NetBSD/sys/dev/usb/if_upgt.c
thorpej 7a9a30c5e7 Define and implement a locking protocol for the ifmedia / mii layers:
- MP-safe drivers provide a mutex to ifmedia that is used to serialize
  access to media-related structures / hardware regsiters.  Converted
  drivers use the new ifmedia_init_with_lock() function for this.  The
  new name is provided to ease the transition.
- Un-converted drivers continue to call ifmedia_init(), which will supply
  a compatibility lock to be used instead.  Several media-related entry
  points must be aware of this compatibility lock, and are able to acquire
  it recursively a limited number of times, if needed.  This is a SPIN
  mutex with priority IPL_NET.
- This same lock is used to serialize access to PHY registers and other
  MII-related data structures.

The PHY drivers are modified to acquire and release the lock, as needed,
and assert the lock is held as a diagnostic aid.

The "usbnet" framework has had an overhaul of its internal locking
protocols to fit in with the media / mii changes, and the drivers adapted.

USB wifi drivers have been changed to provide their own adaptive mutex
to the ifmedia later via a new ieee80211_media_init_with_lock() function.
This is required because the USB drivers need an adaptive mutex.

Besised "usbnet", a few other drivers are converted: vmx, wm, ixgbe / ixv.

mcx also now calls ifmedia_init_with_lock() because it needs to also use
an adaptive mutex.  The mcx driver still needs to be fully converted to
NET_MPSAFE.
2020-03-15 23:04:50 +00:00

2450 lines
62 KiB
C

/* $NetBSD: if_upgt.c,v 1.31 2020/03/15 23:04:51 thorpej Exp $ */
/* $OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
/*
* Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.31 2020/03/15 23:04:51 thorpej Exp $");
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/callout.h>
#include <sys/device.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/sockio.h>
#include <sys/systm.h>
#include <sys/vnode.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/intr.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/firmload.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/if_upgtvar.h>
/*
* Driver for the USB PrismGT devices.
*
* For now just USB 2.0 devices with the GW3887 chipset are supported.
* The driver has been written based on the firmware version 2.13.1.0_LM87.
*
* TODO's:
* - Fix MONITOR mode (MAC filter).
* - Add HOSTAP mode.
* - Add IBSS mode.
* - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
*
* Parts of this driver has been influenced by reading the p54u driver
* written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
* Sebastien Bourdeauducq <lekernel@prism54.org>.
*/
#ifdef UPGT_DEBUG
int upgt_debug = 2;
#define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
#else
#define DPRINTF(l, x...)
#endif
/*
* Prototypes.
*/
static int upgt_match(device_t, cfdata_t, void *);
static void upgt_attach(device_t, device_t, void *);
static int upgt_detach(device_t, int);
static int upgt_activate(device_t, devact_t);
static void upgt_attach_hook(device_t);
static int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
static int upgt_device_init(struct upgt_softc *);
static int upgt_mem_init(struct upgt_softc *);
static uint32_t upgt_mem_alloc(struct upgt_softc *);
static void upgt_mem_free(struct upgt_softc *, uint32_t);
static int upgt_fw_alloc(struct upgt_softc *);
static void upgt_fw_free(struct upgt_softc *);
static int upgt_fw_verify(struct upgt_softc *);
static int upgt_fw_load(struct upgt_softc *);
static int upgt_fw_copy(char *, char *, int);
static int upgt_eeprom_read(struct upgt_softc *);
static int upgt_eeprom_parse(struct upgt_softc *);
static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
static int upgt_ioctl(struct ifnet *, u_long, void *);
static int upgt_init(struct ifnet *);
static void upgt_stop(struct upgt_softc *);
static int upgt_media_change(struct ifnet *);
static void upgt_newassoc(struct ieee80211_node *, int);
static int upgt_newstate(struct ieee80211com *, enum ieee80211_state,
int);
static void upgt_newstate_task(void *);
static void upgt_next_scan(void *);
static void upgt_start(struct ifnet *);
static void upgt_watchdog(struct ifnet *);
static void upgt_tx_task(void *);
static void upgt_tx_done(struct upgt_softc *, uint8_t *);
static void upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
static void upgt_rx(struct upgt_softc *, uint8_t *, int);
static void upgt_setup_rates(struct upgt_softc *);
static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
static int upgt_set_macfilter(struct upgt_softc *, uint8_t);
static int upgt_set_channel(struct upgt_softc *, unsigned);
static void upgt_set_led(struct upgt_softc *, int);
static void upgt_set_led_blink(void *);
static int upgt_get_stats(struct upgt_softc *);
static int upgt_alloc_tx(struct upgt_softc *);
static int upgt_alloc_rx(struct upgt_softc *);
static int upgt_alloc_cmd(struct upgt_softc *);
static void upgt_free_tx(struct upgt_softc *);
static void upgt_free_rx(struct upgt_softc *);
static void upgt_free_cmd(struct upgt_softc *);
static int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
struct usbd_pipe *, uint32_t *, int);
#if 0
static void upgt_hexdump(void *, int);
#endif
static uint32_t upgt_crc32_le(const void *, size_t);
static uint32_t upgt_chksum_le(const uint32_t *, size_t);
CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
upgt_match, upgt_attach, upgt_detach, upgt_activate);
static const struct usb_devno upgt_devs_1[] = {
/* version 1 devices */
{ USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G },
{ USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG_V1 }
};
static const struct usb_devno upgt_devs_2[] = {
/* version 2 devices */
{ USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT },
{ USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G },
{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
{ USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
{ USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
{ USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GTST },
{ USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 },
{ USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 },
{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 },
{ USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 },
{ USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
{ USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
{ USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT },
{ USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 },
{ USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 },
{ USB_VENDOR_SHARP, USB_PRODUCT_SHARP_RUITZ1016YCZZ },
{ USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
{ USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 },
{ USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G },
{ USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_1 },
{ USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_2 },
{ USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 },
{ USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A }
};
static int
firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
size_t *sizep)
{
firmware_handle_t fh;
int error;
if ((error = firmware_open(dname, iname, &fh)) != 0)
return error;
*sizep = firmware_get_size(fh);
if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
firmware_close(fh);
return ENOMEM;
}
if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
firmware_free(*ucodep, *sizep);
firmware_close(fh);
return error;
}
static int
upgt_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
return UMATCH_VENDOR_PRODUCT;
if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
return UMATCH_VENDOR_PRODUCT;
return UMATCH_NONE;
}
static void
upgt_attach(device_t parent, device_t self, void *aux)
{
struct upgt_softc *sc = device_private(self);
struct usb_attach_arg *uaa = aux;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
usbd_status error;
char *devinfop;
int i;
aprint_naive("\n");
aprint_normal("\n");
/*
* Attach USB device.
