NetBSD/sys/dev/usb/ugen.c
riastradh 257aaf9afb Fix ugen detach after partial attach.
While here, register null pmf handler even for partially attached
devices so they don't needlessly interfere with suspend.

Reported-by: syzbot+5a091d2e62da20b77259@syzkaller.appspotmail.com
2020-08-18 14:32:34 +00:00

2263 lines
56 KiB
C

/* $NetBSD: ugen.c,v 1.157 2020/08/18 14:32:34 riastradh Exp $ */
/*
* Copyright (c) 1998, 2004 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net) at
* Carlstedt Research & Technology.
*
* Copyright (c) 2006 BBN Technologies Corp. All rights reserved.
* Effort sponsored in part by the Defense Advanced Research Projects
* Agency (DARPA) and the Department of the Interior National Business
* Center under agreement number NBCHC050166.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ugen.c,v 1.157 2020/08/18 14:32:34 riastradh Exp $");
#ifdef _KERNEL_OPT
#include "opt_compat_netbsd.h"
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/device.h>
#include <sys/ioctl.h>
#include <sys/conf.h>
#include <sys/tty.h>
#include <sys/file.h>
#include <sys/select.h>
#include <sys/proc.h>
#include <sys/vnode.h>
#include <sys/poll.h>
#include <sys/compat_stub.h>
#include <sys/module.h>
#include <sys/rbtree.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include "ioconf.h"
#ifdef UGEN_DEBUG
#define DPRINTF(x) if (ugendebug) printf x
#define DPRINTFN(n,x) if (ugendebug>(n)) printf x
int ugendebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
#define UGEN_CHUNK 128 /* chunk size for read */
#define UGEN_IBSIZE 1020 /* buffer size */
#define UGEN_BBSIZE 1024
#define UGEN_NISOREQS 4 /* number of outstanding xfer requests */
#define UGEN_NISORFRMS 8 /* number of transactions per req */
#define UGEN_NISOFRAMES (UGEN_NISORFRMS * UGEN_NISOREQS)
#define UGEN_BULK_RA_WB_BUFSIZE 16384 /* default buffer size */
#define UGEN_BULK_RA_WB_BUFMAX (1 << 20) /* maximum allowed buffer */
struct isoreq {
struct ugen_endpoint *sce;
struct usbd_xfer *xfer;
void *dmabuf;
uint16_t sizes[UGEN_NISORFRMS];
};
struct ugen_endpoint {
struct ugen_softc *sc;
usb_endpoint_descriptor_t *edesc;
struct usbd_interface *iface;
int state;
#define UGEN_SHORT_OK 0x04 /* short xfers are OK */
#define UGEN_BULK_RA 0x08 /* in bulk read-ahead mode */
#define UGEN_BULK_WB 0x10 /* in bulk write-behind mode */
#define UGEN_RA_WB_STOP 0x20 /* RA/WB xfer is stopped (buffer full/empty) */
struct usbd_pipe *pipeh;
struct clist q;
u_char *ibuf; /* start of buffer (circular for isoc) */
u_char *fill; /* location for input (isoc) */
u_char *limit; /* end of circular buffer (isoc) */
u_char *cur; /* current read location (isoc) */
uint32_t timeout;
uint32_t ra_wb_bufsize; /* requested size for RA/WB buffer */
uint32_t ra_wb_reqsize; /* requested xfer length for RA/WB */
uint32_t ra_wb_used; /* how much is in buffer */
uint32_t ra_wb_xferlen; /* current xfer length for RA/WB */
struct usbd_xfer *ra_wb_xfer;
struct isoreq isoreqs[UGEN_NISOREQS];
/* Keep these last; we don't overwrite them in ugen_set_config() */
#define UGEN_ENDPOINT_NONZERO_CRUFT offsetof(struct ugen_endpoint, rsel)
struct selinfo rsel;
kcondvar_t cv;
};
struct ugen_softc {
device_t sc_dev; /* base device */
struct usbd_device *sc_udev;
struct rb_node sc_node;
unsigned sc_unit;
kmutex_t sc_lock;
kcondvar_t sc_detach_cv;
char sc_is_open[USB_MAX_ENDPOINTS];
struct ugen_endpoint sc_endpoints[USB_MAX_ENDPOINTS][2];
#define OUT 0
#define IN 1
int sc_refcnt;
char sc_buffer[UGEN_BBSIZE];
u_char sc_dying;
u_char sc_attached;
};
static struct {
kmutex_t lock;
rb_tree_t tree;
} ugenif __cacheline_aligned;
static int
compare_ugen(void *cookie, const void *vsca, const void *vscb)
{
const struct ugen_softc *sca = vsca;
const struct ugen_softc *scb = vscb;
if (sca->sc_unit < scb->sc_unit)
return -1;
if (sca->sc_unit > scb->sc_unit)
return +1;
return 0;
}
static int
compare_ugen_key(void *cookie, const void *vsc, const void *vk)
{
const struct ugen_softc *sc = vsc;
const unsigned *k = vk;
if (sc->sc_unit < *k)
return -1;
if (sc->sc_unit > *k)
return +1;
return 0;
}
static const rb_tree_ops_t ugenif_tree_ops = {
.rbto_compare_nodes = compare_ugen,
.rbto_compare_key = compare_ugen_key,
.rbto_node_offset = offsetof(struct ugen_softc, sc_node),
};
static void
ugenif_get_unit(struct ugen_softc *sc)
{
struct ugen_softc *sc0;
unsigned i;
mutex_enter(&ugenif.lock);
for (i = 0, sc0 = RB_TREE_MIN(&ugenif.tree);
sc0 != NULL && i == sc0->sc_unit;
i++, sc0 = RB_TREE_NEXT(&ugenif.tree, sc0))
KASSERT(i < UINT_MAX);
KASSERT(rb_tree_find_node(&ugenif.tree, &i) == NULL);
sc->sc_unit = i;
sc0 = rb_tree_insert_node(&ugenif.tree, sc);
KASSERT(sc0 == sc);
KASSERT(rb_tree_find_node(&ugenif.tree, &i) == sc);
mutex_exit(&ugenif.lock);
}
static void
ugenif_put_unit(struct ugen_softc *sc)
{
mutex_enter(&ugenif.lock);
KASSERT(rb_tree_find_node(&ugenif.tree, &sc->sc_unit) == sc);
rb_tree_remove_node(&ugenif.tree, sc);
sc->sc_unit = -1;
mutex_exit(&ugenif.lock);
}
static struct ugen_softc *
ugenif_acquire(unsigned unit)
{
struct ugen_softc *sc;
mutex_enter(&ugenif.lock);
sc = rb_tree_find_node(&ugenif.tree, &unit);
if (sc == NULL)
goto out;
mutex_enter(&sc->sc_lock);
if (sc->sc_dying) {
mutex_exit(&sc->sc_lock);
sc = NULL;
goto out;
}
KASSERT(sc->sc_refcnt < INT_MAX);
sc->sc_refcnt++;
mutex_exit(&sc->sc_lock);
out: mutex_exit(&ugenif.lock);
return sc;
}
static void
ugenif_release(struct ugen_softc *sc)
{
mutex_enter(&sc->sc_lock);
if (--sc->sc_refcnt < 0)
cv_broadcast(&sc->sc_detach_cv);
mutex_exit(&sc->sc_lock);
}
static dev_type_open(ugenopen);
static dev_type_close(ugenclose);
static dev_type_read(ugenread);
static dev_type_write(ugenwrite);
static dev_type_ioctl(ugenioctl);
static dev_type_poll(ugenpoll);
static dev_type_kqfilter(ugenkqfilter);
const struct cdevsw ugen_cdevsw = {
.d_open = ugenopen,
.d_close = ugenclose,
.d_read = ugenread,
.d_write = ugenwrite,
.d_ioctl = ugenioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = ugenpoll,
.d_mmap = nommap,
.d_kqfilter = ugenkqfilter,
.d_discard = nodiscard,
.d_flag = D_OTHER,
};
Static void ugenintr(struct usbd_xfer *, void *,
usbd_status);
Static void ugen_isoc_rintr(struct usbd_xfer *, void *,
usbd_status);
Static void ugen_bulkra_intr(struct usbd_xfer *, void *,
usbd_status);
Static void ugen_bulkwb_intr(struct usbd_xfer *, void *,
usbd_status);
Static int ugen_do_read(struct ugen_softc *, int, struct uio *, int);
Static int ugen_do_write(struct ugen_softc *, int, struct uio *, int);
Static int ugen_do_ioctl(struct ugen_softc *, int, u_long,
void *, int, struct lwp *);
Static int ugen_set_config(struct ugen_softc *, int, int);
Static usb_config_descriptor_t *ugen_get_cdesc(struct ugen_softc *,
int, int *);
Static usbd_status ugen_set_interface(struct ugen_softc *, int, int);
Static int ugen_get_alt_index(struct ugen_softc *, int);
Static void ugen_clear_endpoints(struct ugen_softc *);
#define UGENUNIT(n) ((minor(n) >> 4) & 0xf)
#define UGENENDPOINT(n) (minor(n) & 0xf)
#define UGENDEV(u, e) (makedev(0, ((u) << 4) | (e)))
static int ugenif_match(device_t, cfdata_t, void *);
static void ugenif_attach(device_t, device_t, void *);
static int ugen_match(device_t, cfdata_t, void *);
