NetBSD/sbin/newfs/mkfs.c

1411 lines
40 KiB
C

/* $NetBSD: mkfs.c,v 1.67 2003/02/14 16:21:49 grant Exp $ */
/*
* Copyright (c) 1980, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#ifndef lint
#if 0
static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
#else
__RCSID("$NetBSD: mkfs.c,v 1.67 2003/02/14 16:21:49 grant Exp $");
#endif
#endif /* not lint */
#include <sys/param.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <ufs/ufs/dinode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/ufs_bswap.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
#include <sys/disklabel.h>
#include <err.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#ifndef STANDALONE
#include <stdio.h>
#endif
#include "extern.h"
static void initcg(int, time_t);
static int fsinit(time_t, mode_t, uid_t, gid_t);
static int makedir(struct direct *, int);
static daddr_t alloc(int, int);
static void iput(struct dinode *, ino_t);
static void rdfs(daddr_t, int, void *);
static void wtfs(daddr_t, int, void *);
static int isblock(struct fs *, unsigned char *, int);
static void clrblock(struct fs *, unsigned char *, int);
static void setblock(struct fs *, unsigned char *, int);
static int32_t calcipg(int32_t, int32_t, off_t *);
static void swap_cg(struct cg *, struct cg *);
#ifdef MFS
static void calc_memfree(void);
static void *mkfs_malloc(size_t size);
#endif
static int count_digits(int);
/*
* make file system for cylinder-group style file systems
*/
/*
* We limit the size of the inode map to be no more than a
* third of the cylinder group space, since we must leave at
* least an equal amount of space for the block map.
*
* N.B.: MAXIPG must be a multiple of INOPB(fs).
*/
#define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
#define UMASK 0755
#define MAXINOPB (MAXBSIZE / DINODE_SIZE)
#define POWEROF2(num) (((num) & ((num) - 1)) == 0)
union {
struct fs fs;
char pad[SBSIZE];
} fsun;
#define sblock fsun.fs
struct csum *fscs;
union {
struct cg cg;
char pad[MAXBSIZE];
} cgun;
#define acg cgun.cg
struct dinode zino[MAXBSIZE / DINODE_SIZE];
char writebuf[MAXBSIZE];
int fsi, fso;
void
mkfs(struct partition *pp, const char *fsys, int fi, int fo,
mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
{
int32_t i, mincpc, mincpg, inospercg;
int32_t cylno, rpos, blk, j, warning = 0;
int32_t used, mincpgcnt, bpcg;
off_t usedb;
int32_t mapcramped, inodecramped;
int32_t postblsize, rotblsize, totalsbsize;
time_t utime;
long long sizepb;
char *writebuf2; /* dynamic buffer */
int nprintcols, printcolwidth;
#ifndef STANDALONE
time(&utime);
#endif
#ifdef MFS
if (mfs) {
calc_memfree();
if (fssize * sectorsize > memleft)
fssize = memleft / sectorsize;
if ((membase = mkfs_malloc(fssize * sectorsize)) == 0)
exit(12);
}
#endif
fsi = fi;
fso = fo;
if (Oflag) {
sblock.fs_inodefmt = FS_42INODEFMT;
sblock.fs_maxsymlinklen = 0;
} else {
sblock.fs_inodefmt = FS_44INODEFMT;
sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
}
/*
* Validate the given file system size.
* Verify that its last block can actually be accessed.
*/
if (fssize <= 0)
printf("preposterous size %d\n", fssize), exit(13);
wtfs(fssize - 1, sectorsize, (char *)&sblock);
if (isappleufs) {
struct appleufslabel appleufs;
ffs_appleufs_set(&appleufs,appleufs_volname,utime);
wtfs(APPLEUFS_LABEL_OFFSET/sectorsize,APPLEUFS_LABEL_SIZE,&appleufs);
}
/*
* collect and verify the sector and track info
*/
sblock.fs_nsect = nsectors;
sblock.fs_ntrak = ntracks;
if (sblock.fs_ntrak <= 0)
printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
if (sblock.fs_nsect <= 0)
printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
/*
* collect and verify the filesystem density info
*/
sblock.fs_avgfilesize = avgfilesize;
sblock.fs_avgfpdir = avgfpdir;
if (sblock.fs_avgfilesize <= 0)
printf("illegal expected average file size %d\n",
sblock.fs_avgfilesize), exit(14);
if (sblock.fs_avgfpdir <= 0)
printf("illegal expected number of files per directory %d\n",
sblock.fs_avgfpdir), exit(15);
/*
* collect and verify the block and fragment sizes
*/
sblock.fs_bsize = bsize;
sblock.fs_fsize = fsize;
if (!POWEROF2(sblock.fs_bsize)) {
printf("block size must be a power of 2, not %d\n",
sblock.fs_bsize);
exit(16);
}
if (!POWEROF2(sblock.fs_fsize)) {
printf("fragment size must be a power of 2, not %d\n",
sblock.fs_fsize);
exit(17);
}
if (sblock.fs_fsize < sectorsize) {
printf("fragment size %d is too small, minimum is %d\n",
sblock.fs_fsize, sectorsize);
exit(18);
}
if (sblock.fs_bsize < MINBSIZE) {
printf("block size %d is too small, minimum is %d\n",
sblock.fs_bsize, MINBSIZE);
exit(19);
}
if (sblock.fs_bsize > MAXBSIZE) {