*/
sc->sc_dev = self;
sc->sc_udev = uaa->uaa_device;
sc->sc_init_state = UPGT_INIT_NONE;
devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
/* check device type */
if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
return;
/* set configuration number */
error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "failed to set configuration"
", err=%s\n", usbd_errstr(error));
return;
}
/* get the first interface handle */
error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
&sc->sc_iface);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not get interface handle\n");
return;
}
/* find endpoints */
id = usbd_get_interface_descriptor(sc->sc_iface);
sc->sc_rx_no = sc->sc_tx_no = -1;
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
if (ed == NULL) {
aprint_error_dev(sc->sc_dev,
"no endpoint descriptor for iface %d\n", i);
return;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
sc->sc_tx_no = ed->bEndpointAddress;
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
sc->sc_rx_no = ed->bEndpointAddress;
/*
* 0x01 TX pipe
* 0x81 RX pipe
*
* Deprecated scheme (not used with fw version >2.5.6.x):
* 0x02 TX MGMT pipe
* 0x82 TX MGMT pipe
*/
if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
break;
}
if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
aprint_error_dev(sc->sc_dev, "missing endpoint\n");
return;
}
/* setup tasks and timeouts */
usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
callout_init(&sc->scan_to, 0);
callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
callout_init(&sc->led_to, 0);
callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
sc->sc_init_state = UPGT_INIT_INITED;
/*
* Open TX and RX USB bulk pipes.
*/
error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
&sc->sc_tx_pipeh);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not open TX pipe: %s\n", usbd_errstr(error));
goto fail;
}
error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
&sc->sc_rx_pipeh);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
usbd_errstr(error));
goto fail;
}
/*
* Allocate TX, RX, and CMD xfers.
*/
if (upgt_alloc_tx(sc) != 0)
goto fail;
if (upgt_alloc_rx(sc) != 0)
goto fail;
if (upgt_alloc_cmd(sc) != 0)
goto fail;
/*
* We need the firmware loaded from file system to complete the attach.
*/
config_mountroot(self, upgt_attach_hook);
return;
fail:
aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
}
static void
upgt_attach_hook(device_t arg)
{
struct upgt_softc *sc = device_private(arg);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
usbd_status error;
int i;
/*
* Load firmware file into memory.
*/
if (upgt_fw_alloc(sc) != 0)
goto fail;
/*
* Initialize the device.
*/
if (upgt_device_init(sc) != 0)
goto fail;
/*
* Verify the firmware.
*/
if (upgt_fw_verify(sc) != 0)
goto fail;
/*
* Calculate device memory space.
*/
if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
aprint_error_dev(sc->sc_dev,
"could not find memory space addresses on FW\n");
goto fail;
}
sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
DPRINTF(1, "%s: memory address frame start=0x%08x\n",
device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
DPRINTF(1, "%s: memory address frame end=0x%08x\n",
device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
DPRINTF(1, "%s: memory address rx start=0x%08x\n",
device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
upgt_mem_init(sc);
/*
* Load the firmware.
*/
if (upgt_fw_load(sc) != 0)
goto fail;
/*
* Startup the RX pipe.
*/
struct upgt_data *data_rx = &sc->rx_data;
usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
error = usbd_transfer(data_rx->xfer);
if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
aprint_error_dev(sc->sc_dev,
"could not queue RX transfer\n");
goto fail;
}
usbd_delay_ms(sc->sc_udev, 100);
/*
* Read the whole EEPROM content and parse it.
*/
if (upgt_eeprom_read(sc) != 0)
goto fail;
if (upgt_eeprom_parse(sc) != 0)
goto fail;
/*
* Setup the 802.11 device.
*/
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_state = IEEE80211_S_INIT;
ic->ic_caps =
IEEE80211_C_MONITOR |
IEEE80211_C_SHPREAMBLE |
IEEE80211_C_SHSLOT;
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = upgt_init;
ifp->if_ioctl = upgt_ioctl;
ifp->if_start = upgt_start;
ifp->if_watchdog = upgt_watchdog;
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ic);
ic->ic_newassoc = upgt_newassoc;
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = upgt_newstate;
/* XXX media locking needs revisiting */
mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB);
ieee80211_media_init_with_lock(ic,
upgt_media_change, ieee80211_media_status, &sc->sc_media_mtx);
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
&sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof(sc->sc_txtapu);
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
aprint_normal_dev(sc->sc_dev, "address %s\n",
ether_sprintf(ic->ic_myaddr));
ieee80211_announce(ic);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
/* device attached */
sc->sc_flags |= UPGT_DEVICE_ATTACHED;
return;
fail:
aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
}
static int
upgt_detach(device_t self, int flags)
{
struct upgt_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_if;
struct ieee80211com *ic = &sc->sc_ic;
int s;
DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
if (sc->sc_init_state < UPGT_INIT_INITED)
return 0;
s = splnet();
if (ifp->if_flags & IFF_RUNNING)
upgt_stop(sc);
/* remove tasks and timeouts */
callout_halt(&sc->scan_to, NULL);
callout_halt(&sc->led_to, NULL);
usb_rem_task_wait(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER,
NULL);
usb_rem_task_wait(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER,
NULL);
callout_destroy(&sc->scan_to);
callout_destroy(&sc->led_to);
/* abort and close TX / RX pipes */
if (sc->sc_tx_pipeh != NULL) {
usbd_abort_pipe(sc->sc_tx_pipeh);
}
if (sc->sc_rx_pipeh != NULL) {
usbd_abort_pipe(sc->sc_rx_pipeh);
}
/* free xfers */
upgt_free_tx(sc);
upgt_free_rx(sc);
upgt_free_cmd(sc);
/* Close TX / RX pipes */
if (sc->sc_tx_pipeh != NULL) {
usbd_close_pipe(sc->sc_tx_pipeh);
}
if (sc->sc_rx_pipeh != NULL) {
usbd_close_pipe(sc->sc_rx_pipeh);
}
/* free firmware */
upgt_fw_free(sc);
if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
/* detach interface */
bpf_detach(ifp);
ieee80211_ifdetach(ic);
if_detach(ifp);
}
splx(s);
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
return 0;
}
static int
upgt_activate(device_t self, devact_t act)
{
struct upgt_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
if_deactivate(&sc->sc_if);
return 0;
default:
return EOPNOTSUPP;
}
}
static int
upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
{
if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
sc->sc_device_type = 1;
/* XXX */
aprint_error_dev(sc->sc_dev,
"version 1 devices not supported yet\n");
return 1;
} else
sc->sc_device_type = 2;
return 0;
}
static int
upgt_device_init(struct upgt_softc *sc)
{
struct upgt_data *data_cmd = &sc->cmd_data;
const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
int len;
len = sizeof(init_cmd);
memcpy(data_cmd->buf, init_cmd, len);
if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
aprint_error_dev(sc->sc_dev,
"could not send device init string\n");
return EIO;
}
usbd_delay_ms(sc->sc_udev, 100);
DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
return 0;
}
static int
upgt_mem_init(struct upgt_softc *sc)
{
int i;
for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
sc->sc_memory.page[i].used = 0;
if (i == 0) {
/*
* The first memory page is always reserved for
* command data.