static void ugen_attach(device_t, device_t, void *);
static int ugen_detach(device_t, int);
static int ugen_activate(device_t, enum devact);
CFATTACH_DECL_NEW(ugen, sizeof(struct ugen_softc), ugen_match,
ugen_attach, ugen_detach, ugen_activate);
CFATTACH_DECL_NEW(ugenif, sizeof(struct ugen_softc), ugenif_match,
ugenif_attach, ugen_detach, ugen_activate);
/* toggle to control attach priority. -1 means "let autoconf decide" */
int ugen_override = -1;
static int
ugen_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
int override;
if (ugen_override != -1)
override = ugen_override;
else
override = match->cf_flags & 1;
if (override)
return UMATCH_HIGHEST;
else if (uaa->uaa_usegeneric)
return UMATCH_GENERIC;
else
return UMATCH_NONE;
}
static int
ugenif_match(device_t parent, cfdata_t match, void *aux)
{
/* Assume that they knew what they configured! (see ugenif(4)) */
return UMATCH_HIGHEST;
}
static void
ugen_attach(device_t parent, device_t self, void *aux)
{
struct usb_attach_arg *uaa = aux;
struct usbif_attach_arg uiaa;
memset(&uiaa, 0, sizeof(uiaa));
uiaa.uiaa_port = uaa->uaa_port;
uiaa.uiaa_vendor = uaa->uaa_vendor;
uiaa.uiaa_product = uaa->uaa_product;
uiaa.uiaa_release = uaa->uaa_release;
uiaa.uiaa_device = uaa->uaa_device;
uiaa.uiaa_configno = -1;
uiaa.uiaa_ifaceno = -1;
ugenif_attach(parent, self, &uiaa);
}
static void
ugenif_attach(device_t parent, device_t self, void *aux)
{
struct ugen_softc *sc = device_private(self);
struct usbif_attach_arg *uiaa = aux;
struct usbd_device *udev;
char *devinfop;
usbd_status err;
int i, dir, conf;
aprint_naive("\n");
aprint_normal("\n");
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
cv_init(&sc->sc_detach_cv, "ugendet");
devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
sc->sc_dev = self;
sc->sc_udev = udev = uiaa->uiaa_device;
for (i = 0; i < USB_MAX_ENDPOINTS; i++) {
for (dir = OUT; dir <= IN; dir++) {
struct ugen_endpoint *sce;
sce = &sc->sc_endpoints[i][dir];
selinit(&sce->rsel);
cv_init(&sce->cv, "ugensce");
}
}
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
if (uiaa->uiaa_ifaceno < 0) {
/*
* If we attach the whole device,
* set configuration index 0, the default one.
*/
err = usbd_set_config_index(udev, 0, 0);
if (err) {
aprint_error_dev(self,
"setting configuration index 0 failed\n");
return;
}
}
/* Get current configuration */
conf = usbd_get_config_descriptor(udev)->bConfigurationValue;
/* Set up all the local state for this configuration. */
err = ugen_set_config(sc, conf, uiaa->uiaa_ifaceno < 0);
if (err) {
aprint_error_dev(self, "setting configuration %d failed\n",
conf);
return;
}
ugenif_get_unit(sc);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
sc->sc_attached = 1;
}
Static void
ugen_clear_endpoints(struct ugen_softc *sc)
{
/* Clear out the old info, but leave the selinfo and cv initialised. */
for (int i = 0; i < USB_MAX_ENDPOINTS; i++) {
for (int dir = OUT; dir <= IN; dir++) {
struct ugen_endpoint *sce = &sc->sc_endpoints[i][dir];
memset(sce, 0, UGEN_ENDPOINT_NONZERO_CRUFT);
}
}
}
Static int
ugen_set_config(struct ugen_softc *sc, int configno, int chkopen)
{
struct usbd_device *dev = sc->sc_udev;
usb_config_descriptor_t *cdesc;
struct usbd_interface *iface;
usb_endpoint_descriptor_t *ed;
struct ugen_endpoint *sce;
uint8_t niface, nendpt;
int ifaceno, endptno, endpt;
usbd_status err;
int dir;
DPRINTFN(1,("ugen_set_config: %s to configno %d, sc=%p\n",
device_xname(sc->sc_dev), configno, sc));
if (chkopen) {
/*
* We start at 1, not 0, because we don't care whether the
* control endpoint is open or not. It is always present.
*/
for (endptno = 1; endptno < USB_MAX_ENDPOINTS; endptno++)
if (sc->sc_is_open[endptno]) {
DPRINTFN(1,
("ugen_set_config: %s - endpoint %d is open\n",
device_xname(sc->sc_dev), endptno));
return USBD_IN_USE;
}
}
/* Avoid setting the current value. */
cdesc = usbd_get_config_descriptor(dev);
if (!cdesc || cdesc->bConfigurationValue != configno) {
err = usbd_set_config_no(dev, configno, 1);
if (err)
return err;
}
ugen_clear_endpoints(sc);
err = usbd_interface_count(dev, &niface);
if (err)
return err;
for (ifaceno = 0; ifaceno < niface; ifaceno++) {
DPRINTFN(1,("ugen_set_config: ifaceno %d\n", ifaceno));
err = usbd_device2interface_handle(dev, ifaceno, &iface);
if (err)
return err;
err = usbd_endpoint_count(iface, &nendpt);
if (err)
return err;
for (endptno = 0; endptno < nendpt; endptno++) {
ed = usbd_interface2endpoint_descriptor(iface,endptno);
KASSERT(ed != NULL);
endpt = ed->bEndpointAddress;
dir = UE_GET_DIR(endpt) == UE_DIR_IN ? IN : OUT;
sce = &sc->sc_endpoints[UE_GET_ADDR(endpt)][dir];
DPRINTFN(1,("ugen_set_config: endptno %d, endpt=0x%02x"
"(%d,%d), sce=%p\n",
endptno, endpt, UE_GET_ADDR(endpt),
UE_GET_DIR(endpt), sce));
sce->sc = sc;
sce->edesc = ed;
sce->iface = iface;
}
}
return USBD_NORMAL_COMPLETION;
}
static int
ugenopen(dev_t dev, int flag, int mode, struct lwp *l)
{
struct ugen_softc *sc;
int unit = UGENUNIT(dev);
int endpt = UGENENDPOINT(dev);
usb_endpoint_descriptor_t *edesc;
struct ugen_endpoint *sce;
int dir, isize;
usbd_status err;
struct usbd_xfer *xfer;
int i, j;
int error;
if ((sc = ugenif_acquire(unit)) == NULL)
return ENXIO;
DPRINTFN(5, ("ugenopen: flag=%d, mode=%d, unit=%d endpt=%d\n",
flag, mode, unit, endpt));
/* The control endpoint allows multiple opens. */
if (endpt == USB_CONTROL_ENDPOINT) {
sc->sc_is_open[USB_CONTROL_ENDPOINT] = 1;
error = 0;
goto out;
}
if (sc->sc_is_open[endpt]) {
error = EBUSY;
goto out;
}
/* Make sure there are pipes for all directions. */
for (dir = OUT; dir <= IN; dir++) {
if (flag & (dir == OUT ? FWRITE : FREAD)) {
sce = &sc->sc_endpoints[endpt][dir];
if (sce->edesc == NULL) {
error = ENXIO;
goto out;
}
}
}
/* Actually open the pipes. */
/* XXX Should back out properly if it fails. */
for (dir = OUT; dir <= IN; dir++) {
if (!(flag & (dir == OUT ? FWRITE : FREAD)))
continue;
sce = &sc->sc_endpoints[endpt][dir];
sce->state = 0;
sce->timeout = USBD_NO_TIMEOUT;
DPRINTFN(5, ("ugenopen: sc=%p, endpt=%d, dir=%d, sce=%p\n",
sc, endpt, dir, sce));
edesc = sce->edesc;
switch (edesc->bmAttributes & UE_XFERTYPE) {
case UE_INTERRUPT:
if (dir == OUT) {
err = usbd_open_pipe(sce->iface,
edesc->bEndpointAddress, 0, &sce->pipeh);
if (err) {
error = EIO;
goto out;
}
break;
}
isize = UGETW(edesc->wMaxPacketSize);
if (isize == 0) { /* shouldn't happen */
error = EINVAL;
goto out;
}
sce->ibuf = kmem_alloc(isize, KM_SLEEP);
DPRINTFN(5, ("ugenopen: intr endpt=%d,isize=%d\n",
endpt, isize));
if (clalloc(&sce->q, UGEN_IBSIZE, 0) == -1) {
kmem_free(sce->ibuf, isize);
sce->ibuf = NULL;
error = ENOMEM;
goto out;
}
err = usbd_open_pipe_intr(sce->iface,
edesc->bEndpointAddress,
USBD_SHORT_XFER_OK, &sce->pipeh, sce,
sce->ibuf, isize, ugenintr,
USBD_DEFAULT_INTERVAL);
if (err) {
clfree(&sce->q);
kmem_free(sce->ibuf, isize);
sce->ibuf = NULL;
error = EIO;
goto out;
}
DPRINTFN(5, ("ugenopen: interrupt open done\n"));
break;
case UE_BULK:
err = usbd_open_pipe(sce->iface,
edesc->bEndpointAddress, 0, &sce->pipeh);
if (err) {
error = EIO;
goto out;
}
sce->ra_wb_bufsize = UGEN_BULK_RA_WB_BUFSIZE;
/*
* Use request size for non-RA/WB transfers
* as the default.
