1330 lines
34 KiB
C
1330 lines
34 KiB
C
/* $NetBSD: ntp_refclock.c,v 1.1.1.1 2000/03/29 12:38:52 simonb Exp $ */
|
|
|
|
/*
|
|
* ntp_refclock - processing support for reference clocks
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
# include <config.h>
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <sys/types.h>
|
|
#ifdef HAVE_SYS_IOCTL_H
|
|
# include <sys/ioctl.h>
|
|
#endif /* HAVE_SYS_IOCTL_H */
|
|
|
|
#include "ntpd.h"
|
|
#include "ntp_io.h"
|
|
#include "ntp_unixtime.h"
|
|
#include "ntp_refclock.h"
|
|
#include "ntp_stdlib.h"
|
|
|
|
#ifdef REFCLOCK
|
|
|
|
#ifdef TTYCLK
|
|
# ifdef HAVE_SYS_CLKDEFS_H
|
|
# include <sys/clkdefs.h>
|
|
# endif
|
|
# ifdef HAVE_SYS_SIO_H
|
|
# include <sys/sio.h>
|
|
# endif
|
|
#endif /* TTYCLK */
|
|
|
|
#ifdef HAVE_PPSCLOCK_H
|
|
#include <sys/ppsclock.h>
|
|
#endif /* HAVE_PPSCLOCK_H */
|
|
|
|
#ifdef HAVE_PPSAPI
|
|
# ifdef HAVE_TIMEPPS_H
|
|
# include <timepps.h>
|
|
# else
|
|
# ifdef HAVE_SYS_TIMEPPS_H
|
|
# include <sys/timepps.h>
|
|
# endif
|
|
# endif
|
|
#endif /* HAVE_PPSAPI */
|
|
|
|
/*
|
|
* Reference clock support is provided here by maintaining the fiction
|
|
* that the clock is actually a peer. As no packets are exchanged with a
|
|
* reference clock, however, we replace the transmit, receive and packet
|
|
* procedures with separate code to simulate them. Routines
|
|
* refclock_transmit() and refclock_receive() maintain the peer
|
|
* variables in a state analogous to an actual peer and pass reference
|
|
* clock data on through the filters. Routines refclock_peer() and
|
|
* refclock_unpeer() are called to initialize and terminate reference
|
|
* clock associations. A set of utility routines is included to open
|
|
* serial devices, process sample data, edit input lines to extract
|
|
* embedded timestamps and to peform various debugging functions.
|
|
*
|
|
* The main interface used by these routines is the refclockproc
|
|
* structure, which contains for most drivers the decimal equivalants of
|
|
* the year, day, month, hour, second and millisecond/microsecond
|
|
* decoded from the ASCII timecode. Additional information includes the
|
|
* receive timestamp, exception report, statistics tallies, etc. In
|
|
* addition, there may be a driver-specific unit structure used for
|
|
* local control of the device.
|
|
*
|
|
* The support routines are passed a pointer to the peer structure,
|
|
* which is used for all peer-specific processing and contains a pointer
|
|
* to the refclockproc structure, which in turn containes a pointer to
|
|
* the unit structure, if used. The peer structure is identified by an
|
|
* interface address in the dotted quad form 127.127.t.u, where t is the
|
|
* clock type and u the unit. Some legacy drivers derive the
|
|
* refclockproc structure pointer from the table typeunit[type][unit].
|
|
* This interface is strongly discouraged and may be abandoned in
|
|
* future.
|
|
*
|
|
* The routines include support for the 1-pps signal provided by some
|
|
* radios and connected via a level converted described in the gadget
|
|
* directory. The signal is captured using a serial port and one of
|
|
* three STREAMS modules described in the refclock_atom.c file. For the
|
|
* highest precision, the signal is captured using the carrier-detect
|
|
* line of a serial port and either the ppsclock or ppsapi streams
|
|
* module or some devilish ioctl() folks keep slipping in as a patch. Be
|
|
* advised ALL support for other than the duly standardized ppsapi
|
|
* interface will eventually be withdrawn.
|
|
*/
|
|
#define MAXUNIT 4 /* max units */
|
|
|
|
#if defined(PPS) || defined(HAVE_PPSAPI)
|
|
int fdpps; /* pps file descriptor */
|
|
#endif /* PPS HAVE_PPSAPI */
|
|
|
|
#define FUDGEFAC .1 /* fudge correction factor */
|
|
|
|
/*
|
|
* Type/unit peer index. Used to find the peer structure for control and
|
|
* debugging. When all clock drivers have been converted to new style,
|
|
* this dissapears.