*/
sc->sc_memory.page[i].addr =
sc->sc_memaddr_frame_start + MCLBYTES;
} else {
sc->sc_memory.page[i].addr =
sc->sc_memory.page[i - 1].addr + MCLBYTES;
}
if (sc->sc_memory.page[i].addr + MCLBYTES >=
sc->sc_memaddr_frame_end)
break;
DPRINTF(2, "%s: memory address page %d=0x%08x\n",
device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
}
sc->sc_memory.pages = i;
DPRINTF(2, "%s: memory pages=%d\n",
device_xname(sc->sc_dev), sc->sc_memory.pages);
return 0;
}
static uint32_t
upgt_mem_alloc(struct upgt_softc *sc)
{
int i;
for (i = 0; i < sc->sc_memory.pages; i++) {
if (sc->sc_memory.page[i].used == 0) {
sc->sc_memory.page[i].used = 1;
return sc->sc_memory.page[i].addr;
}
}
return 0;
}
static void
upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
{
int i;
for (i = 0; i < sc->sc_memory.pages; i++) {
if (sc->sc_memory.page[i].addr == addr) {
sc->sc_memory.page[i].used = 0;
return;
}
}
aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
addr);
}
static int
upgt_fw_alloc(struct upgt_softc *sc)
{
const char *name = "upgt-gw3887";
int error;
if (sc->sc_fw == NULL) {
error = firmware_load("upgt", name, &sc->sc_fw,
&sc->sc_fw_size);
if (error != 0) {
if (error == ENOENT) {
/*
* The firmware file for upgt(4) is not in
* the default distribution due to its lisence
* so explicitly notify it if the firmware file
* is not found.
*/
aprint_error_dev(sc->sc_dev,
"firmware file %s is not installed\n",
name);
aprint_error_dev(sc->sc_dev,
"(it is not included in the default"
" distribution)\n");
aprint_error_dev(sc->sc_dev,
"see upgt(4) man page for details about "
"firmware installation\n");
} else {
aprint_error_dev(sc->sc_dev,
"could not read firmware %s\n", name);
}
return EIO;
}
}
DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
name);
return 0;
}
static void
upgt_fw_free(struct upgt_softc *sc)
{
if (sc->sc_fw != NULL) {
firmware_free(sc->sc_fw, sc->sc_fw_size);
sc->sc_fw = NULL;
DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
}
}
static int
upgt_fw_verify(struct upgt_softc *sc)
{
struct upgt_fw_bra_option *bra_option;
uint32_t bra_option_type, bra_option_len;
uint32_t *uc;
int offset, bra_end = 0;
/*
* Seek to beginning of Boot Record Area (BRA).
*/
for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
uc = (uint32_t *)(sc->sc_fw + offset);
if (*uc == 0)
break;
}
for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
uc = (uint32_t *)(sc->sc_fw + offset);
if (*uc != 0)
break;
}
if (offset == sc->sc_fw_size) {
aprint_error_dev(sc->sc_dev,
"firmware Boot Record Area not found\n");
return EIO;
}
DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
device_xname(sc->sc_dev), offset);
/*
* Parse Boot Record Area (BRA) options.
*/
while (offset < sc->sc_fw_size && bra_end == 0) {
/* get current BRA option */
bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
bra_option_type = le32toh(bra_option->type);
bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
switch (bra_option_type) {
case UPGT_BRA_TYPE_FW:
DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
device_xname(sc->sc_dev), bra_option_len);
if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
aprint_error_dev(sc->sc_dev,
"wrong UPGT_BRA_TYPE_FW len\n");
return EIO;
}
if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
bra_option_len) == 0) {
sc->sc_fw_type = UPGT_FWTYPE_LM86;
break;
}
if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
bra_option_len) == 0) {
sc->sc_fw_type = UPGT_FWTYPE_LM87;
break;
}
if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
bra_option_len) == 0) {
sc->sc_fw_type = UPGT_FWTYPE_FMAC;
break;
}
aprint_error_dev(sc->sc_dev,
"unsupported firmware type\n");
return EIO;
case UPGT_BRA_TYPE_VERSION:
DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
device_xname(sc->sc_dev), bra_option_len);
break;
case UPGT_BRA_TYPE_DEPIF:
DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
device_xname(sc->sc_dev), bra_option_len);
break;
case UPGT_BRA_TYPE_EXPIF:
DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
device_xname(sc->sc_dev), bra_option_len);
break;
case UPGT_BRA_TYPE_DESCR:
DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
device_xname(sc->sc_dev), bra_option_len);
struct upgt_fw_bra_descr *descr =
(struct upgt_fw_bra_descr *)bra_option->data;
sc->sc_memaddr_frame_start =
le32toh(descr->memaddr_space_start);
sc->sc_memaddr_frame_end =
le32toh(descr->memaddr_space_end);
DPRINTF(2, "%s: memory address space start=0x%08x\n",
device_xname(sc->sc_dev),
sc->sc_memaddr_frame_start);
DPRINTF(2, "%s: memory address space end=0x%08x\n",
device_xname(sc->sc_dev),
sc->sc_memaddr_frame_end);
break;
case UPGT_BRA_TYPE_END:
DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
device_xname(sc->sc_dev), bra_option_len);
bra_end = 1;
break;
default:
DPRINTF(1, "%s: unknown BRA option len=%d\n",
device_xname(sc->sc_dev), bra_option_len);
return EIO;
}
/* jump to next BRA option */
offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
}
DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
return 0;
}
static int
upgt_fw_load(struct upgt_softc *sc)
{
struct upgt_data *data_cmd = &sc->cmd_data;
struct upgt_data *data_rx = &sc->rx_data;
struct upgt_fw_x2_header *x2;
const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
int offset, bsize, n, i, len;
uint32_t crc;
/* send firmware start load command */
len = sizeof(start_fwload_cmd);
memcpy(data_cmd->buf, start_fwload_cmd, len);
if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
aprint_error_dev(sc->sc_dev,
"could not send start_firmware_load command\n");
return EIO;
}
/* send X2 header */
len = sizeof(struct upgt_fw_x2_header);
x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
x2->len = htole32(sc->sc_fw_size);
x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
sizeof(uint32_t));
if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
aprint_error_dev(sc->sc_dev,
"could not send firmware X2 header\n");
return EIO;
}
/* download firmware */
for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
bsize = UPGT_FW_BLOCK_SIZE;
else
bsize = sc->sc_fw_size - offset;
n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
device_xname(sc->sc_dev), offset, n, bsize);
if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
!= 0) {
aprint_error_dev(sc->sc_dev,
"error while downloading firmware block\n");
return EIO;
}
bsize = n;
}
DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
/* load firmware */
crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
*((uint32_t *)(data_cmd->buf) ) = crc;
*((uint8_t *)(data_cmd->buf) + 4) = 'g';
*((uint8_t *)(data_cmd->buf) + 5) = '\r';
len = 6;
if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
aprint_error_dev(sc->sc_dev,
"could not send load_firmware command\n");
return EIO;
}
for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
len = UPGT_FW_BLOCK_SIZE;
memset(data_rx->buf, 0, 2);
if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
USBD_SHORT_XFER_OK) != 0) {
