NetBSD/libexec/ld.elf_so/rtld.c
2002-09-12 19:43:03 +00:00

980 lines
25 KiB
C

/* $NetBSD: rtld.c,v 1.59 2002/09/12 19:43:03 mycroft Exp $ */
/*
* Copyright 1996 John D. Polstra.
* Copyright 1996 Matt Thomas <matt@3am-software.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by John Polstra.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Dynamic linker for ELF.
*
* John Polstra <jdp@polstra.com>.
*/
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/param.h>
#include <sys/mman.h>
#include <dirent.h>
#include <ctype.h>
#include <dlfcn.h>
#include "debug.h"
#include "rtld.h"
#if !defined(lint)
#include "sysident.h"
#endif
#define END_SYM "_end"
/*
* Function declarations.
*/
static void _rtld_init __P((caddr_t, caddr_t, int));
static void _rtld_exit __P((void));
Elf_Addr _rtld __P((Elf_Addr *, Elf_Addr));
/*
* Data declarations.
*/
static char *error_message; /* Message for dlopen(), or NULL */
struct r_debug _rtld_debug; /* for GDB; */
bool _rtld_trust; /* False for setuid and setgid programs */
Obj_Entry *_rtld_objlist; /* Head of linked list of shared objects */
Obj_Entry **_rtld_objtail; /* Link field of last object in list */
Obj_Entry *_rtld_objmain; /* The main program shared object */
Obj_Entry _rtld_objself; /* The dynamic linker shared object */
char _rtld_path[] = _PATH_RTLD;
Elf_Sym _rtld_sym_zero; /* For resolving undefined weak refs. */
#ifdef VARPSZ
int _rtld_pagesz; /* Page size, as provided by kernel */
#endif
Objlist _rtld_list_main = /* Objects loaded at program startup */
SIMPLEQ_HEAD_INITIALIZER(_rtld_list_main);
Search_Path *_rtld_default_paths;
Search_Path *_rtld_paths;
Library_Xform *_rtld_xforms;
/*
* Global declarations normally provided by crt0.
*/
char *__progname;
char **environ;
extern Elf_Addr _GLOBAL_OFFSET_TABLE_[];
extern Elf_Dyn _DYNAMIC;
static void _rtld_call_fini_functions __P((Obj_Entry *));
static void _rtld_call_init_functions __P((Obj_Entry *));
static Obj_Entry *_rtld_dlcheck __P((void *));
static void _rtld_init_dag __P((Obj_Entry *));
static void _rtld_init_dag1 __P((Obj_Entry *, Obj_Entry *));
static void _rtld_objlist_remove __P((Objlist *, Obj_Entry *));
static void _rtld_unload_object __P((Obj_Entry *, bool));
static void _rtld_unref_dag __P((Obj_Entry *));
static Obj_Entry *_rtld_obj_from_addr __P((const void *));
static void
_rtld_call_fini_functions(first)
Obj_Entry *first;
{
Obj_Entry *obj;
for (obj = first; obj != NULL; obj = obj->next)
if (obj->fini != NULL)
(*obj->fini)();
}
static void
_rtld_call_init_functions(first)
Obj_Entry *first;
{
if (first != NULL) {
_rtld_call_init_functions(first->next);
if (first->init != NULL)
(*first->init)();
}
}
/*
* Initialize the dynamic linker. The argument is the address at which
* the dynamic linker has been mapped into memory. The primary task of
* this function is to relocate the dynamic linker.