printf("block size %d is too large, maximum is %d\n",
sblock.fs_bsize, MAXBSIZE);
exit(19);
}
if (sblock.fs_bsize < sblock.fs_fsize) {
printf("block size (%d) cannot be smaller than fragment size (%d)\n",
sblock.fs_bsize, sblock.fs_fsize);
exit(20);
}
sblock.fs_bmask = ~(sblock.fs_bsize - 1);
sblock.fs_fmask = ~(sblock.fs_fsize - 1);
sblock.fs_qbmask = ~sblock.fs_bmask;
sblock.fs_qfmask = ~sblock.fs_fmask;
for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
sblock.fs_bshift++;
for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
sblock.fs_fshift++;
sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
sblock.fs_fragshift++;
if (sblock.fs_frag > MAXFRAG) {
printf("fragment size %d is too small, "
"minimum with block size %d is %d\n",
sblock.fs_fsize, sblock.fs_bsize,
sblock.fs_bsize / MAXFRAG);
exit(21);
}
sblock.fs_nrpos = nrpos;
/* XXX ondisk32 */
sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t);
sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
sblock.fs_nspf = sblock.fs_fsize / sectorsize;
for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
sblock.fs_fsbtodb++;
sblock.fs_sblkno =
roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
sblock.fs_cgoffset = roundup(
howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
sblock.fs_cgmask <<= 1;
if (!POWEROF2(sblock.fs_ntrak))
sblock.fs_cgmask <<= 1;
sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
sizepb *= NINDIR(&sblock);
sblock.fs_maxfilesize += sizepb;
}
/*
* Validate specified/determined secpercyl
* and calculate minimum cylinders per group.
*/
sblock.fs_spc = secpercyl;
for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
sblock.fs_cpc > 1 && (i & 1) == 0;
sblock.fs_cpc >>= 1, i >>= 1)
/* void */;
mincpc = sblock.fs_cpc;
bpcg = sblock.fs_spc * sectorsize;
inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
if (inospercg > MAXIPG(&sblock))
inospercg = MAXIPG(&sblock);
used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
sblock.fs_spc);
mincpg = roundup(mincpgcnt, mincpc);
/*
* Ensure that cylinder group with mincpg has enough space
* for block maps.
*/
sblock.fs_cpg = mincpg;
sblock.fs_ipg = inospercg;
if (maxcontig > 1)
sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
mapcramped = 0;
while (CGSIZE(&sblock) > sblock.fs_bsize) {
mapcramped = 1;
if (sblock.fs_bsize < MAXBSIZE) {
sblock.fs_bsize <<= 1;
if ((i & 1) == 0) {
i >>= 1;
} else {
sblock.fs_cpc <<= 1;
mincpc <<= 1;
mincpg = roundup(mincpgcnt, mincpc);
sblock.fs_cpg = mincpg;
}
sblock.fs_frag <<= 1;
sblock.fs_fragshift += 1;
if (sblock.fs_frag <= MAXFRAG)
continue;
}
if (sblock.fs_fsize == sblock.fs_bsize) {
printf("There is no block size that");
printf(" can support this disk\n");
exit(22);
}
sblock.fs_frag >>= 1;
sblock.fs_fragshift -= 1;
sblock.fs_fsize <<= 1;
sblock.fs_nspf <<= 1;
}
/*
* Ensure that cylinder group with mincpg has enough space for inodes.
*/
inodecramped = 0;
inospercg = calcipg(mincpg, bpcg, &usedb);
sblock.fs_ipg = inospercg;
while (inospercg > MAXIPG(&sblock)) {
inodecramped = 1;
if (mincpc == 1 || sblock.fs_frag == 1 ||
sblock.fs_bsize == MINBSIZE)
break;
printf("With a block size of %d %s %d\n", sblock.fs_bsize,
"minimum bytes per inode is",
(int)((mincpg * (off_t)bpcg - usedb)
/ MAXIPG(&sblock) + 1));
sblock.fs_bsize >>= 1;
sblock.fs_frag >>= 1;
sblock.fs_fragshift -= 1;
mincpc >>= 1;
sblock.fs_cpg = roundup(mincpgcnt, mincpc);
if (CGSIZE(&sblock) > sblock.fs_bsize) {
sblock.fs_bsize <<= 1;
break;
}
mincpg = sblock.fs_cpg;
inospercg = calcipg(mincpg, bpcg, &usedb);
sblock.fs_ipg = inospercg;
}
if (inodecramped) {
if (inospercg > MAXIPG(&sblock)) {
printf("Minimum bytes per inode is %d\n",
(int)((mincpg * (off_t)bpcg - usedb)
/ MAXIPG(&sblock) + 1));
} else if (!mapcramped) {
printf("With %d bytes per inode, ", density);
printf("minimum cylinders per group is %d\n", mincpg);
}
}
if (mapcramped) {
printf("With %d sectors per cylinder, ", sblock.fs_spc);
printf("minimum cylinders per group is %d\n", mincpg);
}
if (inodecramped || mapcramped) {
if (sblock.fs_bsize != bsize)
printf("%s to be changed from %d to %d\n",
"This requires the block size",
bsize, sblock.fs_bsize);
if (sblock.fs_fsize != fsize)
printf("\t%s to be changed from %d to %d\n",
"and the fragment size",
fsize, sblock.fs_fsize);
exit(23);
}
/*
* Calculate the number of cylinders per group
*/
sblock.fs_cpg = cpg;
if (sblock.fs_cpg % mincpc != 0) {
printf("%s groups must have a multiple of %d cylinders\n",
cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
if (!cpgflg)
cpg = sblock.fs_cpg;
}
/*
* Must ensure there is enough space for inodes.