aprint_error_dev(sc->sc_dev,
"could not read firmware response\n");
return EIO;
}
if (memcmp(data_rx->buf, "OK", 2) == 0)
break; /* firmware load was successful */
}
if (i == UPGT_FIRMWARE_TIMEOUT) {
aprint_error_dev(sc->sc_dev, "firmware load failed\n");
return EIO;
}
DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
return 0;
}
/*
* While copying the version 2 firmware, we need to replace two characters:
*
* 0x7e -> 0x7d 0x5e
* 0x7d -> 0x7d 0x5d
*/
static int
upgt_fw_copy(char *src, char *dst, int size)
{
int i, j;
for (i = 0, j = 0; i < size && j < size; i++) {
switch (src[i]) {
case 0x7e:
dst[j] = 0x7d;
j++;
dst[j] = 0x5e;
j++;
break;
case 0x7d:
dst[j] = 0x7d;
j++;
dst[j] = 0x5d;
j++;
break;
default:
dst[j] = src[i];
j++;
break;
}
}
return i;
}
static int
upgt_eeprom_read(struct upgt_softc *sc)
{
struct upgt_data *data_cmd = &sc->cmd_data;
struct upgt_lmac_mem *mem;
struct upgt_lmac_eeprom *eeprom;
int offset, block, len;
offset = 0;
block = UPGT_EEPROM_BLOCK_SIZE;
while (offset < UPGT_EEPROM_SIZE) {
DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
device_xname(sc->sc_dev), offset, block);
/*
* Transmit the URB containing the CMD data.
*/
len = sizeof(*mem) + sizeof(*eeprom) + block;
memset(data_cmd->buf, 0, len);
mem = (struct upgt_lmac_mem *)data_cmd->buf;
mem->addr = htole32(sc->sc_memaddr_frame_start +
UPGT_MEMSIZE_FRAME_HEAD);
eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
eeprom->header1.flags = 0;
eeprom->header1.type = UPGT_H1_TYPE_CTRL;
eeprom->header1.len = htole16((
sizeof(struct upgt_lmac_eeprom) -
sizeof(struct upgt_lmac_header)) + block);
eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
eeprom->header2.flags = 0;
eeprom->offset = htole16(offset);
eeprom->len = htole16(block);
mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
len - sizeof(*mem));
if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
USBD_FORCE_SHORT_XFER) != 0) {
aprint_error_dev(sc->sc_dev,
"could not transmit EEPROM data URB\n");
return EIO;
}
mutex_enter(&sc->sc_mtx);
int res = cv_timedwait(&sc->sc_cv, &sc->sc_mtx, UPGT_USB_TIMEOUT);
mutex_exit(&sc->sc_mtx);
if (res) {
aprint_error_dev(sc->sc_dev,
"timeout while waiting for EEPROM data\n");
return EIO;
}
offset += block;
if (UPGT_EEPROM_SIZE - offset < block)
block = UPGT_EEPROM_SIZE - offset;
}
return 0;
}
static int
upgt_eeprom_parse(struct upgt_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct upgt_eeprom_header *eeprom_header;
struct upgt_eeprom_option *eeprom_option;
uint16_t option_len;
uint16_t option_type;
uint16_t preamble_len;
int option_end = 0;
/* calculate eeprom options start offset */
eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
preamble_len = le16toh(eeprom_header->preamble_len);
eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
(sizeof(struct upgt_eeprom_header) + preamble_len));
while (!option_end) {
/* the eeprom option length is stored in words */
option_len =
(le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
option_type =
le16toh(eeprom_option->type);
switch (option_type) {
case UPGT_EEPROM_TYPE_NAME:
DPRINTF(1, "%s: EEPROM name len=%d\n",
device_xname(sc->sc_dev), option_len);
break;
case UPGT_EEPROM_TYPE_SERIAL:
DPRINTF(1, "%s: EEPROM serial len=%d\n",
device_xname(sc->sc_dev), option_len);
break;
case UPGT_EEPROM_TYPE_MAC:
DPRINTF(1, "%s: EEPROM mac len=%d\n",
device_xname(sc->sc_dev), option_len);
IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
break;
case UPGT_EEPROM_TYPE_HWRX:
DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
device_xname(sc->sc_dev), option_len);
upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
break;
case UPGT_EEPROM_TYPE_CHIP:
DPRINTF(1, "%s: EEPROM chip len=%d\n",
device_xname(sc->sc_dev), option_len);
break;
case UPGT_EEPROM_TYPE_FREQ3:
DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
device_xname(sc->sc_dev), option_len);
upgt_eeprom_parse_freq3(sc, eeprom_option->data,
option_len);
break;
case UPGT_EEPROM_TYPE_FREQ4:
DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
device_xname(sc->sc_dev), option_len);
upgt_eeprom_parse_freq4(sc, eeprom_option->data,
option_len);
break;
case UPGT_EEPROM_TYPE_FREQ5:
DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
device_xname(sc->sc_dev), option_len);
break;
case UPGT_EEPROM_TYPE_FREQ6:
DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
device_xname(sc->sc_dev), option_len);
upgt_eeprom_parse_freq6(sc, eeprom_option->data,
option_len);
break;
case UPGT_EEPROM_TYPE_END:
DPRINTF(1, "%s: EEPROM end len=%d\n",
device_xname(sc->sc_dev), option_len);
option_end = 1;
break;
case UPGT_EEPROM_TYPE_OFF:
DPRINTF(1, "%s: EEPROM off without end option\n",
device_xname(sc->sc_dev));
return EIO;
default:
DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
device_xname(sc->sc_dev), option_type, option_len);
break;
}
/* jump to next EEPROM option */
eeprom_option = (struct upgt_eeprom_option *)
(eeprom_option->data + option_len);
}
return 0;
}
static void
upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
{
struct upgt_eeprom_option_hwrx *option_hwrx;
option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
DPRINTF(2, "%s: hwrx option value=0x%04x\n",
device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
}
static void
upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
{
struct upgt_eeprom_freq3_header *freq3_header;
struct upgt_lmac_freq3 *freq3;
int i, elements, flags;
unsigned channel;
freq3_header = (struct upgt_eeprom_freq3_header *)data;
freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
flags = freq3_header->flags;
elements = freq3_header->elements;
DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
__USE(flags);
for (i = 0; i < elements; i++) {
channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
sc->sc_eeprom_freq3[channel] = freq3[i];
DPRINTF(2, "%s: frequence=%d, channel=%d\n",
device_xname(sc->sc_dev),
le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
}
}
static void
upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
{
struct upgt_eeprom_freq4_header *freq4_header;
struct upgt_eeprom_freq4_1 *freq4_1;
struct upgt_eeprom_freq4_2 *freq4_2;
int i, j, elements, settings, flags;
unsigned channel;
freq4_header = (struct upgt_eeprom_freq4_header *)data;
freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
flags = freq4_header->flags;
elements = freq4_header->elements;
settings = freq4_header->settings;
/* we need this value later */
sc->sc_eeprom_freq6_settings = freq4_header->settings;
DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
__USE(flags);
for (i = 0; i < elements; i++) {
channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
for (j = 0; j < settings; j++) {
sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
sc->sc_eeprom_freq4[channel][j].pad = 0;
}
DPRINTF(2, "%s: frequence=%d, channel=%d\n",
device_xname(sc->sc_dev),
le16toh(freq4_1[i].freq), channel);
}
}
static void
upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