*/
static void
_rtld_init(mapbase, relocbase, pagesz)
caddr_t mapbase, relocbase;
int pagesz;
{
Obj_Entry objself;/* The dynamic linker shared object */
const Elf_Ehdr *hdr = (Elf_Ehdr *) mapbase;
#ifdef RTLD_RELOCATE_SELF
int dodebug = false;
#else
int dodebug = true;
#endif
int i;
memset(&objself, 0, sizeof objself);
/* Conjure up an Obj_Entry structure for the dynamic linker. */
objself.path = NULL;
objself.rtld = true;
objself.mapbase = mapbase;
objself.relocbase = relocbase;
objself.phdr = (Elf_Phdr *) (mapbase + hdr->e_phoff);
for (i = 0; i < hdr->e_phnum; i++) {
if (objself.phdr[i].p_type == PT_LOAD) {
#ifdef VARPSZ
/* We can't touch _rtld_pagesz yet so we can't use round_*() */
#define _rnd_down(x) ((x) & ~((long)pagesz-1))
#define _rnd_up(x) _rnd_down((x) + pagesz - 1)
objself.textsize = _rnd_up(objself.phdr[i].p_vaddr + objself.phdr[i].p_memsz) - _rnd_down(objself.phdr[i].p_vaddr);
#undef _rnd_down
#undef _rnd_up
#else
objself.textsize = round_up(objself.phdr[i].p_vaddr + objself.phdr[i].p_memsz) - round_down(objself.phdr[i].p_vaddr);
#endif
break;
}
}
objself.pltgot = NULL;
objself.dynamic = (Elf_Dyn *) &_DYNAMIC;
#ifdef RTLD_RELOCATE_SELF
/* We have not been relocated yet, so fix the dynamic address */
objself.dynamic = (Elf_Dyn *)
((u_long) mapbase + (char *) objself.dynamic);
#endif /* RTLD_RELOCATE_SELF */
_rtld_digest_dynamic(&objself);
#ifdef __alpha__
/* XXX XXX XXX */
objself.pltgot = NULL;
#endif
assert(objself.needed == NULL);
#if !defined(__mips__) && !defined(__sh__)
/* no relocation for mips/i386 */
assert(!objself.textrel);
#endif
_rtld_relocate_objects(&objself, true, true, dodebug);
/*
* Now that we relocated ourselves, we can use globals.
*/
_rtld_objself = objself;
_rtld_objself.path = _rtld_path;
_rtld_add_paths(&_rtld_default_paths, RTLD_DEFAULT_LIBRARY_PATH, true);
/*
* Set up the _rtld_objlist pointer, so that rtld symbols can be found.
*/
_rtld_objlist = &_rtld_objself;
/* Make the object list empty again. */
_rtld_objlist = NULL;
_rtld_objtail = &_rtld_objlist;
_rtld_debug.r_brk = _rtld_debug_state;
_rtld_debug.r_state = RT_CONSISTENT;
}
/*
* Cleanup procedure. It will be called (by the atexit() mechanism) just
* before the process exits.
*/
static void
_rtld_exit()
{
dbg(("rtld_exit()"));
_rtld_call_fini_functions(_rtld_objlist->next);
}
/*
* Main entry point for dynamic linking. The argument is the stack
* pointer. The stack is expected to be laid out as described in the
* SVR4 ABI specification, Intel 386 Processor Supplement. Specifically,
* the stack pointer points to a word containing ARGC. Following that
* in the stack is a null-terminated sequence of pointers to argument
* strings. Then comes a null-terminated sequence of pointers to
* environment strings. Finally, there is a sequence of "auxiliary
* vector" entries.
*
* This function returns the entry point for the main program, the dynamic
* linker's exit procedure in sp[0], and a pointer to the main object in
* sp[1].
*/
Elf_Addr
_rtld(sp, relocbase)
Elf_Addr *sp;
Elf_Addr relocbase;
{
const AuxInfo *pAUX_base, *pAUX_entry, *pAUX_execfd, *pAUX_phdr,
*pAUX_phent, *pAUX_phnum, *pAUX_euid, *pAUX_egid,
*pAUX_ruid, *pAUX_rgid;
#ifdef VARPSZ
const AuxInfo *pAUX_pagesz;
#endif
char **env;
const AuxInfo *aux;
const AuxInfo *auxp;
Elf_Addr *const osp = sp;
bool bind_now = 0;
const char *ld_bind_now;
const char **argv;
long argc;
Obj_Entry *obj;
const char **real___progname;
const Obj_Entry **real___mainprog_obj;
char ***real_environ;
#if defined(RTLD_DEBUG) && !defined(RTLD_RELOCATE_SELF)
int i = 0;
#endif
/*
* On entry, the dynamic linker itself has not been relocated yet.
* Be very careful not to reference any global data until after
* _rtld_init has returned. It is OK to reference file-scope statics
* and string constants, and to call static and global functions.