*/
sce->ra_wb_reqsize = UGEN_BBSIZE;
break;
case UE_ISOCHRONOUS:
if (dir == OUT) {
error = EINVAL;
goto out;
}
isize = UGETW(edesc->wMaxPacketSize);
if (isize == 0) { /* shouldn't happen */
error = EINVAL;
goto out;
}
sce->ibuf = kmem_alloc(isize * UGEN_NISOFRAMES,
KM_SLEEP);
sce->cur = sce->fill = sce->ibuf;
sce->limit = sce->ibuf + isize * UGEN_NISOFRAMES;
DPRINTFN(5, ("ugenopen: isoc endpt=%d, isize=%d\n",
endpt, isize));
err = usbd_open_pipe(sce->iface,
edesc->bEndpointAddress, 0, &sce->pipeh);
if (err) {
kmem_free(sce->ibuf, isize * UGEN_NISOFRAMES);
sce->ibuf = NULL;
error = EIO;
goto out;
}
for (i = 0; i < UGEN_NISOREQS; ++i) {
sce->isoreqs[i].sce = sce;
err = usbd_create_xfer(sce->pipeh,
isize * UGEN_NISORFRMS, 0, UGEN_NISORFRMS,
&xfer);
if (err)
goto bad;
sce->isoreqs[i].xfer = xfer;
sce->isoreqs[i].dmabuf = usbd_get_buffer(xfer);
for (j = 0; j < UGEN_NISORFRMS; ++j)
sce->isoreqs[i].sizes[j] = isize;
usbd_setup_isoc_xfer(xfer, &sce->isoreqs[i],
sce->isoreqs[i].sizes, UGEN_NISORFRMS, 0,
ugen_isoc_rintr);
(void)usbd_transfer(xfer);
}
DPRINTFN(5, ("ugenopen: isoc open done\n"));
break;
bad:
while (--i >= 0) /* implicit buffer free */
usbd_destroy_xfer(sce->isoreqs[i].xfer);
usbd_close_pipe(sce->pipeh);
sce->pipeh = NULL;
kmem_free(sce->ibuf, isize * UGEN_NISOFRAMES);
sce->ibuf = NULL;
error = ENOMEM;
goto out;
case UE_CONTROL:
sce->timeout = USBD_DEFAULT_TIMEOUT;
error = EINVAL;
goto out;
}
}
sc->sc_is_open[endpt] = 1;
error = 0;
out: ugenif_release(sc);
return error;
}
static int
ugenclose(dev_t dev, int flag, int mode, struct lwp *l)
{
int endpt = UGENENDPOINT(dev);
struct ugen_softc *sc;
struct ugen_endpoint *sce;
int dir;
int i;
int error;
if ((sc = ugenif_acquire(UGENUNIT(dev))) == NULL)
return ENXIO;
DPRINTFN(5, ("ugenclose: flag=%d, mode=%d, unit=%d, endpt=%d\n",
flag, mode, UGENUNIT(dev), endpt));
KASSERT(sc->sc_is_open[endpt]);
if (endpt == USB_CONTROL_ENDPOINT) {
DPRINTFN(5, ("ugenclose: close control\n"));
sc->sc_is_open[endpt] = 0;
error = 0;
goto out;
}
for (dir = OUT; dir <= IN; dir++) {
if (!(flag & (dir == OUT ? FWRITE : FREAD)))
continue;
sce = &sc->sc_endpoints[endpt][dir];
if (sce->pipeh == NULL)
continue;
DPRINTFN(5, ("ugenclose: endpt=%d dir=%d sce=%p\n",
endpt, dir, sce));
usbd_abort_pipe(sce->pipeh);
int isize = UGETW(sce->edesc->wMaxPacketSize);
int msize = 0;
switch (sce->edesc->bmAttributes & UE_XFERTYPE) {
case UE_INTERRUPT:
ndflush(&sce->q, sce->q.c_cc);
clfree(&sce->q);
msize = isize;
break;
case UE_ISOCHRONOUS:
for (i = 0; i < UGEN_NISOREQS; ++i)
usbd_destroy_xfer(sce->isoreqs[i].xfer);
msize = isize * UGEN_NISOFRAMES;
break;
case UE_BULK:
if (sce->state & (UGEN_BULK_RA | UGEN_BULK_WB)) {
usbd_destroy_xfer(sce->ra_wb_xfer);
msize = sce->ra_wb_bufsize;
}
break;
default:
break;
}
usbd_close_pipe(sce->pipeh);
sce->pipeh = NULL;
if (sce->ibuf != NULL) {
kmem_free(sce->ibuf, msize);
sce->ibuf = NULL;
}
}
sc->sc_is_open[endpt] = 0;
error = 0;
out: ugenif_release(sc);
return error;
}
Static int
ugen_do_read(struct ugen_softc *sc, int endpt, struct uio *uio, int flag)
{
struct ugen_endpoint *sce = &sc->sc_endpoints[endpt][IN];
uint32_t n, tn;
struct usbd_xfer *xfer;
usbd_status err;
int error = 0;
DPRINTFN(5, ("%s: ugenread: %d\n", device_xname(sc->sc_dev), endpt));
if (endpt == USB_CONTROL_ENDPOINT)
return ENODEV;
KASSERT(sce->edesc);
KASSERT(sce->pipeh);
switch (sce->edesc->bmAttributes & UE_XFERTYPE) {
case UE_INTERRUPT:
/* Block until activity occurred. */
mutex_enter(&sc->sc_lock);
while (sce->q.c_cc == 0) {
if (flag & IO_NDELAY) {
mutex_exit(&sc->sc_lock);
return EWOULDBLOCK;
}
DPRINTFN(5, ("ugenread: sleep on %p\n", sce));
/* "ugenri" */
error = cv_timedwait_sig(&sce->cv, &sc->sc_lock,
mstohz(sce->timeout));
DPRINTFN(5, ("ugenread: woke, error=%d\n", error));
if (sc->sc_dying)
error = EIO;
if (error)
break;
}
mutex_exit(&sc->sc_lock);
/* Transfer as many chunks as possible. */
while (sce->q.c_cc > 0 && uio->uio_resid > 0 && !error) {
n = uimin(sce->q.c_cc, uio->uio_resid);
if (n > sizeof(sc->sc_buffer))
n = sizeof(sc->sc_buffer);
/* Remove a small chunk from the input queue. */
q_to_b(&sce->q, sc->sc_buffer, n);
DPRINTFN(5, ("ugenread: got %d chars\n", n));
/* Copy the data to the user process. */
error = uiomove(sc->sc_buffer, n, uio);
if (error)
break;
}
break;
case UE_BULK:
if (sce->state & UGEN_BULK_RA) {
DPRINTFN(5, ("ugenread: BULK_RA req: %zd used: %d\n",
uio->uio_resid, sce->ra_wb_used));
xfer = sce->ra_wb_xfer;
mutex_enter(&sc->sc_lock);
if (sce->ra_wb_used == 0 && flag & IO_NDELAY) {
mutex_exit(&sc->sc_lock);
return EWOULDBLOCK;
}
while (uio->uio_resid > 0 && !error) {
while (sce->ra_wb_used == 0) {
DPRINTFN(5,
("ugenread: sleep on %p\n",
sce));
/* "ugenrb" */
error = cv_timedwait_sig(&sce->cv,
&sc->sc_lock, mstohz(sce->timeout));
DPRINTFN(5,
("ugenread: woke, error=%d\n",
error));
if (sc->sc_dying)
error = EIO;
if (error)
break;
}
/* Copy data to the process. */
while (uio->uio_resid > 0
&& sce->ra_wb_used > 0) {
n = uimin(uio->uio_resid,
sce->ra_wb_used);
n = uimin(n, sce->limit - sce->cur);
error = uiomove(sce->cur, n, uio);
if (error)
break;
sce->cur += n;
sce->ra_wb_used -= n;
if (sce->cur == sce->limit)
sce->cur = sce->ibuf;
}
/*
* If the transfers stopped because the
* buffer was full, restart them.