{
struct upgt_lmac_freq6 *freq6;
int i, elements;
unsigned channel;
freq6 = (struct upgt_lmac_freq6 *)data;
elements = len / sizeof(struct upgt_lmac_freq6);
DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
for (i = 0; i < elements; i++) {
channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
sc->sc_eeprom_freq6[channel] = freq6[i];
DPRINTF(2, "%s: frequence=%d, channel=%d\n",
device_xname(sc->sc_dev),
le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
}
}
static int
upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct upgt_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_flags & IFF_RUNNING) == 0)
upgt_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
upgt_stop(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
/* setup multicast filter, etc */
error = 0;
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
break;
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
upgt_init(ifp);
error = 0;
}
splx(s);
return error;
}
static int
upgt_init(struct ifnet *ifp)
{
struct upgt_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
if (ifp->if_flags & IFF_RUNNING)
upgt_stop(sc);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
/* setup device rates */
upgt_setup_rates(sc);
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
return 0;
}
static void
upgt_stop(struct upgt_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
/* device down */
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
/* change device back to initial state */
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
}
static int
upgt_media_change(struct ifnet *ifp)
{
struct upgt_softc *sc = ifp->if_softc;
int error;
DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
if ((error = ieee80211_media_change(ifp)) != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
/* give pending USB transfers a chance to finish */
usbd_delay_ms(sc->sc_udev, 100);
upgt_init(ifp);
}
return 0;
}
static void
upgt_newassoc(struct ieee80211_node *ni, int isnew)
{
ni->ni_txrate = 0;
}
static int
upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct upgt_softc *sc = ic->ic_ifp->if_softc;
/*
* XXXSMP: This does not wait for the task, if it is in flight,
* to complete. If this code works at all, it must rely on the
* kernel lock to serialize with the USB task thread.
*/
usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
callout_stop(&sc->scan_to);
/* do it in a process context */
sc->sc_state = nstate;
sc->sc_arg = arg;
usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
return 0;
}
static void
upgt_newstate_task(void *arg)
{
struct upgt_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
unsigned channel;
mutex_enter(&sc->sc_mtx);
switch (sc->sc_state) {
case IEEE80211_S_INIT:
DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
device_xname(sc->sc_dev));
/* do not accept any frames if the device is down */
upgt_set_macfilter(sc, IEEE80211_S_INIT);
upgt_set_led(sc, UPGT_LED_OFF);
break;
case IEEE80211_S_SCAN:
DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
device_xname(sc->sc_dev));
channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
upgt_set_channel(sc, channel);
upgt_set_macfilter(sc, IEEE80211_S_SCAN);
callout_schedule(&sc->scan_to, hz / 5);
break;
case IEEE80211_S_AUTH:
DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
device_xname(sc->sc_dev));
channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
upgt_set_channel(sc, channel);
break;
case IEEE80211_S_ASSOC:
DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
device_xname(sc->sc_dev));
channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
upgt_set_channel(sc, channel);
break;
case IEEE80211_S_RUN:
DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
device_xname(sc->sc_dev));
channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
upgt_set_channel(sc, channel);
ni = ic->ic_bss;
/*
* TX rate control is done by the firmware.
* Report the maximum rate which is available therefore.
*/
ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
if (ic->ic_opmode != IEEE80211_M_MONITOR)
upgt_set_macfilter(sc, IEEE80211_S_RUN);
upgt_set_led(sc, UPGT_LED_ON);
break;
}
mutex_exit(&sc->sc_mtx);
sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
}
static void
upgt_next_scan(void *arg)
{
struct upgt_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ic);
}
static void
upgt_start(struct ifnet *ifp)
{
struct upgt_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ether_header *eh;
struct ieee80211_node *ni;
struct mbuf *m;
int i;
/* don't transmit packets if interface is busy or down */
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
for (i = 0; i < UPGT_TX_COUNT; i++) {
struct upgt_data *data_tx = &sc->tx_data[i];
if (data_tx->m != NULL)
continue;
IF_POLL(&ic->ic_mgtq, m);
if (m != NULL) {
/* management frame */
IF_DEQUEUE(&ic->ic_mgtq, m);
ni = M_GETCTX(m, struct ieee80211_node *);
M_CLEARCTX(m);
bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
aprint_error_dev(sc->sc_dev,
"no free prism memory\n");
m_freem(m);
if_statinc(ifp, if_oerrors);
break;
}
data_tx->ni = ni;
data_tx->m = m;
sc->tx_queued++;
} else {
/* data frame */
if (ic->ic_state != IEEE80211_S_RUN)
break;
IFQ_POLL(&ifp->if_snd, m);
if (m == NULL)
break;
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m->m_len < sizeof(struct ether_header) &&
!(m = m_pullup(m, sizeof(struct ether_header))))
continue;
eh = mtod(m, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m);
continue;
}
bpf_mtap(ifp, m, BPF_D_OUT);
m = ieee80211_encap(ic, m, ni);
if (m == NULL) {
ieee80211_free_node(ni);
continue;
}
bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
aprint_error_dev(sc->sc_dev,
"no free prism memory\n");
m_freem(m);
ieee80211_free_node(ni);
if_statinc(ifp, if_oerrors);
break;
}
data_tx->ni = ni;
data_tx->m = m;
sc->tx_queued++;
}
}
if (sc->tx_queued > 0) {
DPRINTF(2, "%s: tx_queued=%d\n",
device_xname(sc->sc_dev), sc->tx_queued);
/* process the TX queue in process context */
ifp->if_timer = 5;
ifp->if_flags |= IFF_OACTIVE;
usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
}
}
static void
upgt_watchdog(struct ifnet *ifp)
{
struct upgt_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_state == IEEE80211_S_INIT)
return;
aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
/* TODO: what shall we do on TX timeout? */
ieee80211_watchdog(ic);
}
static void
upgt_tx_task(void *arg)
{
struct upgt_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
struct ifnet *ifp = &sc->sc_if;
struct upgt_lmac_mem *mem;
struct upgt_lmac_tx_desc *txdesc;
struct mbuf *m;
uint32_t addr;
int i, len, pad, s;
usbd_status error;
mutex_enter(&sc->sc_mtx);
upgt_set_led(sc, UPGT_LED_BLINK);
mutex_exit(&sc->sc_mtx);
s = splnet();
for (i = 0; i < UPGT_TX_COUNT; i++) {
struct upgt_data *data_tx = &sc->tx_data[i];
if (data_tx->m == NULL)
continue;
m = data_tx->m;
addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
/*
* Software crypto.