*/
/* Find the auxiliary vector on the stack. */
/* first Elf_Word reserved to address of exit routine */
#if defined(RTLD_DEBUG) && !defined(RTLD_RELOCATE_SELF)
dbg(("sp = %p, argc = %ld, argv = %p <%s>\n", sp, (long)sp[2],
&sp[3], (char *) sp[3]));
dbg(("got is at %p, dynamic is at %p\n",
_GLOBAL_OFFSET_TABLE_, &_DYNAMIC));
debug = 1;
dbg(("_ctype_ is %p\n", _ctype_));
#endif
sp += 2; /* skip over return argument space */
argv = (const char **) &sp[1];
argc = *(long *)sp;
#ifdef __sparc_v9__
/* XXX Temporary hack for argc format conversion. */
argc = (argc >> 32) | (argc & 0xffffffff);
#endif
sp += 2 + argc; /* Skip over argc, arguments, and NULL
* terminator */
env = (char **) sp;
while (*sp++ != 0) { /* Skip over environment, and NULL terminator */
#if defined(RTLD_DEBUG) && !defined(RTLD_RELOCATE_SELF)
dbg(("env[%d] = %p %s\n", i++, (void *)sp[-1], (char *)sp[-1]));
#endif
}
aux = (const AuxInfo *) sp;
pAUX_base = pAUX_entry = pAUX_execfd = NULL;
pAUX_phdr = pAUX_phent = pAUX_phnum = NULL;
pAUX_euid = pAUX_ruid = pAUX_egid = pAUX_rgid = NULL;
#ifdef VARPSZ
pAUX_pagesz = NULL;
#endif
/*
* First pass through the the auxiliary vector, avoiding the use
* of a `switch() {}' statement at this stage. A `switch()' may
* be translated into code utilizing a jump table approach which
* references the equivalent of a global variable. This must be
* avoided until _rtld_init() has done its job.
*
* _rtld_init() only needs `pAUX_base' and possibly `pAUX_pagesz',
* so we look for just those in this pass.
*/
for (auxp = aux; auxp->a_type != AT_NULL; ++auxp) {
if (auxp->a_type == AT_BASE)
pAUX_base = auxp;
#ifdef VARPSZ
if (auxp->a_type == AT_PAGESZ)
pAUX_pagesz = auxp;
#endif
}
/* Initialize and relocate ourselves. */
assert(pAUX_base != NULL);
#ifdef VARPSZ
assert(pAUX_pagesz != NULL);
_rtld_init((caddr_t)pAUX_base->a_v, (caddr_t)relocbase,
(int)pAUX_pagesz->a_v);
#else
_rtld_init((caddr_t)pAUX_base->a_v, (caddr_t)relocbase, 0);
#endif
/* Digest the auxiliary vector (full pass now that we can afford it). */
for (auxp = aux; auxp->a_type != AT_NULL; ++auxp) {
switch (auxp->a_type) {
case AT_BASE:
pAUX_base = auxp;
break;
case AT_ENTRY:
pAUX_entry = auxp;
break;
case AT_EXECFD:
pAUX_execfd = auxp;
break;
case AT_PHDR:
pAUX_phdr = auxp;
break;
case AT_PHENT:
pAUX_phent = auxp;
break;
case AT_PHNUM:
pAUX_phnum = auxp;
break;
#ifdef AT_EUID
case AT_EUID:
pAUX_euid = auxp;
break;
case AT_RUID:
pAUX_ruid = auxp;
break;
case AT_EGID:
pAUX_egid = auxp;
break;
case AT_RGID:
pAUX_rgid = auxp;
break;
#endif
#ifdef VARPSZ
case AT_PAGESZ:
pAUX_pagesz = auxp;
break;
#endif
}
}
#ifdef VARPSZ
_rtld_pagesz = (int)pAUX_pagesz->a_v;
#endif
#ifdef RTLD_DEBUG
dbg(("_ctype_ is %p\n", _ctype_));
#endif
__progname = _rtld_objself.path;
environ = env;
_rtld_trust = ((pAUX_euid ? (uid_t)pAUX_euid->a_v : geteuid()) ==
(pAUX_ruid ? (uid_t)pAUX_ruid->a_v : getuid())) &&
((pAUX_egid ? (gid_t)pAUX_egid->a_v : getegid()) ==
(pAUX_rgid ? (gid_t)pAUX_rgid->a_v : getgid()));
ld_bind_now = getenv("LD_BIND_NOW");
if (ld_bind_now != NULL && *ld_bind_now != '\0')
bind_now = true;
if (_rtld_trust) {
#ifdef DEBUG
const char *ld_debug = getenv("LD_DEBUG");
if (ld_debug != NULL && *ld_debug != '\0')
debug = 1;
#endif
_rtld_add_paths(&_rtld_paths, getenv("LD_LIBRARY_PATH"), true);
}
_rtld_process_hints(&_rtld_paths, &_rtld_xforms, _PATH_LD_HINTS, true);
dbg(("%s is initialized, mapbase=%p, relocbase=%p", __progname,
_rtld_objself.mapbase, _rtld_objself.relocbase));
/*
* Load the main program, or process its program header if it is
* already loaded.
