688985e-03 # s2 = 2^-07 1.11111111110e50
.double 0d-1.66666666666666664354e-01 # s1 = 2^-03 -1.55555555555554
.double 0d+0.00000000000000000000e+00 # s0 = 0
cos_coef:
.double 0d-1.13006966202629430300e-11 # s7 = 2^-25 -1.8D9BA04D1374BE..
.double 0d+2.08746646574796004700e-09 # s6 = 2^-1D 1.1EE632650350BA..
.double 0d-2.75573073031284417300e-07 # s5 = 2^-16 -1.27E4F31411719E..
.double 0d+2.48015872682668025200e-05 # s4 = 2^-10 1.A01A0196B902E8..
.double 0d-1.38888888888464709200e-03 # s3 = 2^-0A -1.6C16C16C11FACE..
.double 0d+4.16666666666664761400e-02 # s2 = 2^-05 1.5555555555539E
.double 0d+0.00000000000000000000e+00 # s1 = 0
.double 0d+0.00000000000000000000e+00 # s0 = 0
#
# Multiples of pi/2 expressed as the sum of three doubles,
#
# trailing: n * pi/2 , n = 0, 1, 2, ..., 29
# trailing[n] ,
#
# middle: n * pi/2 , n = 0, 1, 2, ..., 29
# middle[n] ,
#
# leading: n * pi/2 , n = 0, 1, 2, ..., 29
# leading[n] ,
#
# where
# leading[n] := (n * pi/2) rounded,
# middle[n] := (n * pi/2 - leading[n]) rounded,
# trailing[n] := (( n * pi/2 - leading[n]) - middle[n]) rounded .
trailing:
.double 0d+0.00000000000000000000e+00 # 0 * pi/2 trailing
.double 0d+4.33590506506189049611e-35 # 1 * pi/2 trailing
.double 0d+8.67181013012378099223e-35 # 2 * pi/2 trailing
.double 0d+1.30077151951856714215e-34 # 3 * pi/2 trailing
.double 0d+1.73436202602475619845e-34 # 4 * pi/2 trailing
.double 0d-1.68390735624352669192e-34 # 5 * pi/2 trailing
.double 0d+2.60154303903713428430e-34 # 6 * pi/2 trailing
.double 0d-8.16726343231148352150e-35 # 7 * pi/2 trailing
.double 0d+3.46872405204951239689e-34 # 8 * pi/2 trailing
.double 0d+3.90231455855570147991e-34 # 9 * pi/2 trailing
.double 0d-3.36781471248705338384e-34 # 10 * pi/2 trailing
.double 0d-1.06379439835298071785e-33 # 11 * pi/2 trailing
.double 0d+5.20308607807426856861e-34 # 12 * pi/2 trailing
.double 0d+5.63667658458045770509e-34 # 13 * pi/2 trailing
.double 0d-1.63345268646229670430e-34 # 14 * pi/2 trailing
.double 0d-1.19986217995610764801e-34 # 15 * pi/2 trailing
.double 0d+6.93744810409902479378e-34 # 16 * pi/2 trailing
.double 0d-8.03640094449267300110e-34 # 17 * pi/2 trailing
.double 0d+7.80462911711140295982e-34 # 18 * pi/2 trailing
.double 0d-7.16921993148029483506e-34 # 19 * pi/2 trailing
.double 0d-6.73562942497410676769e-34 # 20 * pi/2 trailing
.double 0d-6.30203891846791677593e-34 # 21 * pi/2 trailing
.double 0d-2.12758879670596143570e-33 # 22 * pi/2 trailing
.double 0d+2.53800212047402350390e-33 # 23 * pi/2 trailing
.double 0d+1.04061721561485371372e-33 # 24 * pi/2 trailing
.double 0d+6.11729905311472319056e-32 # 25 * pi/2 trailing
.double 0d+1.12733531691609154102e-33 # 26 * pi/2 trailing
.double 0d-3.70049587943078297272e-34 # 27 * pi/2 trailing
.double 0d-3.26690537292459340860e-34 # 28 * pi/2 trailing
.double 0d-1.14812616507957271361e-34 # 29 * pi/2 trailing
middle:
.double 0d+0.00000000000000000000e+00 # 0 * pi/2 middle
.double 0d+5.72118872610983179676e-18 # 1 * pi/2 middle
.double 0d+1.14423774522196635935e-17 # 2 * pi/2 middle
.double 0d-3.83475850529283316309e-17 # 3 * pi/2 middle
.double 0d+2.28847549044393271871e-17 # 4 * pi/2 middle
.double 0d-2.69052076007086676522e-17 # 5 * pi/2 middle
.double 0d-7.66951701058566632618e-17 # 6 * pi/2 middle
.double 0d-1.54628301484890040587e-17 # 7 * pi/2 middle