*/
sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
while (sblock.fs_ipg > MAXIPG(&sblock)) {
inodecramped = 1;
sblock.fs_cpg -= mincpc;
sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
}
/*
* Must ensure there is enough space to hold block map.
*/
while (CGSIZE(&sblock) > sblock.fs_bsize) {
mapcramped = 1;
sblock.fs_cpg -= mincpc;
sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
}
sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
exit(24);
}
if (sblock.fs_cpg < mincpg) {
printf("cylinder groups must have at least %d cylinders\n",
mincpg);
exit(25);
} else if (sblock.fs_cpg != cpg && cpgflg) {
if (!mapcramped && !inodecramped)
exit(26);
if (mapcramped && inodecramped)
printf("Block size and bytes per inode restrict");
else if (mapcramped)
printf("Block size restricts");
else
printf("Bytes per inode restrict");
printf(" cylinders per group to %d.\n", sblock.fs_cpg);
exit(27);
}
sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
/*
* Now have size for file system and nsect and ntrak.
* Determine number of cylinders and blocks in the file system.
*/
sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
sblock.fs_ncyl++;
warning = 1;
}
if (sblock.fs_ncyl < 1) {
printf("file systems must have at least one cylinder\n");
exit(28);
}
/*
* Determine feasability/values of rotational layout tables.
*
* The size of the rotational layout tables is limited by the
* size of the superblock, SBSIZE. The amount of space available
* for tables is calculated as (SBSIZE - sizeof (struct fs)).
* The size of these tables is inversely proportional to the block
* size of the file system. The size increases if sectors per track
* are not powers of two, because more cylinders must be described
* by the tables before the rotational pattern repeats (fs_cpc).
*/
sblock.fs_interleave = interleave;
sblock.fs_trackskew = trackskew;
sblock.fs_npsect = nphyssectors;
sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
if (sblock.fs_ntrak == 1) {
sblock.fs_cpc = 0;
goto next;
}
postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
totalsbsize = sizeof(struct fs) + rotblsize;
if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
/* use old static table space */
sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
(char *)(&sblock.fs_firstfield);
sblock.fs_rotbloff = &sblock.fs_space[0] -
(u_char *)(&sblock.fs_firstfield);
} else {
/* use dynamic table space */
sblock.fs_postbloff = &sblock.fs_space[0] -
(u_char *)(&sblock.fs_firstfield);
sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
totalsbsize += postblsize;
}
if (totalsbsize > SBSIZE ||
sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
printf("%s %s %d %s %d.%s",
"Warning: insufficient space in super block for\n",
"rotational layout tables with nsect", sblock.fs_nsect,
"and ntrak", sblock.fs_ntrak,
"\nFile system performance may be impaired.\n");
sblock.fs_cpc = 0;
goto next;
}
sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
/*
* calculate the available blocks for each rotational position
*/
for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
fs_postbl(&sblock, cylno)[rpos] = -1;
for (i = (rotblsize - 1) << sblock.fs_fragshift;
i >= 0; i -= sblock.fs_frag) {
cylno = cbtocylno(&sblock, i);
rpos = cbtorpos(&sblock, i);
blk = fragstoblks(&sblock, i);
if (fs_postbl(&sblock, cylno)[rpos] == -1)
fs_rotbl(&sblock)[blk] = 0;
else
fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
fs_postbl(&sblock, cylno)[rpos] = blk;
}
next:
/*
* Compute/validate number of cylinder groups.