*/
if (pAUX_execfd != NULL) { /* Load the main program. */
int fd = pAUX_execfd->a_v;
dbg(("loading main program"));
_rtld_objmain = _rtld_map_object(argv[0], fd, NULL);
close(fd);
if (_rtld_objmain == NULL)
_rtld_die();
} else { /* Main program already loaded. */
const Elf_Phdr *phdr;
int phnum;
caddr_t entry;
dbg(("processing main program's program header"));
assert(pAUX_phdr != NULL);
phdr = (const Elf_Phdr *) pAUX_phdr->a_v;
assert(pAUX_phnum != NULL);
phnum = pAUX_phnum->a_v;
assert(pAUX_phent != NULL);
assert(pAUX_phent->a_v == sizeof(Elf_Phdr));
assert(pAUX_entry != NULL);
entry = (caddr_t) pAUX_entry->a_v;
_rtld_objmain = _rtld_digest_phdr(phdr, phnum, entry);
}
if (argv[0] != NULL)
_rtld_objmain->path = xstrdup(argv[0]);
else
_rtld_objmain->path = xstrdup("main program");
_rtld_objmain->mainprog = true;
/*
* Get the actual dynamic linker pathname from the executable if
* possible. (It should always be possible.) That ensures that
* gdb will find the right dynamic linker even if a non-standard
* one is being used.
*/
if (_rtld_objmain->interp != NULL &&
strcmp(_rtld_objmain->interp, _rtld_objself.path) != 0) {
free(_rtld_objself.path);
_rtld_objself.path = xstrdup(_rtld_objmain->interp);
}
_rtld_digest_dynamic(_rtld_objmain);
_rtld_linkmap_add(_rtld_objmain);
_rtld_linkmap_add(&_rtld_objself);
/* Link the main program into the list of objects. */
*_rtld_objtail = _rtld_objmain;
_rtld_objtail = &_rtld_objmain->next;
++_rtld_objmain->refcount;
/* Initialize a fake symbol for resolving undefined weak references. */
_rtld_sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
_rtld_sym_zero.st_shndx = SHN_ABS;
/*
* Pre-load user-specified objects after the main program but before
* any shared object dependencies.
*/
dbg(("preloading objects"));
if (_rtld_trust && _rtld_preload(getenv("LD_PRELOAD"), true) == -1)
_rtld_die();
dbg(("loading needed objects"));
if (_rtld_load_needed_objects(_rtld_objmain, RTLD_GLOBAL, true) == -1)
_rtld_die();
for (obj = _rtld_objlist; obj != NULL; obj = obj->next)
_rtld_objlist_add(&_rtld_list_main, obj);
dbg(("relocating objects"));
if (_rtld_relocate_objects(_rtld_objmain, bind_now, false, true) == -1)
_rtld_die();
dbg(("doing copy relocations"));
if (_rtld_do_copy_relocations(_rtld_objmain, true) == -1)
_rtld_die();
/*
* Set the __progname, environ and, __mainprog_obj before
* calling anything that might use them.