*/
wh = mtod(m, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, data_tx->ni, m);
if (k == NULL) {
m_freem(m);
data_tx->m = NULL;
ieee80211_free_node(data_tx->ni);
data_tx->ni = NULL;
if_statinc(ifp, if_oerrors);
break;
}
/* in case packet header moved, reset pointer */
wh = mtod(m, struct ieee80211_frame *);
}
/*
* Transmit the URB containing the TX data.
*/
memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
mem = (struct upgt_lmac_mem *)data_tx->buf;
mem->addr = htole32(addr);
txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
/* XXX differ between data and mgmt frames? */
txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
txdesc->header1.len = htole16(m->m_pkthdr.len);
txdesc->header2.reqid = htole32(data_tx->addr);
txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT) {
/* always send mgmt frames at lowest rate (DS1) */
memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
} else {
memcpy(txdesc->rates, sc->sc_cur_rateset,
sizeof(txdesc->rates));
}
txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
if (sc->sc_drvbpf != NULL) {
struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = 0; /* TODO: where to get from? */
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m,
BPF_D_OUT);
}
/* copy frame below our TX descriptor header */
m_copydata(m, 0, m->m_pkthdr.len,
data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
/* calculate frame size */
len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
if (len & 3) {
/* we need to align the frame to a 4 byte boundary */
pad = 4 - (len & 3);
memset(data_tx->buf + len, 0, pad);
len += pad;
}
/* calculate frame checksum */
mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
len - sizeof(*mem));
/* we do not need the mbuf anymore */
m_freem(m);
data_tx->m = NULL;
ieee80211_free_node(data_tx->ni);
data_tx->ni = NULL;
DPRINTF(2, "%s: TX start data sending\n",
device_xname(sc->sc_dev));
usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
error = usbd_transfer(data_tx->xfer);
if (error != USBD_NORMAL_COMPLETION &&
error != USBD_IN_PROGRESS) {
aprint_error_dev(sc->sc_dev,
"could not transmit TX data URB\n");
if_statinc(ifp, if_oerrors);
break;
}
DPRINTF(2, "%s: TX sent (%d bytes)\n",
device_xname(sc->sc_dev), len);
}
splx(s);
/*
* If we don't regulary read the device statistics, the RX queue
* will stall. It's strange, but it works, so we keep reading
* the statistics here. *shrug*
*/
mutex_enter(&sc->sc_mtx);
upgt_get_stats(sc);
mutex_exit(&sc->sc_mtx);
}
static void
upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
{
struct ifnet *ifp = &sc->sc_if;
struct upgt_lmac_tx_done_desc *desc;
int i, s;
s = splnet();
desc = (struct upgt_lmac_tx_done_desc *)data;
for (i = 0; i < UPGT_TX_COUNT; i++) {
struct upgt_data *data_tx = &sc->tx_data[i];
if (data_tx->addr == le32toh(desc->header2.reqid)) {
upgt_mem_free(sc, data_tx->addr);
data_tx->addr = 0;
sc->tx_queued--;
if_statinc(ifp, if_opackets);
DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
le32toh(desc->header2.reqid),
le16toh(desc->status),
le16toh(desc->rssi));
DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
break;
}
}
if (sc->tx_queued == 0) {
/* TX queued was processed, continue */
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
upgt_start(ifp);
}
splx(s);
}
static void
upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
{
struct upgt_data *data_rx = priv;
struct upgt_softc *sc = data_rx->sc;
int len;
struct upgt_lmac_header *header;
struct upgt_lmac_eeprom *eeprom;
uint8_t h1_type;
uint16_t h2_type;
DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
goto skip;
}
usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
/*
* Check what type of frame came in.