*/
sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
if (sblock.fs_ncyl % sblock.fs_cpg)
sblock.fs_ncg++;
sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
printf("inode blocks/cyl group (%lld) >= data blocks (%lld)\n",
(long long)cgdmin(&sblock, i) -
(long long)(cgbase(&sblock, i) >> sblock.fs_fragshift),
(long long)(sblock.fs_fpg >> sblock.fs_fragshift));
printf("number of cylinders per cylinder group (%d) %s.\n",
sblock.fs_cpg, "must be increased");
exit(29);
}
j = sblock.fs_ncg - 1;
if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
if (j == 0) {
printf("File system must have at least %lld sectors\n",
(long long)(NSPF(&sblock) *
(cgdmin(&sblock, 0) + (3 << sblock.fs_fragshift))));
exit(30);
}
printf("Warning: inode blocks/cyl group (%lld) >= "
"data blocks (%d) in last\n",
(long long)(cgdmin(&sblock, j) -
cgbase(&sblock, j)) >> sblock.fs_fragshift,
i >> sblock.fs_fragshift);
printf(" cylinder group. This implies %d sector(s) "
"cannot be allocated.\n",
i * NSPF(&sblock));
sblock.fs_ncg--;
sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
NSPF(&sblock);
warning = 0;
}
if (warning && !mfs) {
printf("Warning: %d sector(s) in last cylinder unallocated\n",
sblock.fs_spc -
(fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
* sblock.fs_spc));
}
/*
* fill in remaining fields of the super block
*/
sblock.fs_csaddr = cgdmin(&sblock, 0);
sblock.fs_cssize =
fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
/*
* The superblock fields 'fs_csmask' and 'fs_csshift' are no
* longer used. However, we still initialise them so that the
* filesystem remains compatible with old kernels.
*/
i = sblock.fs_bsize / sizeof(struct csum);
sblock.fs_csmask = ~(i - 1);
for (sblock.fs_csshift = 0; i > 1; i >>= 1)
sblock.fs_csshift++;
fscs = (struct csum *)calloc(1, sblock.fs_cssize);
if (fscs == NULL)
exit(39);
sblock.fs_magic = FS_MAGIC;
sblock.fs_rotdelay = rotdelay;
sblock.fs_minfree = minfree;
sblock.fs_maxcontig = maxcontig;
sblock.fs_maxbpg = maxbpg;
sblock.fs_rps = rpm / 60;
sblock.fs_optim = opt;
sblock.fs_cgrotor = 0;
sblock.fs_cstotal.cs_ndir = 0;
sblock.fs_cstotal.cs_nbfree = 0;
sblock.fs_cstotal.cs_nifree = 0;
sblock.fs_cstotal.cs_nffree = 0;
sblock.fs_fmod = 0;
sblock.fs_clean = FS_ISCLEAN;
sblock.fs_ronly = 0;
/*
* Dump out summary information about file system.
*/
if (!mfs) {
printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
"cylinders", sblock.fs_ntrak, sblock.fs_nsect);
#define B2MBFACTOR (1 / (1024.0 * 1024.0))
printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
(float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
sblock.fs_ncg, sblock.fs_cpg,
(float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
sblock.fs_ipg);
#undef B2MBFACTOR
}
/*
* Now determine how wide each column will be, and calculate how
* many columns will fit in a 76 char line. 76 is the width of the
* subwindows in sysinst.
*/
printcolwidth = count_digits(
fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
nprintcols = 76 / (printcolwidth + 2);
/*
* Now build the cylinders group blocks and
* then print out indices of cylinder groups.
*/
if (!mfs)
printf("super-block backups (for fsck -b #) at:");
for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
initcg(cylno, utime);
if (mfs)
continue;
if (cylno % nprintcols == 0)
printf("\n");
printf(" %*lld,", printcolwidth,
(long long)fsbtodb(&sblock, cgsblock(&sblock, cylno)));
fflush(stdout);
}
if (!mfs)
printf("\n");
if (Nflag && !mfs)
exit(0);
/*
* Now construct the initial file system,
* then write out the super-block.
*/
if (fsinit(utime, mfsmode, mfsuid, mfsgid) == 0 && mfs)
errx(1, "Error making filesystem");
sblock.fs_time = utime;
memcpy(writebuf, &sblock, sbsize);
if (needswap)
ffs_sb_swap(&sblock, (struct fs*)writebuf);
wtfs((int)SBOFF / sectorsize, sbsize, writebuf);
/*
* Write out the duplicate super blocks
*/
for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
sbsize, writebuf);
/*
* if we need to swap, create a buffer for the cylinder summaries
* to get swapped to.
*/
if (needswap) {
if ((writebuf2 = malloc(sblock.fs_cssize)) == NULL)
exit(12);
ffs_csum_swap(fscs, (struct csum*)writebuf2, sblock.fs_cssize);
} else
writebuf2 = (char *)fscs;
for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
sblock.fs_cssize - i < sblock.fs_bsize ?
sblock.fs_cssize - i : sblock.fs_bsize,
((char *)writebuf2) + i);
if (writebuf2 != (char *)fscs)
free(writebuf2);
/*
* Update information about this partion in pack
* label, to that it may be updated on disk.
*/
if (isappleufs)
pp->p_fstype = FS_APPLEUFS;
else
pp->p_fstype = FS_BSDFFS;
pp->p_fsize = sblock.fs_fsize;
pp->p_frag = sblock.fs_frag;
pp->p_cpg = sblock.fs_cpg;
}
/*
* Initialize a cylinder group.