*/
real___progname = _rtld_objmain_sym("__progname");
if (real___progname) {
if ((*real___progname = strrchr(argv[0], '/')) == NULL)
(*real___progname) = argv[0];
else
(*real___progname)++;
}
real_environ = _rtld_objmain_sym("environ");
if (real_environ)
*real_environ = environ;
real___mainprog_obj = _rtld_objmain_sym("__mainprog_obj");
if (real___mainprog_obj)
*real___mainprog_obj = _rtld_objmain;
dbg(("calling _init functions"));
_rtld_call_init_functions(_rtld_objmain->next);
dbg(("control at program entry point = %p, obj = %p, exit = %p",
_rtld_objmain->entry, _rtld_objmain, _rtld_exit));
/*
* Return with the entry point and the exit procedure in at the top
* of stack.
*/
_rtld_debug_state(); /* say hello to gdb! */
((void **) osp)[0] = _rtld_exit;
((void **) osp)[1] = _rtld_objmain;
return (Elf_Addr) _rtld_objmain->entry;
}
void
_rtld_die()
{
const char *msg = _rtld_dlerror();
if (msg == NULL)
msg = "Fatal error";
xerrx(1, "%s", msg);
}
static Obj_Entry *
_rtld_dlcheck(handle)
void *handle;
{
Obj_Entry *obj;
for (obj = _rtld_objlist; obj != NULL; obj = obj->next)
if (obj == (Obj_Entry *) handle)
break;
if (obj == NULL || obj->dl_refcount == 0) {
xwarnx("Invalid shared object handle %p", handle);
return NULL;
}
return obj;
}
static void
_rtld_init_dag(root)
Obj_Entry *root;
{
_rtld_init_dag1(root, root);
}
static void
_rtld_init_dag1(root, obj)
Obj_Entry *root;
Obj_Entry *obj;
{
const Needed_Entry *needed;
_rtld_objlist_add(&obj->dldags, root);
_rtld_objlist_add(&root->dagmembers, obj);
for (needed = obj->needed; needed != NULL; needed = needed->next)
if (needed->obj != NULL)
_rtld_init_dag1(root, needed->obj);
}
/*
* Note, this is called only for objects loaded by dlopen().
*/
static void
_rtld_unload_object(root, do_fini_funcs)
Obj_Entry *root;
bool do_fini_funcs;
{
_rtld_unref_dag(root);
if (root->refcount == 0) { /* We are finished with some objects. */
Obj_Entry *obj;
Obj_Entry **linkp;
Objlist_Entry *elm;
/* Finalize objects that are about to be unmapped. */
if (do_fini_funcs)
for (obj = _rtld_objlist->next; obj != NULL; obj = obj->next)
if (obj->refcount == 0 && obj->fini != NULL)
(*obj->fini)();
/* Remove the DAG from all objects' DAG lists. */
SIMPLEQ_FOREACH(elm, &root->dagmembers, link)
_rtld_objlist_remove(&elm->obj->dldags, root);
/* Remove the DAG from the RTLD_GLOBAL list. */
_rtld_objlist_remove(&_rtld_list_global, root);
/* Unmap all objects that are no longer referenced. */
linkp = &_rtld_objlist->next;
while ((obj = *linkp) != NULL) {
if (obj->refcount == 0) {
#ifdef RTLD_DEBUG
dbg(("unloading \"%s\"", obj->path));
#endif
munmap(obj->mapbase, obj->mapsize);
_rtld_objlist_remove(&_rtld_list_global, obj);
_rtld_linkmap_delete(obj);
*linkp = obj->next;
_rtld_obj_free(obj);
} else
linkp = &obj->next;
}
_rtld_objtail = linkp;
}
}
static void
_rtld_unref_dag(root)
Obj_Entry *root;
{
assert(root);
assert(root->refcount != 0);
--root->refcount;
if (root->refcount == 0) {
const Needed_Entry *needed;
for (needed = root->needed; needed != NULL;
needed = needed->next) {
if (needed->obj != NULL)
_rtld_unref_dag(needed->obj);
}
}
}
int
_rtld_dlclose(handle)
void *handle;
{
Obj_Entry *root = _rtld_dlcheck(handle);
if (root == NULL)
return -1;
_rtld_debug.r_state = RT_DELETE;
_rtld_debug_state();
--root->dl_refcount;
_rtld_unload_object(root, true);
_rtld_debug.r_state = RT_CONSISTENT;
_rtld_debug_state();