*/
if (sce->state & UGEN_RA_WB_STOP &&
sce->ra_wb_used < sce->limit - sce->ibuf) {
n = (sce->limit - sce->ibuf)
- sce->ra_wb_used;
usbd_setup_xfer(xfer, sce, NULL,
uimin(n, sce->ra_wb_xferlen),
0, USBD_NO_TIMEOUT,
ugen_bulkra_intr);
sce->state &= ~UGEN_RA_WB_STOP;
err = usbd_transfer(xfer);
if (err != USBD_IN_PROGRESS)
/*
* The transfer has not been
* queued. Setting STOP
* will make us try
* again at the next read.
*/
sce->state |= UGEN_RA_WB_STOP;
}
}
mutex_exit(&sc->sc_lock);
break;
}
error = usbd_create_xfer(sce->pipeh, UGEN_BBSIZE,
0, 0, &xfer);
if (error)
return error;
while ((n = uimin(UGEN_BBSIZE, uio->uio_resid)) != 0) {
DPRINTFN(1, ("ugenread: start transfer %d bytes\n",n));
tn = n;
err = usbd_bulk_transfer(xfer, sce->pipeh,
sce->state & UGEN_SHORT_OK ? USBD_SHORT_XFER_OK : 0,
sce->timeout, sc->sc_buffer, &tn);
if (err) {
if (err == USBD_INTERRUPTED)
error = EINTR;
else if (err == USBD_TIMEOUT)
error = ETIMEDOUT;
else
error = EIO;
break;
}
DPRINTFN(1, ("ugenread: got %d bytes\n", tn));
error = uiomove(sc->sc_buffer, tn, uio);
if (error || tn < n)
break;
}
usbd_destroy_xfer(xfer);
break;
case UE_ISOCHRONOUS:
mutex_enter(&sc->sc_lock);
while (sce->cur == sce->fill) {
if (flag & IO_NDELAY) {
mutex_exit(&sc->sc_lock);
return EWOULDBLOCK;
}
/* "ugenri" */
DPRINTFN(5, ("ugenread: sleep on %p\n", sce));
error = cv_timedwait_sig(&sce->cv, &sc->sc_lock,
mstohz(sce->timeout));
DPRINTFN(5, ("ugenread: woke, error=%d\n", error));
if (sc->sc_dying)
error = EIO;
if (error)
break;
}
while (sce->cur != sce->fill && uio->uio_resid > 0 && !error) {
if(sce->fill > sce->cur)
n = uimin(sce->fill - sce->cur, uio->uio_resid);
else
n = uimin(sce->limit - sce->cur, uio->uio_resid);
DPRINTFN(5, ("ugenread: isoc got %d chars\n", n));
/* Copy the data to the user process. */
error = uiomove(sce->cur, n, uio);
if (error)
break;
sce->cur += n;
if (sce->cur >= sce->limit)
sce->cur = sce->ibuf;
}
mutex_exit(&sc->sc_lock);
break;
default:
return ENXIO;
}
return error;
}
static int
ugenread(dev_t dev, struct uio *uio, int flag)
{
int endpt = UGENENDPOINT(dev);
struct ugen_softc *sc;
int error;
if ((sc = ugenif_acquire(UGENUNIT(dev))) == NULL)
return ENXIO;
error = ugen_do_read(sc, endpt, uio, flag);
ugenif_release(sc);
return error;
}
Static int
ugen_do_write(struct ugen_softc *sc, int endpt, struct uio *uio,
int flag)
{
struct ugen_endpoint *sce = &sc->sc_endpoints[endpt][OUT];
uint32_t n;
int error = 0;
uint32_t tn;
char *dbuf;
struct usbd_xfer *xfer;
usbd_status err;
DPRINTFN(5, ("%s: ugenwrite: %d\n", device_xname(sc->sc_dev), endpt));
if (endpt == USB_CONTROL_ENDPOINT)
return ENODEV;
KASSERT(sce->edesc);
KASSERT(sce->pipeh);
switch (sce->edesc->bmAttributes & UE_XFERTYPE) {
case UE_BULK:
if (sce->state & UGEN_BULK_WB) {
DPRINTFN(5, ("ugenwrite: BULK_WB req: %zd used: %d\n",
uio->uio_resid, sce->ra_wb_used));
xfer = sce->ra_wb_xfer;
mutex_enter(&sc->sc_lock);
if (sce->ra_wb_used == sce->limit - sce->ibuf &&
flag & IO_NDELAY) {
mutex_exit(&sc->sc_lock);
return EWOULDBLOCK;
}
while (uio->uio_resid > 0 && !error) {
while (sce->ra_wb_used ==
sce->limit - sce->ibuf) {
DPRINTFN(5,
("ugenwrite: sleep on %p\n",
sce));
/* "ugenwb" */
error = cv_timedwait_sig(&sce->cv,
&sc->sc_lock, mstohz(sce->timeout));
DPRINTFN(5,
("ugenwrite: woke, error=%d\n",
error));
if (sc->sc_dying)
error = EIO;
if (error)
break;
}
/* Copy data from the process. */
while (uio->uio_resid > 0 &&
sce->ra_wb_used < sce->limit - sce->ibuf) {
n = uimin(uio->uio_resid,
(sce->limit - sce->ibuf)
- sce->ra_wb_used);
n = uimin(n, sce->limit - sce->fill);
error = uiomove(sce->fill, n, uio);
if (error)
break;
sce->fill += n;
sce->ra_wb_used += n;
if (sce->fill == sce->limit)
sce->fill = sce->ibuf;
}
/*
* If the transfers stopped because the
* buffer was empty, restart them.
*/
if (sce->state & UGEN_RA_WB_STOP &&
sce->ra_wb_used > 0) {
dbuf = (char *)usbd_get_buffer(xfer);
n = uimin(sce->ra_wb_used,
sce->ra_wb_xferlen);
tn = uimin(n, sce->limit - sce->cur);
memcpy(dbuf, sce->cur, tn);
dbuf += tn;
if (n - tn > 0)
memcpy(dbuf, sce->ibuf,
n - tn);
usbd_setup_xfer(xfer, sce, NULL, n,
0, USBD_NO_TIMEOUT,
ugen_bulkwb_intr);
sce->state &= ~UGEN_RA_WB_STOP;
err = usbd_transfer(xfer);
if (err != USBD_IN_PROGRESS)
/*
* The transfer has not been
* queued. Setting STOP
* will make us try again
* at the next read.