.double 0d+4.57695098088786543741e-17 # 8 * pi/2 middle
.double 0d+1.07001849766246313192e-16 # 9 * pi/2 middle
.double 0d-5.38104152014173353044e-17 # 10 * pi/2 middle
.double 0d-2.14622680169080983801e-16 # 11 * pi/2 middle
.double 0d-1.53390340211713326524e-16 # 12 * pi/2 middle
.double 0d-9.21580002543456677056e-17 # 13 * pi/2 middle
.double 0d-3.09256602969780081173e-17 # 14 * pi/2 middle
.double 0d+3.03066796603896507006e-17 # 15 * pi/2 middle
.double 0d+9.15390196177573087482e-17 # 16 * pi/2 middle
.double 0d+1.52771359575124969107e-16 # 17 * pi/2 middle
.double 0d+2.14003699532492626384e-16 # 18 * pi/2 middle
.double 0d-1.68853170360202329427e-16 # 19 * pi/2 middle
.double 0d-1.07620830402834670609e-16 # 20 * pi/2 middle
.double 0d+3.97700719404595604379e-16 # 21 * pi/2 middle
.double 0d-4.29245360338161967602e-16 # 22 * pi/2 middle
.double 0d-3.68013020380794313406e-16 # 23 * pi/2 middle
.double 0d-3.06780680423426653047e-16 # 24 * pi/2 middle
.double 0d-2.45548340466059054318e-16 # 25 * pi/2 middle
.double 0d-1.84316000508691335411e-16 # 26 * pi/2 middle
.double 0d-1.23083660551323675053e-16 # 27 * pi/2 middle
.double 0d-6.18513205939560162346e-17 # 28 * pi/2 middle
.double 0d-6.18980636588357585202e-19 # 29 * pi/2 middle
leading:
.double 0d+0.00000000000000000000e+00 # 0 * pi/2 leading
.double 0d+1.57079632679489661351e+00 # 1 * pi/2 leading
.double 0d+3.14159265358979322702e+00 # 2 * pi/2 leading
.double 0d+4.71238898038468989604e+00 # 3 * pi/2 leading
.double 0d+6.28318530717958645404e+00 # 4 * pi/2 leading
.double 0d+7.85398163397448312306e+00 # 5 * pi/2 leading
.double 0d+9.42477796076937979208e+00 # 6 * pi/2 leading
.double 0d+1.09955742875642763501e+01 # 7 * pi/2 leading
.double 0d+1.25663706143591729081e+01 # 8 * pi/2 leading
.double 0d+1.41371669411540694661e+01 # 9 * pi/2 leading
.double 0d+1.57079632679489662461e+01 # 10 * pi/2 leading
.double 0d+1.72787595947438630262e+01 # 11 * pi/2 leading
.double 0d+1.88495559215387595842e+01 # 12 * pi/2 leading
.double 0d+2.04203522483336561422e+01 # 13 * pi/2 leading
.double 0d+2.19911485751285527002e+01 # 14 * pi/2 leading
.double 0d+2.35619449019234492582e+01 # 15 * pi/2 leading
.double 0d+2.51327412287183458162e+01 # 16 * pi/2 leading
.double 0d+2.67035375555132423742e+01 # 17 * pi/2 leading
.double 0d+2.82743338823081389322e+01 # 18 * pi/2 leading
.double 0d+2.98451302091030359342e+01 # 19 * pi/2 leading
.double 0d+3.14159265358979324922e+01 # 20 * pi/2 leading
.double 0d+3.29867228626928286062e+01 # 21 * pi/2 leading
.double 0d+3.45575191894877260523e+01 # 22 * pi/2 leading
.double 0d+3.61283155162826226103e+01 # 23 * pi/2 leading
.double 0d+3.76991118430775191683e+01 # 24 * pi/2 leading
.double 0d+3.92699081698724157263e+01 # 25 * pi/2 leading
.double 0d+4.08407044966673122843e+01 # 26 * pi/2 leading
.double 0d+4.24115008234622088423e+01 # 27 * pi/2 leading
.double 0d+4.39822971502571054003e+01 # 28 * pi/2 leading
.double 0d+4.55530934770520019583e+01 # 29 * pi/2 leading
twoOverPi:
.double 0d+6.36619772367581343076e-01
.text
.align 1
table_lookup:
muld3 r3,twoOverPi,r0
cvtrdl r0,r0 # n = nearest int to ((2/pi)*|x|) rnded
mull3 $8,r0,r5
subd2 leading(r5),r3 # p = (|x| - leading n*pi/2) exactly
subd3 middle(r5),r3,r1 # q = (p - middle n*pi/2) rounded
subd2 r1,r3 # r = (p - q)