return 0;
}
char *
_rtld_dlerror()
{
char *msg = error_message;
error_message = NULL;
return msg;
}
void *
_rtld_dlopen(name, mode)
const char *name;
int mode;
{
Obj_Entry **old_obj_tail = _rtld_objtail;
Obj_Entry *obj = NULL;
_rtld_debug.r_state = RT_ADD;
_rtld_debug_state();
if (name == NULL) {
obj = _rtld_objmain;
obj->refcount++;
} else {
char *path = _rtld_find_library(name, _rtld_objmain);
if (path != NULL)
obj = _rtld_load_object(path, mode, true);
}
if (obj != NULL) {
++obj->dl_refcount;
if (*old_obj_tail != NULL) { /* We loaded something new. */
assert(*old_obj_tail == obj);
if (_rtld_load_needed_objects(obj, mode, true) == -1 ||
(_rtld_init_dag(obj),
_rtld_relocate_objects(obj,
((mode & 3) == RTLD_NOW), false, true)) == -1) {
_rtld_unload_object(obj, false);
obj->dl_refcount--;
obj = NULL;
} else
_rtld_call_init_functions(obj);
}
}
_rtld_debug.r_state = RT_CONSISTENT;
_rtld_debug_state();
return obj;
}
/*
* Find a symbol in the main program.
*/
void *
_rtld_objmain_sym(name)
const char *name;
{
unsigned long hash;
const Elf_Sym *def;
const Obj_Entry *obj;
hash = _rtld_elf_hash(name);
obj = _rtld_objmain;
def = _rtld_symlook_list(name, hash, &_rtld_list_main, &obj, true);
if (def != NULL)
return obj->relocbase + def->st_value;
return(NULL);
}
void *
_rtld_dlsym(handle, name)
void *handle;
const char *name;
{
const Obj_Entry *obj;
unsigned long hash;
const Elf_Sym *def;
const Obj_Entry *defobj;
hash = _rtld_elf_hash(name);
def = NULL;
defobj = NULL;
if (handle == NULL
#if 0
|| handle == RTLD_NEXT
#endif
) {
void *retaddr;
retaddr = __builtin_return_address(0); /* __GNUC__ only */
if ((obj = _rtld_obj_from_addr(retaddr)) == NULL) {
_rtld_error("Cannot determine caller's shared object");
return NULL;
}
if (handle == NULL) { /* Just the caller's shared object. */
def = _rtld_symlook_obj(name, hash, obj, true);
defobj = obj;
} else { /* All the shared objects after the caller's */
while ((obj = obj->next) != NULL) {
if ((def = _rtld_symlook_obj(name, hash, obj, true)) != NULL) {
defobj = obj;
break;
}
}
}
} else {
if ((obj = _rtld_dlcheck(handle)) == NULL)
return NULL;
if (obj->mainprog) {
/* Search main program and all libraries loaded by it. */
def = _rtld_symlook_list(name, hash, &_rtld_list_main, &defobj, true);
} else {
/*
* XXX - This isn't correct. The search should include the whole
* DAG rooted at the given object.
*/
def = _rtld_symlook_obj(name, hash, obj, true);
defobj = obj;
}
}
if (def != NULL) {
#ifdef __HAVE_FUNCTION_DESCRIPTORS
if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
return (void *)_rtld_function_descriptor_alloc(defobj,
def, 0);
#endif /* __HAVE_FUNCTION_DESCRIPTORS */
return defobj->relocbase + def->st_value;
}
_rtld_error("Undefined symbol \"%s\"", name);
return NULL;
}
int
_rtld_dladdr(addr, info)
const void *addr;
Dl_info *info;
{
const Obj_Entry *obj;
const Elf_Sym *def, *best_def;
void *symbol_addr;
unsigned long symoffset;
#ifdef __HAVE_FUNCTION_DESCRIPTORS
addr = _rtld_function_descriptor_function(addr);
#endif /* __HAVE_FUNCTION_DESCRIPTORS */
obj = _rtld_obj_from_addr(addr);
if (obj == NULL) {
_rtld_error("No shared object contains address");
return 0;
}
info->dli_fname = obj->path;
info->dli_fbase = obj->mapbase;
info->dli_saddr = (void *)0;
info->dli_sname = NULL;
/*
* Walk the symbol list looking for the symbol whose address is
* closest to the address sent in.