*/
sce->state |= UGEN_RA_WB_STOP;
}
}
mutex_exit(&sc->sc_lock);
break;
}
error = usbd_create_xfer(sce->pipeh, UGEN_BBSIZE,
0, 0, &xfer);
if (error)
return error;
while ((n = uimin(UGEN_BBSIZE, uio->uio_resid)) != 0) {
error = uiomove(sc->sc_buffer, n, uio);
if (error)
break;
DPRINTFN(1, ("ugenwrite: transfer %d bytes\n", n));
err = usbd_bulk_transfer(xfer, sce->pipeh, 0, sce->timeout,
sc->sc_buffer, &n);
if (err) {
if (err == USBD_INTERRUPTED)
error = EINTR;
else if (err == USBD_TIMEOUT)
error = ETIMEDOUT;
else
error = EIO;
break;
}
}
usbd_destroy_xfer(xfer);
break;
case UE_INTERRUPT:
error = usbd_create_xfer(sce->pipeh,
UGETW(sce->edesc->wMaxPacketSize), 0, 0, &xfer);
if (error)
return error;
while ((n = uimin(UGETW(sce->edesc->wMaxPacketSize),
uio->uio_resid)) != 0) {
error = uiomove(sc->sc_buffer, n, uio);
if (error)
break;
DPRINTFN(1, ("ugenwrite: transfer %d bytes\n", n));
err = usbd_intr_transfer(xfer, sce->pipeh, 0,
sce->timeout, sc->sc_buffer, &n);
if (err) {
if (err == USBD_INTERRUPTED)
error = EINTR;
else if (err == USBD_TIMEOUT)
error = ETIMEDOUT;
else
error = EIO;
break;
}
}
usbd_destroy_xfer(xfer);
break;
default:
return ENXIO;
}
return error;
}
static int
ugenwrite(dev_t dev, struct uio *uio, int flag)
{
int endpt = UGENENDPOINT(dev);
struct ugen_softc *sc;
int error;
if ((sc = ugenif_acquire(UGENUNIT(dev))) == NULL)
return ENXIO;
error = ugen_do_write(sc, endpt, uio, flag);
ugenif_release(sc);
return error;
}
static int
ugen_activate(device_t self, enum devact act)
{
struct ugen_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
sc->sc_dying = 1;
return 0;
default:
return EOPNOTSUPP;
}
}
static int
ugen_detach(device_t self, int flags)
{
struct ugen_softc *sc = device_private(self);
struct ugen_endpoint *sce;
int i, dir;
int maj, mn;
DPRINTF(("ugen_detach: sc=%p flags=%d\n", sc, flags));
sc->sc_dying = 1;
pmf_device_deregister(self);
if (!sc->sc_attached)
goto out;
/* Abort all pipes. Causes processes waiting for transfer to wake. */
for (i = 0; i < USB_MAX_ENDPOINTS; i++) {
for (dir = OUT; dir <= IN; dir++) {
sce = &sc->sc_endpoints[i][dir];
if (sce->pipeh)
usbd_abort_pipe(sce->pipeh);
}
}
mutex_enter(&sc->sc_lock);
if (--sc->sc_refcnt >= 0) {
/* Wake everyone */
for (i = 0; i < USB_MAX_ENDPOINTS; i++)
cv_signal(&sc->sc_endpoints[i][IN].cv);
/* Wait for processes to go away. */
if (cv_timedwait(&sc->sc_detach_cv, &sc->sc_lock, hz * 60))
aprint_error_dev(self, ": didn't detach\n");
}
mutex_exit(&sc->sc_lock);
/* locate the major number */
maj = cdevsw_lookup_major(&ugen_cdevsw);
/* Nuke the vnodes for any open instances (calls close). */
mn = sc->sc_unit * USB_MAX_ENDPOINTS;
vdevgone(maj, mn, mn + USB_MAX_ENDPOINTS - 1, VCHR);
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
ugenif_put_unit(sc);
out: for (i = 0; i < USB_MAX_ENDPOINTS; i++) {
for (dir = OUT; dir <= IN; dir++) {
sce = &sc->sc_endpoints[i][dir];
seldestroy(&sce->rsel);
cv_destroy(&sce->cv);
}
}
cv_destroy(&sc->sc_detach_cv);
mutex_destroy(&sc->sc_lock);
return 0;
}
Static void
ugenintr(struct usbd_xfer *xfer, void *addr, usbd_status status)
{
struct ugen_endpoint *sce = addr;
struct ugen_softc *sc = sce->sc;
uint32_t count;
u_char *ibuf;
if (status == USBD_CANCELLED)
return;
if (status != USBD_NORMAL_COMPLETION) {
DPRINTF(("ugenintr: status=%d\n", status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sce->pipeh);
return;
}
usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
ibuf = sce->ibuf;
DPRINTFN(5, ("ugenintr: xfer=%p status=%d count=%d\n",
xfer, status, count));
DPRINTFN(5, (" data = %02x %02x %02x\n",
ibuf[0], ibuf[1], ibuf[2]));
mutex_enter(&sc->sc_lock);
(void)b_to_q(ibuf, count, &sce->q);
cv_signal(&sce->cv);
mutex_exit(&sc->sc_lock);
selnotify(&sce->rsel, 0, 0);
}
Static void
ugen_isoc_rintr(struct usbd_xfer *xfer, void *addr,
usbd_status status)
{
struct isoreq *req = addr;
struct ugen_endpoint *sce = req->sce;
struct ugen_softc *sc = sce->sc;
uint32_t count, n;
int i, isize;
/* Return if we are aborting. */
if (status == USBD_CANCELLED)
return;
usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
DPRINTFN(5,("ugen_isoc_rintr: xfer %ld, count=%d\n",
(long)(req - sce->isoreqs), count));
mutex_enter(&sc->sc_lock);
/* throw away oldest input if the buffer is full */
if (sce->fill < sce->cur && sce->cur <= sce->fill + count) {
sce->cur += count;
if (sce->cur >= sce->limit)
sce->cur = sce->ibuf + (sce->limit - sce->cur);
DPRINTFN(5, ("ugen_isoc_rintr: throwing away %d bytes\n",
count));
}
isize = UGETW(sce->edesc->wMaxPacketSize);
for (i = 0; i < UGEN_NISORFRMS; i++) {
uint32_t actlen = req->sizes[i];
char const *tbuf = (char const *)req->dmabuf + isize * i;
/* copy data to buffer */
while (actlen > 0) {
n = uimin(actlen, sce->limit - sce->fill);
memcpy(sce->fill, tbuf, n);
tbuf += n;
actlen -= n;
sce->fill += n;
if (sce->fill == sce->limit)
sce->fill = sce->ibuf;
}
/* setup size for next transfer */
req->sizes[i] = isize;
}
usbd_setup_isoc_xfer(xfer, req, req->sizes, UGEN_NISORFRMS, 0,
ugen_isoc_rintr);
(void)usbd_transfer(xfer);
cv_signal(&sce->cv);
mutex_exit(&sc->sc_lock);
selnotify(&sce->rsel, 0, 0);
}
Static void
ugen_bulkra_intr(struct usbd_xfer *xfer, void *addr,
usbd_status status)
{
struct ugen_endpoint *sce = addr;
struct ugen_softc *sc = sce->sc;
uint32_t count, n;
char const *tbuf;
usbd_status err;
/* Return if we are aborting. */
if (status == USBD_CANCELLED)
return;
if (status != USBD_NORMAL_COMPLETION) {
DPRINTF(("ugen_bulkra_intr: status=%d\n", status));
sce->state |= UGEN_RA_WB_STOP;
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sce->pipeh);
return;
}
usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
mutex_enter(&sc->sc_lock);
/* Keep track of how much is in the buffer. */
sce->ra_wb_used += count;
/* Copy data to buffer. */
tbuf = (char const *)usbd_get_buffer(sce->ra_wb_xfer);
n = uimin(count, sce->limit - sce->fill);
memcpy(sce->fill, tbuf, n);
tbuf += n;
count -= n;
sce->fill += n;
if (sce->fill == sce->limit)
sce->fill = sce->ibuf;
if (count > 0) {
memcpy(sce->fill, tbuf, count);
sce->fill += count;
}
/* Set up the next request if necessary. */
n = (sce->limit - sce->ibuf) - sce->ra_wb_used;
if (n > 0) {
usbd_setup_xfer(xfer, sce, NULL, uimin(n, sce->ra_wb_xferlen), 0,
USBD_NO_TIMEOUT, ugen_bulkra_intr);
err = usbd_transfer(xfer);
if (err != USBD_IN_PROGRESS) {
printf("usbd_bulkra_intr: error=%d\n", err);
/*
* The transfer has not been queued. Setting STOP
* will make us try again at the next read.
*/
sce->state |= UGEN_RA_WB_STOP;
}
}
else
sce->state |= UGEN_RA_WB_STOP;
cv_signal(&sce->cv);
mutex_exit(&sc->sc_lock);
selnotify(&sce->rsel, 0, 0);
}
Static void
ugen_bulkwb_intr(struct usbd_xfer *xfer, void *addr,
usbd_status status)
{
struct ugen_endpoint *sce = addr;
struct ugen_softc *sc = sce->sc;
uint32_t count, n;
char *tbuf;
usbd_status err;
/* Return if we are aborting. */
if (status == USBD_CANCELLED)
return;
if (status != USBD_NORMAL_COMPLETION) {
DPRINTF(("ugen_bulkwb_intr: status=%d\n", status));
sce->state |= UGEN_RA_WB_STOP;
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sce->pipeh);
return;
}
usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
mutex_enter(&sc->sc_lock);
/* Keep track of how much is in the buffer. */
sce->ra_wb_used -= count;
/* Update buffer pointers. */
sce->cur += count;
if (sce->cur >= sce->limit)
sce->cur = sce->ibuf + (sce->cur - sce->limit);
/* Set up next request if necessary. */
if (sce->ra_wb_used > 0) {
/* copy data from buffer */
tbuf = (char *)usbd_get_buffer(sce->ra_wb_xfer);
count = uimin(sce->ra_wb_used, sce->ra_wb_xferlen);
n = uimin(count, sce->limit - sce->cur);
memcpy(tbuf, sce->cur, n);
tbuf += n;
if (count - n > 0)
memcpy(tbuf, sce->ibuf, count - n);
usbd_setup_xfer(xfer, sce, NULL, count, 0, USBD_NO_TIMEOUT,
ugen_bulkwb_intr);
err = usbd_transfer(xfer);
if (err != USBD_IN_PROGRESS) {
printf("usbd_bulkwb_intr: error=%d\n", err);
/*
* The transfer has not been queued. Setting STOP
* will make us try again at the next write.