subd2 middle(r5),r3 # r = r - middle n*pi/2
subd2 trailing(r5),r3 # r = r - trailing n*pi/2 rounded
#
# If the original argument was negative,
# negate the reduce argument and
# adjust the octant/quadrant number.
#
tstw 4(ap)
bgeq abs2
mnegf r1,r1
mnegf r3,r3
# subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD
subb3 r0,$4,r0
abs2:
#
# Clear all unneeded octant/quadrant bits.
#
# bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD
bicb2 $0xfc,r0
rsb
#
# p.0
.text
.align 2
#
# Only 256 (actually 225) bits of 2/pi are needed for VAX double
# precision; this was determined by enumerating all the nearest
# machine integer multiples of pi/2 using continued fractions.
# (8a8d3673775b7ff7 required the most bits.) -S.McD
#
.long 0
.long 0
.long 0xaef1586d
.long 0x9458eaf7
.long 0x10e4107f
.long 0xd8a5664f
.long 0x4d377036
.long 0x09d5f47d
.long 0x91054a7f
.long 0xbe60db93
bits2opi:
.long 0x00000028
.long 0
#
# Note: wherever you see the word `octant', read `quadrant'.
# Currently this code is set up for pi/2 argument reduction.
# By uncommenting/commenting the appropriate lines, it will
# also serve as a pi/4 argument reduction code.
#
# p.1
# Trigred preforms argument reduction
# for the trigonometric functions. It
# takes one input argument, a D-format
# number in r1/r0 . The magnitude of
# the input argument must be greater
# than or equal to 1/2 . Trigred produces
# three results: the number of the octant
# occupied by the argument, the reduced
# argument, and an extension of the
# reduced argument. The octant number is
# returned in r0 . The reduced argument
# is returned as a D-format number in
# r2/r1 . An 8 bit extension of the
# reduced argument is returned as an
# F-format number in r3.
# p.2
trigred:
#
# Save the sign of the input argument.
#
movw r0,-(sp)
#
# Extract the exponent field.
#
extzv $7,$7,r0,r2
#
# Convert the fraction part of the input
# argument into a quadword integer.
#
bicw2 $0xff80,r0
bisb2 $0x80,r0 # -S.McD
rotl $16,r0,r0
rotl $16,r1,r1
#
# If r1 is negative, add 1 to r0 . This
# adjustment is made so that the two's
# complement multiplications done later
# will produce unsigned results.
#
bgeq posmid
incl r0
posmid:
# p.3
#
# Set r3 to the address of the first quadword
# used to obtain the needed portion of 2/pi .
# The address is longword aligned to ensure
# efficient access.
#
ashl $-3,r2,r3
bicb2 $3,r3
subl3 r3,$bits2opi,r3
#
# Set r2 to the size of the shift needed to
# obtain the correct portion of 2/pi .
#
bicb2 $0xe0,r2
# p.4
#
# Move the needed 128 bits of 2/pi into
# r11 - r8 . Adjust the numbers to allow
# for unsigned multiplication.
#
ashq r2,(r3),r10
subl2 $4,r3
ashq r2,(r3),r9
bgeq signoff1
incl r11
signoff1:
subl2 $4,r3
ashq r2,(r3),r8
bgeq signoff2
incl r10
signoff2:
subl2 $4,r3
ashq r2,(r3),r7
bgeq signoff3
incl r9
signoff3:
# p.5
#
# Multiply the contents of r0/r1 by the
# slice of 2/pi in r11 - r8 .
#
emul r0,r8,$0,r4
emul r0,r9,r5,r5
emul r0,r10,r6,r6
emul r1,r8,$0,r7
emul r1,r9,r8,r8
emul r1,r10,r9,r9
emul r1,r11,r10,r10
addl2 r4,r8
adwc r5,r9
adwc r6,r10
# p.6
#
# If there are more than five leading zeros
# after the first two quotient bits or if there
# are more than five leading ones after the first
# two quotient bits, generate more fraction bits.
# Otherwise, branch to code to produce the result.
#
bicl3 $0xc1ffffff,r10,r4
beql more1
cmpl $0x3e000000,r4
bneq result
more1:
# p.7
#
# generate another 32 result bits.
#
subl2 $4,r3
ashq r2,(r3),r5
bgeq signoff4
emul r1,r6,$0,r4
addl2 r1,r5
emul r0,r6,r5,r5
addl2 r0,r6
brb addbits1
signoff4:
emul r1,r6,$0,r4
emul r0,r6,r5,r5
addbits1:
addl2 r5,r7
adwc r6,r8
adwc $0,r9
adwc $0,r10
# p.8
#
# Check for massive cancellation.
#
bicl3 $0xc0000000,r10,r6
# bneq more2 -S.McD Test was backwards
beql more2
cmpl $0x3fffffff,r6
bneq result
more2:
# p.9
#
# If massive cancellation has occurred,
# generate another 24 result bits.
# Testing has shown there will always be
# enough bits after this point.
#
subl2 $4,r3
ashq r2,(r3),r5
bgeq signoff5
emul r0,r6,r4,r5
addl2 r0,r6
brb addbits2
signoff5:
emul r0,r6,r4,r5
addbits2:
addl2 r6,r7
adwc $0,r8
adwc $0,r9
adwc $0,r10
# p.10
#
# The following code produces the reduced
# argument from the product bits contained
# in r10 - r7 .
#
result:
#
# Extract the octant number from r10 .
#
# extzv $29,$3,r10,r0 ...used for pi/4 reduction -S.McD
extzv $30,$2,r10,r0
#
# Clear the octant bits in r10 .
#
# bicl2 $0xe0000000,r10 ...used for pi/4 reduction -S.McD
bicl2 $0xc0000000,r10
#
# Zero the sign flag.
#
clrl r5
# p.11
#
# Check to see if the fraction is greater than
# or equal to one-half. If it is, add one
# to the octant number, set the sign flag
# on, and replace the fraction with 1 minus
# the fraction.
#
# bitl $0x10000000,r10 ...used for pi/4 reduction -S.McD
bitl $0x20000000,r10
beql small
incl r0
incl r5
# subl3 r10,$0x1fffffff,r10 ...used for pi/4 reduction -S.McD
subl3 r10,$0x3fffffff,r10
mcoml r9,r9
mcoml r8,r8
mcoml r7,r7
small:
# p.12
#
## Test whether the first 29 bits of the ...used for pi/4 reduction -S.McD
# Test whether the first 30 bits of the
# fraction are zero.
#
tstl r10
beql tiny
#
# Find the position of the first one bit in r10 .
#
cvtld r10,r1
extzv $7,$7,r1,r1
#
# Compute the size of the shift needed.
#
subl3 r1,$32,r6
#
# Shift up the high order 64 bits of the
# product.
#
ashq r6,r9,r10
ashq r6,r8,r9
brb mult
# p.13
#
# Test to see if the sign bit of r9 is on.
#
tiny:
tstl r9
bgeq tinier
#
# If it is, shift the product bits up 32 bits.
#
movl $32,r6
movq r8,r10
tstl r10
brb mult
# p.14
#
# Test whether r9 is zero. It is probably
# impossible for both r10 and r9 to be
# zero, but until proven to be so, the test
# must be made.
#
tinier:
beql zero
#
# Find the position of the first one bit in r9 .
#
cvtld r9,r1
extzv $7,$7,r1,r1
#
# Compute the size of the shift needed.
#
subl3 r1,$32,r1
addl3 $32,r1,r6
#
# Shift up the high order 64 bits of the
# product.
#
ashq r1,r8,r10
ashq r1,r7,r9
brb mult
# p.15
#
# The following code sets the reduced
# argument to zero.
#
zero:
clrl r1
clrl r2
clrl r3
brw return
# p.16
#
# At this point, r0 contains the octant number,
# r6 indicates the number of bits the fraction
# has been shifted, r5 indicates the sign of
# the fraction, r11/r10 contain the high order
# 64 bits of the fraction, and the condition
# codes indicate where the sign bit of r10
# is on. The following code multiplies the
# fraction by pi/2 .
#
mult:
#
# Save r11/r10 in r4/r1 . -S.McD
movl r11,r4
movl r10,r1
#
# If the sign bit of r10 is on, add 1 to r11 .
#
bgeq signoff6
incl r11
signoff6:
# p.17
#
# Move pi/2 into r3/r2 .
#
movq $0xc90fdaa22168c235,r2
#
# Multiply the fraction by the portion of pi/2
# in r2 .
#
emul r2,r10,$0,r7
emul r2,r11,r8,r7
#
# Multiply the fraction by the portion of pi/2
# in r3 .
emul r3,r10,$0,r9
emul r3,r11,r10,r10
#
# Add the product bits together.
#
addl2 r7,r9
adwc r8,r10
adwc $0,r11
#
# Compensate for not sign extending r8 above.-S.McD
#
tstl r8
bgeq signoff6a
decl r11
signoff6a:
#
# Compensate for r11/r10 being unsigned. -S.McD
#
addl2 r2,r10
adwc r3,r11
#
# Compensate for r3/r2 being unsigned. -S.McD
#
addl2 r1,r10
adwc r4,r11
# p.18
#
# If the sign bit of r11 is zero, shift the
# product bits up one bit and increment r6 .
#
blss signon
incl r6
ashq $1,r10,r10
tstl r9
bgeq signoff7
incl r10
signoff7:
signon:
# p.19
#
# Shift the 56 most significant product
# bits into r9/r8 . The sign extension
# will be handled later.
#
ashq $-8,r10,r8
#
# Convert the low order 8 bits of r10
# into an F-format number.
#
cvtbf r10,r3
#
# If the result of the conversion was
# negative, add 1 to r9/r8 .
#
bgeq chop
incl r8
adwc $0,r9
#
# If r9 is now zero, branch to special
# code to handle that possibility.
#
beql carryout
chop:
# p.20
#
# Convert the number in r9/r8 into
# D-format number in r2/r1 .
#
rotl $16,r8,r2
rotl $16,r9,r1
#
# Set the exponent field to the appropriate
# value. Note that the extra bits created by
# sign extension are now eliminated.
#
subw3 r6,$131,r6
insv r6,$7,$9,r1
#
# Set the exponent field of the F-format
# number in r3 to the appropriate value.
#
tstf r3
beql return
# extzv $7,$8,r3,r4 -S.McD
extzv $7,$7,r3,r4
addw2 r4,r6
# subw2 $217,r6 -S.McD
subw2 $64,r6
insv r6,$7,$8,r3
brb return
# p.21
#
# The following code generates the appropriate
# result for the unlikely possibility that
# rounding the number in r9/r8 resulted in
# a carry out.
#
carryout:
clrl r1
clrl r2
subw3 r6,$132,r6
insv r6,$7,$9,r1
tstf r3
beql return
extzv $7,$8,r3,r4
addw2 r4,r6
subw2 $218,r6
insv r6,$7,$8,r3
# p.22
#
# The following code makes an needed
# adjustments to the signs of the
# results or to the octant number, and
# then returns.
#
return:
#
# Test if the fraction was greater than or
# equal to 1/2 . If so, negate the reduced
# argument.
#
blbc r5,signoff8
mnegf r1,r1
mnegf r3,r3
signoff8:
# p.23
#
# If the original argument was negative,
# negate the reduce argument and
# adjust the octant number.
#
tstw (sp)+
bgeq signoff9
mnegf r1,r1
mnegf r3,r3
# subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD
subb3 r0,$4,r0
signoff9:
#
# Clear all unneeded octant bits.
#
# bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD
bicb2 $0xfc,r0
#
# Return.
#
rsb