*/
best_def = NULL;
for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
def = obj->symtab + symoffset;
/*
* For skip the symbol if st_shndx is either SHN_UNDEF or
* SHN_COMMON.
*/
if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
continue;
/*
* If the symbol is greater than the specified address, or if it
* is further away from addr than the current nearest symbol,
* then reject it.
*/
symbol_addr = obj->relocbase + def->st_value;
if (symbol_addr > addr || symbol_addr < info->dli_saddr)
continue;
/* Update our idea of the nearest symbol. */
info->dli_sname = obj->strtab + def->st_name;
info->dli_saddr = symbol_addr;
best_def = def;
/* Exact match? */
if (info->dli_saddr == addr)
break;
}
#ifdef __HAVE_FUNCTION_DESCRIPTORS
if (best_def != NULL && ELF_ST_TYPE(best_def->st_info) == STT_FUNC)
info->dli_saddr = (void *)_rtld_function_descriptor_alloc(obj,
best_def, 0);
#endif /* __HAVE_FUNCTION_DESCRIPTORS */
return 1;
}
/*
* Error reporting function. Use it like printf. If formats the message
* into a buffer, and sets things up so that the next call to dlerror()
* will return the message.
*/
void
_rtld_error(const char *fmt,...)
{
static char buf[512];
va_list ap;
va_start(ap, fmt);
xvsnprintf(buf, sizeof buf, fmt, ap);
error_message = buf;
va_end(ap);
}
void
_rtld_debug_state()
{
/* do nothing */
}
void
_rtld_linkmap_add(obj)
Obj_Entry *obj;
{
struct link_map *l = &obj->linkmap;
struct link_map *prev;
obj->linkmap.l_name = obj->path;
obj->linkmap.l_addr = obj->mapbase;
obj->linkmap.l_ld = obj->dynamic;
#ifdef __mips__
/* GDB needs load offset on MIPS to use the symbols */
obj->linkmap.l_offs = obj->relocbase;
#endif
#ifdef __vax__
/* VAX shared libaries don't start at a vaddr of 0 */
obj->linkmap.l_addr -= obj->vaddrbase;
#endif
if (_rtld_debug.r_map == NULL) {
_rtld_debug.r_map = l;
return;
}
for (prev = _rtld_debug.r_map; prev->l_next != NULL; prev = prev->l_next);
l->l_prev = prev;
prev->l_next = l;
l->l_next = NULL;
}
void
_rtld_linkmap_delete(obj)
Obj_Entry *obj;
{
struct link_map *l = &obj->linkmap;
if (l->l_prev == NULL) {
if ((_rtld_debug.r_map = l->l_next) != NULL)
l->l_next->l_prev = NULL;
return;
}
if ((l->l_prev->l_next = l->l_next) != NULL)
l->l_next->l_prev = l->l_prev;
}
static Obj_Entry *
_rtld_obj_from_addr(const void *addr)
{
unsigned long endhash;
Obj_Entry *obj;
endhash = _rtld_elf_hash(END_SYM);
for (obj = _rtld_objlist; obj != NULL; obj = obj->next) {
const Elf_Sym *endsym;
if (addr < (void *) obj->mapbase)
continue;
if ((endsym = _rtld_symlook_obj(END_SYM, endhash, obj, true)) == NULL)
continue; /* No "end" symbol?! */
if (addr < (void *) (obj->relocbase + endsym->st_value))
return obj;
}
return NULL;
}
static void
_rtld_objlist_remove(list, obj)
Objlist *list;
Obj_Entry *obj;
{
Objlist_Entry *elm;
if ((elm = _rtld_objlist_find(list, obj)) != NULL) {
SIMPLEQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
free(elm);
}
}