*/
sce->state |= UGEN_RA_WB_STOP;
}
}
else
sce->state |= UGEN_RA_WB_STOP;
cv_signal(&sce->cv);
mutex_exit(&sc->sc_lock);
selnotify(&sce->rsel, 0, 0);
}
Static usbd_status
ugen_set_interface(struct ugen_softc *sc, int ifaceidx, int altno)
{
struct usbd_interface *iface;
usb_endpoint_descriptor_t *ed;
usbd_status err;
struct ugen_endpoint *sce;
uint8_t niface, nendpt, endptno, endpt;
int dir;
DPRINTFN(15, ("ugen_set_interface %d %d\n", ifaceidx, altno));
err = usbd_interface_count(sc->sc_udev, &niface);
if (err)
return err;
if (ifaceidx < 0 || ifaceidx >= niface)
return USBD_INVAL;
err = usbd_device2interface_handle(sc->sc_udev, ifaceidx, &iface);
if (err)
return err;
err = usbd_endpoint_count(iface, &nendpt);
if (err)
return err;
/* change setting */
err = usbd_set_interface(iface, altno);
if (err)
return err;
err = usbd_endpoint_count(iface, &nendpt);
if (err)
return err;
ugen_clear_endpoints(sc);
for (endptno = 0; endptno < nendpt; endptno++) {
ed = usbd_interface2endpoint_descriptor(iface,endptno);
KASSERT(ed != NULL);
endpt = ed->bEndpointAddress;
dir = UE_GET_DIR(endpt) == UE_DIR_IN ? IN : OUT;
sce = &sc->sc_endpoints[UE_GET_ADDR(endpt)][dir];
sce->sc = sc;
sce->edesc = ed;
sce->iface = iface;
}
return 0;
}
/* Retrieve a complete descriptor for a certain device and index. */
Static usb_config_descriptor_t *
ugen_get_cdesc(struct ugen_softc *sc, int index, int *lenp)
{
usb_config_descriptor_t *cdesc, *tdesc, cdescr;
int len;
usbd_status err;
if (index == USB_CURRENT_CONFIG_INDEX) {
tdesc = usbd_get_config_descriptor(sc->sc_udev);
if (tdesc == NULL)
return NULL;
len = UGETW(tdesc->wTotalLength);
if (lenp)
*lenp = len;
cdesc = kmem_alloc(len, KM_SLEEP);
memcpy(cdesc, tdesc, len);
DPRINTFN(5,("ugen_get_cdesc: current, len=%d\n", len));
} else {
err = usbd_get_config_desc(sc->sc_udev, index, &cdescr);
if (err)
return 0;
len = UGETW(cdescr.wTotalLength);
DPRINTFN(5,("ugen_get_cdesc: index=%d, len=%d\n", index, len));
if (lenp)
*lenp = len;
cdesc = kmem_alloc(len, KM_SLEEP);
err = usbd_get_config_desc_full(sc->sc_udev, index, cdesc, len);
if (err) {
kmem_free(cdesc, len);
return 0;
}
}
return cdesc;
}
Static int
ugen_get_alt_index(struct ugen_softc *sc, int ifaceidx)
{
struct usbd_interface *iface;
usbd_status err;
err = usbd_device2interface_handle(sc->sc_udev, ifaceidx, &iface);
if (err)
return -1;
return usbd_get_interface_altindex(iface);
}
Static int
ugen_do_ioctl(struct ugen_softc *sc, int endpt, u_long cmd,
void *addr, int flag, struct lwp *l)
{
struct ugen_endpoint *sce;
usbd_status err;
struct usbd_interface *iface;
struct usb_config_desc *cd;
usb_config_descriptor_t *cdesc;
struct usb_interface_desc *id;
usb_interface_descriptor_t *idesc;
struct usb_endpoint_desc *ed;
usb_endpoint_descriptor_t *edesc;
struct usb_alt_interface *ai;
struct usb_string_desc *si;
uint8_t conf, alt;
int cdesclen;
int error;
int dir;
DPRINTFN(5, ("ugenioctl: cmd=%08lx\n", cmd));
switch (cmd) {
case FIONBIO:
/* All handled in the upper FS layer. */
return 0;
case USB_SET_SHORT_XFER:
if (endpt == USB_CONTROL_ENDPOINT)
return EINVAL;
/* This flag only affects read */
sce = &sc->sc_endpoints[endpt][IN];
if (sce == NULL || sce->pipeh == NULL)
return EINVAL;
if (*(int *)addr)
sce->state |= UGEN_SHORT_OK;
else
sce->state &= ~UGEN_SHORT_OK;
return 0;
case USB_SET_TIMEOUT:
for (dir = OUT; dir <= IN; dir++) {
sce = &sc->sc_endpoints[endpt][dir];
if (sce == NULL)
return EINVAL;
sce->timeout = *(int *)addr;
}
return 0;
case USB_SET_BULK_RA:
if (endpt == USB_CONTROL_ENDPOINT)
return EINVAL;
sce = &sc->sc_endpoints[endpt][IN];
if (sce == NULL || sce->pipeh == NULL)
return EINVAL;
edesc = sce->edesc;
if ((edesc->bmAttributes & UE_XFERTYPE) != UE_BULK)
return EINVAL;
if (*(int *)addr) {
/* Only turn RA on if it's currently off. */
if (sce->state & UGEN_BULK_RA)
return 0;
if (sce->ra_wb_bufsize == 0 || sce->ra_wb_reqsize == 0)
/* shouldn't happen */
return EINVAL;
error = usbd_create_xfer(sce->pipeh,
sce->ra_wb_reqsize, 0, 0, &sce->ra_wb_xfer);
if (error)
return error;
sce->ra_wb_xferlen = sce->ra_wb_reqsize;
sce->ibuf = kmem_alloc(sce->ra_wb_bufsize, KM_SLEEP);
sce->fill = sce->cur = sce->ibuf;
sce->limit = sce->ibuf + sce->ra_wb_bufsize;
sce->ra_wb_used = 0;
sce->state |= UGEN_BULK_RA;
sce->state &= ~UGEN_RA_WB_STOP;
/* Now start reading. */
usbd_setup_xfer(sce->ra_wb_xfer, sce, NULL,
uimin(sce->ra_wb_xferlen, sce->ra_wb_bufsize),
0, USBD_NO_TIMEOUT, ugen_bulkra_intr);
err = usbd_transfer(sce->ra_wb_xfer);
if (err != USBD_IN_PROGRESS) {
sce->state &= ~UGEN_BULK_RA;
kmem_free(sce->ibuf, sce->ra_wb_bufsize);
sce->ibuf = NULL;
usbd_destroy_xfer(sce->ra_wb_xfer);
return EIO;
}
} else {
/* Only turn RA off if it's currently on. */
if (!(sce->state & UGEN_BULK_RA))
return 0;
sce->state &= ~UGEN_BULK_RA;
usbd_abort_pipe(sce->pipeh);
usbd_destroy_xfer(sce->ra_wb_xfer);
/*
* XXX Discard whatever's in the buffer, but we
* should keep it around and drain the buffer
* instead.
*/
kmem_free(sce->ibuf, sce->ra_wb_bufsize);
sce->ibuf = NULL;
}
return 0;
case USB_SET_BULK_WB:
if (endpt == USB_CONTROL_ENDPOINT)
return EINVAL;
sce = &sc->sc_endpoints[endpt][OUT];
if (sce == NULL || sce->pipeh == NULL)
return EINVAL;
edesc = sce->edesc;
if ((edesc->bmAttributes & UE_XFERTYPE) != UE_BULK)
return EINVAL;
if (*(int *)addr) {
/* Only turn WB on if it's currently off. */
if (sce->state & UGEN_BULK_WB)
return 0;
if (sce->ra_wb_bufsize == 0 || sce->ra_wb_reqsize == 0)
/* shouldn't happen */
return EINVAL;
error = usbd_create_xfer(sce->pipeh, sce->ra_wb_reqsize,
0, 0, &sce->ra_wb_xfer);
sce->ra_wb_xferlen = sce->ra_wb_reqsize;
sce->ibuf = kmem_alloc(sce->ra_wb_bufsize, KM_SLEEP);
sce->fill = sce->cur = sce->ibuf;
sce->limit = sce->ibuf + sce->ra_wb_bufsize;
sce->ra_wb_used = 0;
sce->state |= UGEN_BULK_WB | UGEN_RA_WB_STOP;
} else {
/* Only turn WB off if it's currently on. */
if (!(sce->state & UGEN_BULK_WB))
return 0;
sce->state &= ~UGEN_BULK_WB;
/*
* XXX Discard whatever's in the buffer, but we
* should keep it around and keep writing to
* drain the buffer instead.