*/
void
initcg(int cylno, time_t utime)
{
daddr_t cbase, d, dlower, dupper, dmax, blkno;
int32_t i;
struct csum *cs;
int cn;
/*
* Determine block bounds for cylinder group.
* Allow space for super block summary information in first
* cylinder group.
*/
cbase = cgbase(&sblock, cylno);
dmax = cbase + sblock.fs_fpg;
if (dmax > sblock.fs_size)
dmax = sblock.fs_size;
dlower = cgsblock(&sblock, cylno) - cbase;
dupper = cgdmin(&sblock, cylno) - cbase;
if (cylno == 0)
dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
cs = fscs + cylno;
memset(&acg, 0, sblock.fs_cgsize);
acg.cg_time = utime;
acg.cg_magic = CG_MAGIC;
acg.cg_cgx = cylno;
if (cylno == sblock.fs_ncg - 1)
acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
else
acg.cg_ncyl = sblock.fs_cpg;
acg.cg_niblk = sblock.fs_ipg;
acg.cg_ndblk = dmax - cbase;
if (sblock.fs_contigsumsize > 0)
acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
acg.cg_iusedoff = acg.cg_boff +
sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
if (sblock.fs_contigsumsize <= 0) {
acg.cg_nextfreeoff = acg.cg_freeoff +
howmany(sblock.fs_fpg, NBBY);
} else {
acg.cg_clustersumoff = acg.cg_freeoff +
howmany(sblock.fs_fpg, NBBY) - sizeof(int32_t);
if (isappleufs) {
/* Apple PR2216969 gives rationale for this change.
* I believe they were mistaken, but we need to
* duplicate it for compatibility. -- dbj@NetBSD.org
*/
acg.cg_clustersumoff += sizeof(int32_t);
}
acg.cg_clustersumoff =
roundup(acg.cg_clustersumoff, sizeof(int32_t));
acg.cg_clusteroff = acg.cg_clustersumoff +
(sblock.fs_contigsumsize + 1) * sizeof(int32_t);
acg.cg_nextfreeoff = acg.cg_clusteroff +
howmany(fragstoblks(&sblock, sblock.fs_fpg), NBBY);
}
if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
printf("Panic: cylinder group too big\n");
exit(37);
}
acg.cg_cs.cs_nifree += sblock.fs_ipg;
if (cylno == 0)
for (i = 0; i < ROOTINO; i++) {
setbit(cg_inosused(&acg, 0), i);
acg.cg_cs.cs_nifree--;
}
for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
sblock.fs_bsize, (char *)zino);
if (cylno > 0) {
/*
* In cylno 0, beginning space is reserved
* for boot and super blocks.
*/
for (d = 0, blkno = 0; d < dlower; ) {
setblock(&sblock, cg_blksfree(&acg, 0), blkno);
if (sblock.fs_contigsumsize > 0)
setbit(cg_clustersfree(&acg, 0), blkno);
acg.cg_cs.cs_nbfree++;
cn = cbtocylno(&sblock, d);
cg_blktot(&acg, 0)[cn]++;
cg_blks(&sblock, &acg, cn, 0)[cbtorpos(&sblock, d)]++;
d += sblock.fs_frag;
blkno++;
}
sblock.fs_dsize += dlower;
}
sblock.fs_dsize += acg.cg_ndblk - dupper;
if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
acg.cg_frsum[sblock.fs_frag - i]++;
for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
setbit(cg_blksfree(&acg, 0), dupper);
acg.cg_cs.cs_nffree++;
}
}
for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
d + sblock.fs_frag <= dmax - cbase; ) {
setblock(&sblock, cg_blksfree(&acg, 0), blkno);
if (sblock.fs_contigsumsize > 0)
setbit(cg_clustersfree(&acg, 0), blkno);
acg.cg_cs.cs_nbfree++;
cn = cbtocylno(&sblock, d);
cg_blktot(&acg, 0)[cn]++;
cg_blks(&sblock, &acg, cn, 0)[cbtorpos(&sblock, d)]++;
d += sblock.fs_frag;
blkno++;
}
if (d < dmax - cbase) {
acg.cg_frsum[dmax - cbase - d]++;
for (; d < dmax - cbase; d++) {
setbit(cg_blksfree(&acg, 0), d);
acg.cg_cs.cs_nffree++;
}
}
if (sblock.fs_contigsumsize > 0) {
int32_t *sump = cg_clustersum(&acg, 0);
u_char *mapp = cg_clustersfree(&acg, 0);
int map = *mapp++;
int bit = 1;
int run = 0;
for (i = 0; i < acg.cg_nclusterblks; i++) {
if ((map & bit) != 0) {
run++;
} else if (run != 0) {
if (run > sblock.fs_contigsumsize)
run = sblock.fs_contigsumsize;
sump[run]++;
run = 0;
}
if ((i & (NBBY - 1)) != (NBBY - 1)) {
bit <<= 1;
} else {
map = *mapp++;
bit = 1;
}
}
if (run != 0) {
if (run > sblock.fs_contigsumsize)
run = sblock.fs_contigsumsize;
sump[run]++;
}
}
sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
*cs = acg.cg_cs;
memcpy(writebuf, &acg, sblock.fs_bsize);
if (needswap)
swap_cg(&acg, (struct cg*)writebuf);
wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
sblock.fs_bsize, writebuf);
}
/*
* initialize the file system
*/
struct dinode node;
#ifdef LOSTDIR
#define PREDEFDIR 3
#else
#define PREDEFDIR 2
#endif
struct direct root_dir[] = {
{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
#ifdef LOSTDIR
{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
#endif