*/
header = (struct upgt_lmac_header *)(data_rx->buf + 4);
h1_type = header->header1.type;
h2_type = le16toh(header->header2.type);
if (h1_type == UPGT_H1_TYPE_CTRL &&
h2_type == UPGT_H2_TYPE_EEPROM) {
eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
uint16_t eeprom_offset = le16toh(eeprom->offset);
uint16_t eeprom_len = le16toh(eeprom->len);
DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
mutex_enter(&sc->sc_mtx);
memcpy(sc->sc_eeprom + eeprom_offset,
data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
eeprom_len);
/* EEPROM data has arrived in time, wakeup upgt_eeprom_read */
/* Note eeprom data arrived */
cv_broadcast(&sc->sc_cv);
mutex_exit(&sc->sc_mtx);
} else
if (h1_type == UPGT_H1_TYPE_CTRL &&
h2_type == UPGT_H2_TYPE_TX_DONE) {
DPRINTF(2, "%s: received 802.11 TX done\n",
device_xname(sc->sc_dev));
upgt_tx_done(sc, data_rx->buf + 4);
} else
if (h1_type == UPGT_H1_TYPE_RX_DATA ||
h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
DPRINTF(3, "%s: received 802.11 RX data\n",
device_xname(sc->sc_dev));
upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
} else
if (h1_type == UPGT_H1_TYPE_CTRL &&
h2_type == UPGT_H2_TYPE_STATS) {
DPRINTF(2, "%s: received statistic data\n",
device_xname(sc->sc_dev));
/* TODO: what could we do with the statistic data? */
} else {
/* ignore unknown frame types */
DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
device_xname(sc->sc_dev), header->header1.type);
}
skip: /* setup new transfer */
usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
(void)usbd_transfer(xfer);
}
static void
upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct upgt_lmac_rx_desc *rxdesc;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *m;
int s;
/* access RX packet descriptor */
rxdesc = (struct upgt_lmac_rx_desc *)data;
/* create mbuf which is suitable for strict alignment archs */
m = m_devget(rxdesc->data, pkglen, 0, ifp);
if (m == NULL) {
DPRINTF(1, "%s: could not create RX mbuf\n",
device_xname(sc->sc_dev));
if_statinc(ifp, if_ierrors);
return;
}
s = splnet();
if (sc->sc_drvbpf != NULL) {
struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
tap->wr_antsignal = rxdesc->rssi;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
}
/* trim FCS */
m_adj(m, -IEEE80211_CRC_LEN);
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
/* push the frame up to the 802.11 stack */
ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
/* node is no longer needed */
ieee80211_free_node(ni);
splx(s);
DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
}
static void
upgt_setup_rates(struct upgt_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
/*
* 0x01 = OFMD6 0x10 = DS1
* 0x04 = OFDM9 0x11 = DS2
* 0x06 = OFDM12 0x12 = DS5
* 0x07 = OFDM18 0x13 = DS11
* 0x08 = OFDM24
* 0x09 = OFDM36
* 0x0a = OFDM48
* 0x0b = OFDM54
*/
const uint8_t rateset_auto_11b[] =
{ 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
const uint8_t rateset_auto_11g[] =
{ 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
const uint8_t rateset_fix_11bg[] =
{ 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b };
if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
/*
* Automatic rate control is done by the device.
* We just pass the rateset from which the device
* will pickup a rate.
*/
if (ic->ic_curmode == IEEE80211_MODE_11B)
memcpy(sc->sc_cur_rateset, rateset_auto_11b,
sizeof(sc->sc_cur_rateset));
if (ic->ic_curmode == IEEE80211_MODE_11G ||
ic->ic_curmode == IEEE80211_MODE_AUTO)
memcpy(sc->sc_cur_rateset, rateset_auto_11g,
sizeof(sc->sc_cur_rateset));
} else {
/* set a fixed rate */
memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
sizeof(sc->sc_cur_rateset));
}
}
static uint8_t
upgt_rx_rate(struct upgt_softc *sc, const int rate)
{
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_curmode == IEEE80211_MODE_11B) {
if (rate < 0 || rate > 3)
/* invalid rate */
return 0;
switch (rate) {
case 0:
return 2;
case 1:
return 4;
case 2:
return 11;
case 3:
return 22;
default:
return 0;
}
}
if (ic->ic_curmode == IEEE80211_MODE_11G) {
if (rate < 0 || rate > 11)
/* invalid rate */
return 0;
switch (rate) {
case 0:
return 2;
case 1:
return 4;
case 2:
return 11;
case 3:
return 22;
case 4:
return 12;
case 5:
return 18;
case 6:
return 24;
case 7:
return 36;
case 8:
return 48;
case 9:
return 72;
case 10:
return 96;
case 11:
return 108;
default:
return 0;
}
}
return 0;
}
static int
upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct upgt_data *data_cmd = &sc->cmd_data;
struct upgt_lmac_mem *mem;
struct upgt_lmac_filter *filter;
int len;
const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
/*
* Transmit the URB containing the CMD data.
*/
len = sizeof(*mem) + sizeof(*filter);
memset(data_cmd->buf, 0, len);
mem = (struct upgt_lmac_mem *)data_cmd->buf;
mem->addr = htole32(sc->sc_memaddr_frame_start +
UPGT_MEMSIZE_FRAME_HEAD);
filter = (struct upgt_lmac_filter *)(mem + 1);
filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
filter->header1.type = UPGT_H1_TYPE_CTRL;
filter->header1.len = htole16(
sizeof(struct upgt_lmac_filter) -
sizeof(struct upgt_lmac_header));
filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
filter->header2.flags = 0;
switch (state) {
case IEEE80211_S_INIT:
DPRINTF(1, "%s: set MAC filter to INIT\n",
device_xname(sc->sc_dev));
filter->type = htole16(UPGT_FILTER_TYPE_RESET);
break;
case IEEE80211_S_SCAN:
DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
device_xname(sc->sc_dev), ether_sprintf(broadcast));
filter->type = htole16(UPGT_FILTER_TYPE_NONE);
IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
IEEE80211_ADDR_COPY(filter->src, broadcast);
filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
filter->rxhw = htole32(sc->sc_eeprom_hwrx);
filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
break;
case IEEE80211_S_RUN:
DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
filter->type = htole16(UPGT_FILTER_TYPE_STA);
IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
filter->rxhw = htole32(sc->sc_eeprom_hwrx);
filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
break;
default:
aprint_error_dev(sc->sc_dev,
"MAC filter does not know that state\n");
break;
}
mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
aprint_error_dev(sc->sc_dev,
"could not transmit macfilter CMD data URB\n");
return EIO;
}
return 0;
}
static int
upgt_set_channel(struct upgt_softc *sc, unsigned channel)
{
struct upgt_data *data_cmd = &sc->cmd_data;
struct upgt_lmac_mem *mem;
struct upgt_lmac_channel *chan;
int len;
DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
channel);
/*
* Transmit the URB containing the CMD data.
*/
len = sizeof(*mem) + sizeof(*chan);
memset(data_cmd->buf, 0, len);
mem = (struct upgt_lmac_mem *)data_cmd->buf;
mem->addr = htole32(sc->sc_memaddr_frame_start +
UPGT_MEMSIZE_FRAME_HEAD);
chan = (struct upgt_lmac_channel *)(mem + 1);
chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
chan->header1.type = UPGT_H1_TYPE_CTRL;
chan->header1.len = htole16(
sizeof(struct upgt_lmac_channel) -
sizeof(struct upgt_lmac_header));
chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
chan->header2.flags = 0;
chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
chan->freq6 = sc->sc_eeprom_freq6[channel];
chan->settings = sc->sc_eeprom_freq6_settings;
chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
sizeof(chan->freq3_1));
memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
sizeof(sc->sc_eeprom_freq4[channel]));
memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
sizeof(chan->freq3_2));
mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
aprint_error_dev(sc->sc_dev,
"could not transmit channel CMD data URB\n");
return EIO;
}
return 0;
}
static void
upgt_set_led(struct upgt_softc *sc, int action)
{
struct ieee80211com *ic = &sc->sc_ic;
struct upgt_data *data_cmd = &sc->cmd_data;
struct upgt_lmac_mem *mem;
struct upgt_lmac_led *led;
struct timeval t;
int len;
/*
* Transmit the URB containing the CMD data.