*/
usbd_abort_pipe(sce->pipeh);
usbd_destroy_xfer(sce->ra_wb_xfer);
kmem_free(sce->ibuf, sce->ra_wb_bufsize);
sce->ibuf = NULL;
}
return 0;
case USB_SET_BULK_RA_OPT:
case USB_SET_BULK_WB_OPT:
{
struct usb_bulk_ra_wb_opt *opt;
if (endpt == USB_CONTROL_ENDPOINT)
return EINVAL;
opt = (struct usb_bulk_ra_wb_opt *)addr;
if (cmd == USB_SET_BULK_RA_OPT)
sce = &sc->sc_endpoints[endpt][IN];
else
sce = &sc->sc_endpoints[endpt][OUT];
if (sce == NULL || sce->pipeh == NULL)
return EINVAL;
if (opt->ra_wb_buffer_size < 1 ||
opt->ra_wb_buffer_size > UGEN_BULK_RA_WB_BUFMAX ||
opt->ra_wb_request_size < 1 ||
opt->ra_wb_request_size > opt->ra_wb_buffer_size)
return EINVAL;
/*
* XXX These changes do not take effect until the
* next time RA/WB mode is enabled but they ought to
* take effect immediately.
*/
sce->ra_wb_bufsize = opt->ra_wb_buffer_size;
sce->ra_wb_reqsize = opt->ra_wb_request_size;
return 0;
}
default:
break;
}
if (endpt != USB_CONTROL_ENDPOINT)
return EINVAL;
switch (cmd) {
#ifdef UGEN_DEBUG
case USB_SETDEBUG:
ugendebug = *(int *)addr;
break;
#endif
case USB_GET_CONFIG:
err = usbd_get_config(sc->sc_udev, &conf);
if (err)
return EIO;
*(int *)addr = conf;
break;
case USB_SET_CONFIG:
if (!(flag & FWRITE))
return EPERM;
err = ugen_set_config(sc, *(int *)addr, 1);
switch (err) {
case USBD_NORMAL_COMPLETION:
break;
case USBD_IN_USE:
return EBUSY;
default:
return EIO;
}
break;
case USB_GET_ALTINTERFACE:
ai = (struct usb_alt_interface *)addr;
err = usbd_device2interface_handle(sc->sc_udev,
ai->uai_interface_index, &iface);
if (err)
return EINVAL;
idesc = usbd_get_interface_descriptor(iface);
if (idesc == NULL)
return EIO;
ai->uai_alt_no = idesc->bAlternateSetting;
break;
case USB_SET_ALTINTERFACE:
if (!(flag & FWRITE))
return EPERM;
ai = (struct usb_alt_interface *)addr;
err = usbd_device2interface_handle(sc->sc_udev,
ai->uai_interface_index, &iface);
if (err)
return EINVAL;
err = ugen_set_interface(sc, ai->uai_interface_index,
ai->uai_alt_no);
if (err)
return EINVAL;
break;
case USB_GET_NO_ALT:
ai = (struct usb_alt_interface *)addr;
cdesc = ugen_get_cdesc(sc, ai->uai_config_index, &cdesclen);
if (cdesc == NULL)
return EINVAL;
idesc = usbd_find_idesc(cdesc, ai->uai_interface_index, 0);
if (idesc == NULL) {
kmem_free(cdesc, cdesclen);
return EINVAL;
}
ai->uai_alt_no = usbd_get_no_alts(cdesc,
idesc->bInterfaceNumber);
kmem_free(cdesc, cdesclen);
break;
case USB_GET_DEVICE_DESC:
*(usb_device_descriptor_t *)addr =
*usbd_get_device_descriptor(sc->sc_udev);
break;
case USB_GET_CONFIG_DESC:
cd = (struct usb_config_desc *)addr;
cdesc = ugen_get_cdesc(sc, cd->ucd_config_index, &cdesclen);
if (cdesc == NULL)
return EINVAL;
cd->ucd_desc = *cdesc;
kmem_free(cdesc, cdesclen);
break;
case USB_GET_INTERFACE_DESC:
id = (struct usb_interface_desc *)addr;
cdesc = ugen_get_cdesc(sc, id->uid_config_index, &cdesclen);
if (cdesc == NULL)
return EINVAL;
if (id->uid_config_index == USB_CURRENT_CONFIG_INDEX &&
id->uid_alt_index == USB_CURRENT_ALT_INDEX)
alt = ugen_get_alt_index(sc, id->uid_interface_index);
else
alt = id->uid_alt_index;
idesc = usbd_find_idesc(cdesc, id->uid_interface_index, alt);
if (idesc == NULL) {
kmem_free(cdesc, cdesclen);
return EINVAL;
}
id->uid_desc = *idesc;
kmem_free(cdesc, cdesclen);
break;
case USB_GET_ENDPOINT_DESC:
ed = (struct usb_endpoint_desc *)addr;
cdesc = ugen_get_cdesc(sc, ed->ued_config_index, &cdesclen);
if (cdesc == NULL)
return EINVAL;
if (ed->ued_config_index == USB_CURRENT_CONFIG_INDEX &&
ed->ued_alt_index == USB_CURRENT_ALT_INDEX)
alt = ugen_get_alt_index(sc, ed->ued_interface_index);
else
alt = ed->ued_alt_index;
edesc = usbd_find_edesc(cdesc, ed->ued_interface_index,
alt, ed->ued_endpoint_index);
if (edesc == NULL) {
kmem_free(cdesc, cdesclen);
return EINVAL;
}
ed->ued_desc = *edesc;
kmem_free(cdesc, cdesclen);
break;
case USB_GET_FULL_DESC:
{
int len;
struct iovec iov;
struct uio uio;
struct usb_full_desc *fd = (struct usb_full_desc *)addr;
cdesc = ugen_get_cdesc(sc, fd->ufd_config_index, &cdesclen);
if (cdesc == NULL)
return EINVAL;
len = cdesclen;
if (len > fd->ufd_size)
len = fd->ufd_size;
iov.iov_base = (void *)fd->ufd_data;
iov.iov_len = len;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
uio.uio_resid = len;
uio.uio_offset = 0;
uio.uio_rw = UIO_READ;
uio.uio_vmspace = l->l_proc->p_vmspace;
error = uiomove((void *)cdesc, len, &uio);
kmem_free(cdesc, cdesclen);
return error;
}
case USB_GET_STRING_DESC: {
int len;
si = (struct usb_string_desc *)addr;
err = usbd_get_string_desc(sc->sc_udev, si->usd_string_index,
si->usd_language_id, &si->usd_desc, &len);
if (err)
return EINVAL;
break;
}
case USB_DO_REQUEST:
{
struct usb_ctl_request *ur = (void *)addr;
int len = UGETW(ur->ucr_request.wLength);
struct iovec iov;
struct uio uio;
void *ptr = 0;
usbd_status xerr;
error = 0;
if (!(flag & FWRITE))
return EPERM;
/* Avoid requests that would damage the bus integrity. */
if ((ur->ucr_request.bmRequestType == UT_WRITE_DEVICE &&
ur->ucr_request.bRequest == UR_SET_ADDRESS) ||
(ur->ucr_request.bmRequestType == UT_WRITE_DEVICE &&
ur->ucr_request.bRequest == UR_SET_CONFIG) ||
(ur->ucr_request.bmRequestType == UT_WRITE_INTERFACE &&
ur->ucr_request.bRequest == UR_SET_INTERFACE))
return EINVAL;
if (len < 0 || len > 32767)
return EINVAL;
if (len != 0) {
iov.iov_base = (void *)ur->ucr_data;
iov.iov_len = len;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
uio.uio_resid = len;
uio.uio_offset = 0;
uio.uio_rw =
ur->ucr_request.bmRequestType & UT_READ ?
UIO_READ : UIO_WRITE;
uio.uio_vmspace = l->l_proc->p_vmspace;
ptr = kmem_alloc(len, KM_SLEEP);
if (uio.uio_rw == UIO_WRITE) {
error = uiomove(ptr, len, &uio);
if (error)
goto ret;
}
}
sce = &sc->sc_endpoints[endpt][IN];
xerr = usbd_do_request_flags(sc->sc_udev, &ur->ucr_request,
ptr, ur->ucr_flags, &ur->ucr_actlen, sce->timeout);
if (xerr) {
error = EIO;
goto ret;
}
if (len != 0) {
if (uio.uio_rw == UIO_READ) {
size_t alen = uimin(len, ur->ucr_actlen);
error = uiomove(ptr, alen, &uio);
if (error)
goto ret;
}
}
ret:
if (ptr)
kmem_free(ptr, len);
return error;
}
case USB_GET_DEVICEINFO:
usbd_fill_deviceinfo(sc->sc_udev,
(struct usb_device_info *)addr, 0);
break;
case USB_GET_DEVICEINFO_OLD:
{
int ret;
MODULE_HOOK_CALL(usb_subr_fill_30_hook,
(sc->sc_udev, (struct usb_device_info_old *)addr, 0,
usbd_devinfo_vp, usbd_printBCD),
enosys(), ret);
if (ret == 0)
return 0;
return EINVAL;
}
default:
return EINVAL;
}
return 0;
}
static int
ugenioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l)
{
int endpt = UGENENDPOINT(dev);
struct ugen_softc *sc;
int error;
if ((sc = ugenif_acquire(UGENUNIT(dev))) == 0)
return ENXIO;
error = ugen_do_ioctl(sc, endpt, cmd, addr, flag, l);
ugenif_release(sc);
return error;
}
static int
ugenpoll(dev_t dev, int events, struct lwp *l)
{
struct ugen_softc *sc;
struct ugen_endpoint *sce_in, *sce_out;
int revents = 0;
if ((sc = ugenif_acquire(UGENUNIT(dev))) == NULL)
return POLLHUP;
if (UGENENDPOINT(dev) == USB_CONTROL_ENDPOINT) {
revents |= POLLERR;
goto out;
}
sce_in = &sc->sc_endpoints[UGENENDPOINT(dev)][IN];
sce_out = &sc->sc_endpoints[UGENENDPOINT(dev)][OUT];
KASSERT(sce_in->edesc || sce_out->edesc);
KASSERT(sce_in->pipeh || sce_out->pipeh);
mutex_enter(&sc->sc_lock);
if (sce_in && sce_in->pipeh && (events & (POLLIN | POLLRDNORM)))
switch (sce_in->edesc->bmAttributes & UE_XFERTYPE) {
case UE_INTERRUPT:
if (sce_in->q.c_cc > 0)
revents |= events & (POLLIN | POLLRDNORM);
else
selrecord(l, &sce_in->rsel);
break;
case UE_ISOCHRONOUS:
if (sce_in->cur != sce_in->fill)
revents |= events & (POLLIN | POLLRDNORM);
else
selrecord(l, &sce_in->rsel);
break;
case UE_BULK:
if (sce_in->state & UGEN_BULK_RA) {
if (sce_in->ra_wb_used > 0)
revents |= events &
(POLLIN | POLLRDNORM);
else
selrecord(l, &sce_in->rsel);
break;
}
/*
* We have no easy way of determining if a read will
* yield any data or a write will happen.