};
struct odirect {
u_int32_t d_ino;
u_int16_t d_reclen;
u_int16_t d_namlen;
u_char d_name[MAXNAMLEN + 1];
} oroot_dir[] = {
{ ROOTINO, sizeof(struct direct), 1, "." },
{ ROOTINO, sizeof(struct direct), 2, ".." },
#ifdef LOSTDIR
{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
#endif
};
#ifdef LOSTDIR
struct direct lost_found_dir[] = {
{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
{ 0, DIRBLKSIZ, 0, 0, 0 },
};
struct odirect olost_found_dir[] = {
{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
{ ROOTINO, sizeof(struct direct), 2, ".." },
{ 0, DIRBLKSIZ, 0, 0 },
};
#endif
char buf[MAXBSIZE];
static void copy_dir(struct direct *, struct direct *);
int
fsinit(time_t utime, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
{
#ifdef LOSTDIR
int i;
int dirblksiz = DIRBLKSIZ;
if (isappleufs)
dirblksiz = APPLEUFS_DIRBLKSIZ;
#endif
/*
* initialize the node
*/
memset(&node, 0, sizeof(node));
node.di_atime = utime;
node.di_mtime = utime;
node.di_ctime = utime;
#ifdef LOSTDIR
/*
* create the lost+found directory
*/
if (Oflag) {
(void)makedir((struct direct *)olost_found_dir, 2);
for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
copy_dir((struct direct*)&olost_found_dir[2],
(struct direct*)&buf[i]);
} else {
(void)makedir(lost_found_dir, 2);
for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
}
node.di_mode = IFDIR | UMASK;
node.di_nlink = 2;
node.di_size = sblock.fs_bsize;
node.di_db[0] = alloc(node.di_size, node.di_mode);
node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
node.di_uid = geteuid();
node.di_gid = getegid();
wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
iput(&node, LOSTFOUNDINO);
#endif
/*
* create the root directory
*/
if (mfs) {
node.di_mode = IFDIR | mfsmode;
node.di_uid = mfsuid;
node.di_gid = mfsgid;
} else {
node.di_mode = IFDIR | UMASK;
node.di_uid = geteuid();
node.di_gid = getegid();
}
node.di_nlink = PREDEFDIR;
if (Oflag)
node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
else
node.di_size = makedir(root_dir, PREDEFDIR);
node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
if (node.di_db[0] == 0)
return (0);
node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
iput(&node, ROOTINO);
return (1);
}
/*
* construct a set of directory entries in "buf".
* return size of directory.
*/
int
makedir(struct direct *protodir, int entries)
{
char *cp;
int i, spcleft;
int dirblksiz = DIRBLKSIZ;
if (isappleufs)
dirblksiz = APPLEUFS_DIRBLKSIZ;
spcleft = dirblksiz;
for (cp = buf, i = 0; i < entries - 1; i++) {
protodir[i].d_reclen = DIRSIZ(Oflag, &protodir[i], 0);
copy_dir(&protodir[i], (struct direct*)cp);
cp += protodir[i].d_reclen;
spcleft -= protodir[i].d_reclen;
}
protodir[i].d_reclen = spcleft;
copy_dir(&protodir[i], (struct direct*)cp);
return (dirblksiz);
}
/*
* allocate a block or frag
*/
daddr_t
alloc(int size, int mode)
{
int i, frag;
daddr_t d, blkno;
rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
/* fs -> host byte order */
if (needswap)
swap_cg(&acg, &acg);
if (acg.cg_magic != CG_MAGIC) {
printf("cg 0: bad magic number\n");
return (0);
}
if (acg.cg_cs.cs_nbfree == 0) {
printf("first cylinder group ran out of space\n");
return (0);
}
for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
if (isblock(&sblock, cg_blksfree(&acg, 0),
d >> sblock.fs_fragshift))
goto goth;
printf("internal error: can't find block in cyl 0\n");
return (0);
goth:
blkno = fragstoblks(&sblock, d);
clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
if (sblock.fs_contigsumsize > 0)
clrbit(cg_clustersfree(&acg, 0), blkno);
acg.cg_cs.cs_nbfree--;
sblock.fs_cstotal.cs_nbfree--;
fscs[0].cs_nbfree--;
if (mode & IFDIR) {
acg.cg_cs.cs_ndir++;
sblock.fs_cstotal.cs_ndir++;
fscs[0].cs_ndir++;
}
cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]--;
cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)[cbtorpos(&sblock, d)]--;
if (size != sblock.fs_bsize) {
frag = howmany(size, sblock.fs_fsize);
fscs[0].cs_nffree += sblock.fs_frag - frag;
sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
acg.cg_frsum[sblock.fs_frag - frag]++;
for (i = frag; i < sblock.fs_frag; i++)
setbit(cg_blksfree(&acg, 0), d + i);
}
/* host -> fs byte order */
if (needswap)
swap_cg(&acg, &acg);
wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
return (d);
}
/*
* Calculate number of inodes per group.