*/
len = sizeof(*mem) + sizeof(*led);
memset(data_cmd->buf, 0, len);
mem = (struct upgt_lmac_mem *)data_cmd->buf;
mem->addr = htole32(sc->sc_memaddr_frame_start +
UPGT_MEMSIZE_FRAME_HEAD);
led = (struct upgt_lmac_led *)(mem + 1);
led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
led->header1.type = UPGT_H1_TYPE_CTRL;
led->header1.len = htole16(
sizeof(struct upgt_lmac_led) -
sizeof(struct upgt_lmac_header));
led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
led->header2.type = htole16(UPGT_H2_TYPE_LED);
led->header2.flags = 0;
switch (action) {
case UPGT_LED_OFF:
led->mode = htole16(UPGT_LED_MODE_SET);
led->action_fix = 0;
led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
led->action_tmp_dur = 0;
break;
case UPGT_LED_ON:
led->mode = htole16(UPGT_LED_MODE_SET);
led->action_fix = 0;
led->action_tmp = htole16(UPGT_LED_ACTION_ON);
led->action_tmp_dur = 0;
break;
case UPGT_LED_BLINK:
if (ic->ic_state != IEEE80211_S_RUN)
return;
if (sc->sc_led_blink)
/* previous blink was not finished */
return;
led->mode = htole16(UPGT_LED_MODE_SET);
led->action_fix = htole16(UPGT_LED_ACTION_OFF);
led->action_tmp = htole16(UPGT_LED_ACTION_ON);
led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
/* lock blink */
sc->sc_led_blink = 1;
t.tv_sec = 0;
t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
callout_schedule(&sc->led_to, tvtohz(&t));
break;
default:
return;
}
mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
aprint_error_dev(sc->sc_dev,
"could not transmit led CMD URB\n");
}
}
static void
upgt_set_led_blink(void *arg)
{
struct upgt_softc *sc = arg;
/* blink finished, we are ready for a next one */
sc->sc_led_blink = 0;
callout_stop(&sc->led_to);
}
static int
upgt_get_stats(struct upgt_softc *sc)
{
struct upgt_data *data_cmd = &sc->cmd_data;
struct upgt_lmac_mem *mem;
struct upgt_lmac_stats *stats;
int len;
/*
* Transmit the URB containing the CMD data.
*/
len = sizeof(*mem) + sizeof(*stats);
memset(data_cmd->buf, 0, len);
mem = (struct upgt_lmac_mem *)data_cmd->buf;
mem->addr = htole32(sc->sc_memaddr_frame_start +
UPGT_MEMSIZE_FRAME_HEAD);
stats = (struct upgt_lmac_stats *)(mem + 1);
stats->header1.flags = 0;
stats->header1.type = UPGT_H1_TYPE_CTRL;
stats->header1.len = htole16(
sizeof(struct upgt_lmac_stats) -
sizeof(struct upgt_lmac_header));
stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
stats->header2.flags = 0;
mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
aprint_error_dev(sc->sc_dev,
"could not transmit statistics CMD data URB\n");
return EIO;
}
return 0;
}
static int
upgt_alloc_tx(struct upgt_softc *sc)
{
int i;
sc->tx_queued = 0;
for (i = 0; i < UPGT_TX_COUNT; i++) {
struct upgt_data *data_tx = &sc->tx_data[i];
data_tx->sc = sc;
int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
USBD_FORCE_SHORT_XFER, 0, &data_tx->xfer);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not allocate TX xfer\n");
return err;
}
data_tx->buf = usbd_get_buffer(data_tx->xfer);
}
return 0;
}
static int
upgt_alloc_rx(struct upgt_softc *sc)
{
struct upgt_data *data_rx = &sc->rx_data;
data_rx->sc = sc;
int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
0, 0, &data_rx->xfer);
if (err) {
aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
return err;
}
data_rx->buf = usbd_get_buffer(data_rx->xfer);
return 0;
}
static int
upgt_alloc_cmd(struct upgt_softc *sc)
{
struct upgt_data *data_cmd = &sc->cmd_data;
data_cmd->sc = sc;
int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
if (err) {
aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
return err;
}
data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
cv_init(&sc->sc_cv, "upgteeprom");
mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
return 0;
}
static void
upgt_free_tx(struct upgt_softc *sc)
{
int i;
for (i = 0; i < UPGT_TX_COUNT; i++) {
struct upgt_data *data_tx = &sc->tx_data[i];
if (data_tx->xfer != NULL) {
usbd_destroy_xfer(data_tx->xfer);
data_tx->xfer = NULL;
}
data_tx->ni = NULL;
}
}
static void
upgt_free_rx(struct upgt_softc *sc)
{
struct upgt_data *data_rx = &sc->rx_data;
if (data_rx->xfer != NULL) {
usbd_destroy_xfer(data_rx->xfer);
data_rx->xfer = NULL;
}
data_rx->ni = NULL;
}
static void
upgt_free_cmd(struct upgt_softc *sc)
{
struct upgt_data *data_cmd = &sc->cmd_data;
if (data_cmd->xfer != NULL) {
usbd_destroy_xfer(data_cmd->xfer);
data_cmd->xfer = NULL;
}
mutex_destroy(&sc->sc_mtx);
cv_destroy(&sc->sc_cv);
}
static int
upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
struct usbd_pipe *pipeh, uint32_t *size, int flags)
{
usbd_status status;
status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
data->buf, size);
if (status != USBD_NORMAL_COMPLETION) {
aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
usbd_errstr(status));
return EIO;
}
return 0;
}
#if 0
static void
upgt_hexdump(void *buf, int len)
{
int i;
for (i = 0; i < len; i++) {
if (i % 16 == 0)
printf("%s%5i:", i ? "\n" : "", i);
if (i % 4 == 0)
printf(" ");
printf("%02x", (int)*((uint8_t *)buf + i));
}
printf("\n");
}
#endif
static uint32_t
upgt_crc32_le(const void *buf, size_t size)
{
uint32_t crc;
crc = ether_crc32_le(buf, size);
/* apply final XOR value as common for CRC-32 */
crc = htole32(crc ^ 0xffffffffU);
return crc;
}
/*
* The firmware awaits a checksum for each frame we send to it.
* The algorithm used is uncommon but somehow similar to CRC32.
*/
static uint32_t
upgt_chksum_le(const uint32_t *buf, size_t size)
{
int i;
uint32_t crc = 0;
for (i = 0; i < size; i += sizeof(uint32_t)) {
crc = htole32(crc ^ *buf++);
crc = htole32((crc >> 5) ^ (crc << 3));
}
return crc;
}