* Pretend they will.
*/
revents |= events & (POLLIN | POLLRDNORM);
break;
default:
break;
}
if (sce_out && sce_out->pipeh && (events & (POLLOUT | POLLWRNORM)))
switch (sce_out->edesc->bmAttributes & UE_XFERTYPE) {
case UE_INTERRUPT:
case UE_ISOCHRONOUS:
/* XXX unimplemented */
break;
case UE_BULK:
if (sce_out->state & UGEN_BULK_WB) {
if (sce_out->ra_wb_used <
sce_out->limit - sce_out->ibuf)
revents |= events &
(POLLOUT | POLLWRNORM);
else
selrecord(l, &sce_out->rsel);
break;
}
/*
* We have no easy way of determining if a read will
* yield any data or a write will happen.
* Pretend they will.
*/
revents |= events & (POLLOUT | POLLWRNORM);
break;
default:
break;
}
mutex_exit(&sc->sc_lock);
out: ugenif_release(sc);
return revents;
}
static void
filt_ugenrdetach(struct knote *kn)
{
struct ugen_endpoint *sce = kn->kn_hook;
struct ugen_softc *sc = sce->sc;
mutex_enter(&sc->sc_lock);
SLIST_REMOVE(&sce->rsel.sel_klist, kn, knote, kn_selnext);
mutex_exit(&sc->sc_lock);
}
static int
filt_ugenread_intr(struct knote *kn, long hint)
{
struct ugen_endpoint *sce = kn->kn_hook;
struct ugen_softc *sc = sce->sc;
int ret;
mutex_enter(&sc->sc_lock);
if (sc->sc_dying) {
ret = 0;
} else {
kn->kn_data = sce->q.c_cc;
ret = kn->kn_data > 0;
}
mutex_exit(&sc->sc_lock);
return ret;
}
static int
filt_ugenread_isoc(struct knote *kn, long hint)
{
struct ugen_endpoint *sce = kn->kn_hook;
struct ugen_softc *sc = sce->sc;
int ret;
mutex_enter(&sc->sc_lock);
if (sc->sc_dying) {
ret = 0;
} else if (sce->cur == sce->fill) {
ret = 0;
} else if (sce->cur < sce->fill) {
kn->kn_data = sce->fill - sce->cur;
ret = 1;
} else {
kn->kn_data = (sce->limit - sce->cur) +
(sce->fill - sce->ibuf);
ret = 1;
}
mutex_exit(&sc->sc_lock);
return ret;
}
static int
filt_ugenread_bulk(struct knote *kn, long hint)
{
struct ugen_endpoint *sce = kn->kn_hook;
struct ugen_softc *sc = sce->sc;
int ret;
mutex_enter(&sc->sc_lock);
if (sc->sc_dying) {
ret = 0;
} else if (!(sce->state & UGEN_BULK_RA)) {
/*
* We have no easy way of determining if a read will
* yield any data or a write will happen.
* So, emulate "seltrue".
*/
ret = filt_seltrue(kn, hint);
} else if (sce->ra_wb_used == 0) {
ret = 0;
} else {
kn->kn_data = sce->ra_wb_used;
ret = 1;
}
mutex_exit(&sc->sc_lock);
return ret;
}
static int
filt_ugenwrite_bulk(struct knote *kn, long hint)
{
struct ugen_endpoint *sce = kn->kn_hook;
struct ugen_softc *sc = sce->sc;
int ret;
mutex_enter(&sc->sc_lock);
if (sc->sc_dying) {
ret = 0;
} else if (!(sce->state & UGEN_BULK_WB)) {
/*
* We have no easy way of determining if a read will
* yield any data or a write will happen.
* So, emulate "seltrue".
*/
ret = filt_seltrue(kn, hint);
} else if (sce->ra_wb_used == sce->limit - sce->ibuf) {
ret = 0;
} else {
kn->kn_data = (sce->limit - sce->ibuf) - sce->ra_wb_used;
ret = 1;
}
mutex_exit(&sc->sc_lock);
return ret;
}
static const struct filterops ugenread_intr_filtops = {
.f_isfd = 1,
.f_attach = NULL,
.f_detach = filt_ugenrdetach,
.f_event = filt_ugenread_intr,
};
static const struct filterops ugenread_isoc_filtops = {
.f_isfd = 1,
.f_attach = NULL,
.f_detach = filt_ugenrdetach,
.f_event = filt_ugenread_isoc,
};
static const struct filterops ugenread_bulk_filtops = {
.f_isfd = 1,
.f_attach = NULL,
.f_detach = filt_ugenrdetach,
.f_event = filt_ugenread_bulk,
};
static const struct filterops ugenwrite_bulk_filtops = {
.f_isfd = 1,
.f_attach = NULL,
.f_detach = filt_ugenrdetach,
.f_event = filt_ugenwrite_bulk,
};
static int
ugenkqfilter(dev_t dev, struct knote *kn)
{
struct ugen_softc *sc;
struct ugen_endpoint *sce;
struct klist *klist;
int error;
if ((sc = ugenif_acquire(UGENUNIT(dev))) == NULL)
return ENXIO;
if (UGENENDPOINT(dev) == USB_CONTROL_ENDPOINT) {
error = ENODEV;
goto out;
}
switch (kn->kn_filter) {
case EVFILT_READ:
sce = &sc->sc_endpoints[UGENENDPOINT(dev)][IN];
if (sce == NULL) {
error = EINVAL;
goto out;
}
klist = &sce->rsel.sel_klist;
switch (sce->edesc->bmAttributes & UE_XFERTYPE) {
case UE_INTERRUPT:
kn->kn_fop = &ugenread_intr_filtops;
break;
case UE_ISOCHRONOUS:
kn->kn_fop = &ugenread_isoc_filtops;
break;
case UE_BULK:
kn->kn_fop = &ugenread_bulk_filtops;
break;
default:
error = EINVAL;
goto out;
}
break;
case EVFILT_WRITE:
sce = &sc->sc_endpoints[UGENENDPOINT(dev)][OUT];
if (sce == NULL) {
error = EINVAL;
goto out;
}
klist = &sce->rsel.sel_klist;
switch (sce->edesc->bmAttributes & UE_XFERTYPE) {
case UE_INTERRUPT:
case UE_ISOCHRONOUS:
/* XXX poll doesn't support this */
error = EINVAL;
goto out;
case UE_BULK:
kn->kn_fop = &ugenwrite_bulk_filtops;
break;
default:
error = EINVAL;
goto out;
}
break;
default:
error = EINVAL;
goto out;
}
kn->kn_hook = sce;
mutex_enter(&sc->sc_lock);
SLIST_INSERT_HEAD(klist, kn, kn_selnext);
mutex_exit(&sc->sc_lock);
error = 0;
out: ugenif_release(sc);
return error;
}
MODULE(MODULE_CLASS_DRIVER, ugen, NULL);
static int
ugen_modcmd(modcmd_t cmd, void *aux)
{
switch (cmd) {
case MODULE_CMD_INIT:
mutex_init(&ugenif.lock, MUTEX_DEFAULT, IPL_NONE);
rb_tree_init(&ugenif.tree, &ugenif_tree_ops);
return 0;
default:
return ENOTTY;
}
}