*/
int32_t
calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
{
int i;
int32_t ipg, new_ipg, ncg, ncyl;
off_t usedb;
/*
* Prepare to scale by fssize / (number of sectors in cylinder groups).
* Note that fssize is still in sectors, not file system blocks.
*/
ncyl = howmany(fssize, secpercyl);
ncg = howmany(ncyl, cylpg);
/*
* Iterate a few times to allow for ipg depending on itself.
*/
ipg = 0;
for (i = 0; i < 10; i++) {
usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
* NSPF(&sblock) * (off_t)sectorsize;
new_ipg = (cylpg * (long long)bpcg - usedb) /
(long long)density * fssize / (ncg * secpercyl * cylpg);
if (new_ipg <= 0)
new_ipg = 1; /* ensure ipg > 0 */
new_ipg = roundup(new_ipg, INOPB(&sblock));
if (new_ipg == ipg)
break;
ipg = new_ipg;
}
*usedbp = usedb;
return (ipg);
}
/*
* Allocate an inode on the disk
*/
static void
iput(struct dinode *ip, ino_t ino)
{
struct dinode ibuf[MAXINOPB];
daddr_t d;
int c, i;
c = ino_to_cg(&sblock, ino);
rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
/* fs -> host byte order */
if (needswap)
swap_cg(&acg, &acg);
if (acg.cg_magic != CG_MAGIC) {
printf("cg 0: bad magic number\n");
exit(31);
}
acg.cg_cs.cs_nifree--;
setbit(cg_inosused(&acg, 0), ino);
/* host -> fs byte order */
if (needswap)
swap_cg(&acg, &acg);
wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
sblock.fs_cstotal.cs_nifree--;
fscs[0].cs_nifree--;
if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
printf("fsinit: inode value out of range (%d).\n", ino);
exit(32);
}
d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
rdfs(d, sblock.fs_bsize, ibuf);
if (needswap) {
ffs_dinode_swap(ip, &ibuf[ino_to_fsbo(&sblock, ino)]);
/* ffs_dinode_swap() doesn't swap blocks addrs */
for (i=0; i<NDADDR + NIADDR; i++)
(&ibuf[ino_to_fsbo(&sblock, ino)])->di_db[i] =
bswap32(ip->di_db[i]);
} else
ibuf[ino_to_fsbo(&sblock, ino)] = *ip;
wtfs(d, sblock.fs_bsize, ibuf);
}
/*
* read a block from the file system
*/
void
rdfs(daddr_t bno, int size, void *bf)
{
int n;
off_t offset;
#ifdef MFS
if (mfs) {
memmove(bf, membase + bno * sectorsize, size);
return;
}
#endif
offset = bno;
offset *= sectorsize;
if (lseek(fsi, offset, SEEK_SET) < 0) {
printf("rdfs: seek error for sector %lld: %s\n",
(long long)bno, strerror(errno));
exit(33);
}
n = read(fsi, bf, size);
if (n != size) {
printf("rdfs: read error for sector %lld: %s\n",
(long long)bno, strerror(errno));
exit(34);
}
}
/*
* write a block to the file system
*/
void
wtfs(daddr_t bno, int size, void *bf)
{
int n;
off_t offset;
#ifdef MFS
if (mfs) {
memmove(membase + bno * sectorsize, bf, size);
return;
}
#endif
if (Nflag)
return;
offset = bno;
offset *= sectorsize;
if (lseek(fso, offset, SEEK_SET) < 0) {
printf("wtfs: seek error for sector %lld: %s\n",
(long long)bno, strerror(errno));
exit(35);
}
n = write(fso, bf, size);
if (n != size) {
printf("wtfs: write error for sector %lld: %s\n",
(long long)bno, strerror(errno));
exit(36);
}
}
/*
* check if a block is available
*/
int
isblock(struct fs *fs, unsigned char *cp, int h)
{
unsigned char mask;
switch (fs->fs_fragshift) {
case 3:
return (cp[h] == 0xff);
case 2:
mask = 0x0f << ((h & 0x1) << 2);
return ((cp[h >> 1] & mask) == mask);
case 1:
mask = 0x03 << ((h & 0x3) << 1);
return ((cp[h >> 2] & mask) == mask);
case 0:
mask = 0x01 << (h & 0x7);
return ((cp[h >> 3] & mask) == mask);
default:
#ifdef STANDALONE
printf("isblock bad fs_fragshift %d\n", fs->fs_fragshift);
#else
fprintf(stderr, "isblock bad fs_fragshift %d\n",
fs->fs_fragshift);
#endif
return (0);
}
}
/*
* take a block out of the map
*/
void
clrblock(struct fs *fs, unsigned char *cp, int h)
{
switch ((fs)->fs_fragshift) {
case 3:
cp[h] = 0;
return;
case 2:
cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
return;
case 1:
cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
return;
case 0:
cp[h >> 3] &= ~(0x01 << (h & 0x7));
return;
default:
#ifdef STANDALONE
printf("clrblock bad fs_fragshift %d\n", fs->fs_fragshift);
#else
fprintf(stderr, "clrblock bad fs_fragshift %d\n",
fs->fs_fragshift);
#endif
return;
}
}
/*
* put a block into the map
*/
void
setblock(struct fs *fs, unsigned char *cp, int h)
{
switch (fs->fs_fragshift) {
case 3:
cp[h] = 0xff;
return;
case 2:
cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
return;
case 1:
cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
return;
case 0:
cp[h >> 3] |= (0x01 << (h & 0x7));
return;
default:
#ifdef STANDALONE
printf("setblock bad fs_frag %d\n", fs->fs_fragshift);
#else
fprintf(stderr, "setblock bad fs_fragshift %d\n",
fs->fs_fragshift);
#endif
return;
}
}
/* swap byte order of cylinder group */
static void
swap_cg(struct cg *o, struct cg *n)
{
int i, btotsize, fbsize;
u_int32_t *n32, *o32;
u_int16_t *n16, *o16;
n->cg_firstfield = bswap32(o->cg_firstfield);
n->cg_magic = bswap32(o->cg_magic);
n->cg_time = bswap32(o->cg_time);
n->cg_cgx = bswap32(o->cg_cgx);
n->cg_ncyl = bswap16(o->cg_ncyl);
n->cg_niblk = bswap16(o->cg_niblk);
n->cg_ndblk = bswap32(o->cg_ndblk);
n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
n->cg_rotor = bswap32(o->cg_rotor);
n->cg_frotor = bswap32(o->cg_frotor);
n->cg_irotor = bswap32(o->cg_irotor);
n->cg_btotoff = bswap32(o->cg_btotoff);
n->cg_boff = bswap32(o->cg_boff);
n->cg_iusedoff = bswap32(o->cg_iusedoff);
n->cg_freeoff = bswap32(o->cg_freeoff);
n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
n->cg_clusteroff = bswap32(o->cg_clusteroff);
n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
for (i=0; i < MAXFRAG; i++)
n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
/* alays new format */
if (n->cg_magic == CG_MAGIC) {
btotsize = n->cg_boff - n->cg_btotoff;
fbsize = n->cg_iusedoff - n->cg_boff;
n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
} else {
btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
}
for (i=0; i < btotsize / sizeof(u_int32_t); i++)
n32[i] = bswap32(o32[i]);
for (i=0; i < fbsize/sizeof(u_int16_t); i++)
n16[i] = bswap16(o16[i]);
if (n->cg_magic == CG_MAGIC) {
n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
} else {
n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
}
for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
n32[i] = bswap32(o32[i]);
}
/* copy a direntry to a buffer, in fs byte order */
static void
copy_dir(struct direct *dir, struct direct *dbuf)
{
memcpy(dbuf, dir, DIRSIZ(Oflag, dir, 0));
if (needswap) {
dbuf->d_ino = bswap32(dir->d_ino);
dbuf->d_reclen = bswap16(dir->d_reclen);
if (Oflag)
((struct odirect*)dbuf)->d_namlen =
bswap16(((struct odirect*)dir)->d_namlen);
}
}
/* Determine how many digits are needed to print a given integer */
static int
count_digits(int num)
{
int ndig;
for(ndig = 1; num > 9; num /=10, ndig++);
return (ndig);
}
#ifdef MFS
/*
* XXX!
* Attempt to guess how much more space is available for process data. The
* heuristic we use is
*
* max_data_limit - (sbrk(0) - etext) - 128kB
*
* etext approximates that start address of the data segment, and the 128kB
* allows some slop for both segment gap between text and data, and for other
* (libc) malloc usage.
*/
static void
calc_memfree(void)
{
extern char etext;
struct rlimit rlp;
u_long base;
base = (u_long)sbrk(0) - (u_long)&etext;
if (getrlimit(RLIMIT_DATA, &rlp) < 0)
perror("getrlimit");
rlp.rlim_cur = rlp.rlim_max;
if (setrlimit(RLIMIT_DATA, &rlp) < 0)
perror("setrlimit");
memleft = rlp.rlim_max - base - (128 * 1024);
}
/*
* Internal version of malloc that trims the requested size if not enough
* memory is available.
*/
static void *
mkfs_malloc(size_t size)
{
u_long pgsz;
if (size == 0)
return (NULL);
if (memleft == 0)
calc_memfree();
pgsz = getpagesize() - 1;
size = (size + pgsz) &~ pgsz;
if (size > memleft)
size = memleft;
memleft -= size;
return (mmap(0, size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
-1, 0));
}
#endif /* MFS */