|
|
*/
|
|
static struct peer *typeunit[REFCLK_MAX + 1][MAXUNIT];
|
|
|
|
/*
|
|
* Forward declarations
|
|
*/
|
|
#ifdef QSORT_USES_VOID_P
|
|
static int refclock_cmpl_fp P((const void *, const void *));
|
|
#else
|
|
static int refclock_cmpl_fp P((const double *, const double *));
|
|
#endif /* QSORT_USES_VOID_P */
|
|
static int refclock_sample P((struct refclockproc *));
|
|
|
|
#ifdef HAVE_PPSAPI
|
|
extern int pps_assert; /* capture edge 1:assert, 0:clear */
|
|
extern int pps_hardpps; /* PPS kernel 1:on, 0:off */
|
|
#endif /* HAVE_PPSAPI */
|
|
|
|
/*
|
|
* refclock_report - note the occurance of an event
|
|
*
|
|
* This routine presently just remembers the report and logs it, but
|
|
* does nothing heroic for the trap handler. It tries to be a good
|
|
* citizen and bothers the system log only if things change.
|
|
*/
|
|
void
|
|
refclock_report(
|
|
struct peer *peer,
|
|
int code
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
|
|
if (!(pp = peer->procptr))
|
|
return;
|
|
if (code == CEVNT_BADREPLY)
|
|
pp->badformat++;
|
|
if (code == CEVNT_BADTIME)
|
|
pp->baddata++;
|
|
if (code == CEVNT_TIMEOUT)
|
|
pp->noreply++;
|
|
if (pp->currentstatus != code) {
|
|
pp->currentstatus = code;
|
|
pp->lastevent = code;
|
|
if (code == CEVNT_FAULT)
|
|
msyslog(LOG_ERR,
|
|
"clock %s event '%s' (0x%02x)",
|
|
refnumtoa(peer->srcadr.sin_addr.s_addr),
|
|
ceventstr(code), code);
|
|
else {
|
|
NLOG(NLOG_CLOCKEVENT)
|
|
msyslog(LOG_INFO,
|
|
"clock %s event '%s' (0x%02x)",
|
|
refnumtoa(peer->srcadr.sin_addr.s_addr),
|
|
ceventstr(code), code);
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("clock %s event '%s' (0x%02x)\n",
|
|
refnumtoa(peer->srcadr.sin_addr.s_addr),
|
|
ceventstr(code), code);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* init_refclock - initialize the reference clock drivers
|
|
*
|
|
* This routine calls each of the drivers in turn to initialize internal
|
|
* variables, if necessary. Most drivers have nothing to say at this
|
|
* point.
|
|
*/
|
|
void
|
|
init_refclock(void)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < (int)num_refclock_conf; i++) {
|
|
if (refclock_conf[i]->clock_init != noentry)
|
|
(refclock_conf[i]->clock_init)();
|
|
for (j = 0; j < MAXUNIT; j++)
|
|
typeunit[i][j] = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_newpeer - initialize and start a reference clock
|
|
*
|
|
* This routine allocates and initializes the interface structure which
|
|
* supports a reference clock in the form of an ordinary NTP peer. A
|
|
* driver-specific support routine completes the initialization, if
|
|
* used. Default peer variables which identify the clock and establish
|
|
* its reference ID and stratum are set here. It returns one if success
|
|
* and zero if the clock address is invalid or already running,
|
|
* insufficient resources are available or the driver declares a bum
|
|
* rap.
|
|
*/
|
|
int
|
|
refclock_newpeer(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
u_char clktype;
|
|
int unit;
|
|
|
|
/*
|
|
* Check for valid clock address. If already running, shut it
|
|
* down first.
|
|
*/
|
|
if (!ISREFCLOCKADR(&peer->srcadr)) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_newpeer: clock address %s invalid",
|
|
ntoa(&peer->srcadr));
|
|
return (0);
|
|
}
|
|
clktype = (u_char)REFCLOCKTYPE(&peer->srcadr);
|
|
unit = REFCLOCKUNIT(&peer->srcadr);
|
|
if (clktype >= num_refclock_conf || unit >= MAXUNIT ||
|
|
refclock_conf[clktype]->clock_start == noentry) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_newpeer: clock type %d invalid\n",
|
|
clktype);
|
|
return (0);
|
|
}
|
|
refclock_unpeer(peer);
|
|
|
|
/*
|
|
* Allocate and initialize interface structure
|
|
*/
|
|
if (!(pp = (struct refclockproc *)emalloc(sizeof(struct refclockproc))))
|
|
return (0);
|
|
memset((char *)pp, 0, sizeof(struct refclockproc));
|
|
typeunit[clktype][unit] = peer;
|
|
peer->procptr = pp;
|
|
|
|
/*
|
|
* Initialize structures
|
|
*/
|
|
peer->refclktype = clktype;
|
|
peer->refclkunit = unit;
|
|
peer->flags |= FLAG_REFCLOCK;
|
|
peer->stratum = STRATUM_REFCLOCK;
|
|
peer->refid = peer->srcadr.sin_addr.s_addr;
|
|
peer->maxpoll = peer->minpoll;
|
|
|
|
pp->type = clktype;
|
|
pp->timestarted = current_time;
|
|
|
|
/*
|
|
* If the interface has been set to any_interface, set it to the
|
|
* loopback address if we have one. This is so that peers which
|
|
* are unreachable are easy to see in the peer display.
|
|
*/
|
|
if (peer->dstadr == any_interface && loopback_interface != 0)
|
|
peer->dstadr = loopback_interface;
|
|
|
|
/*
|
|
* Set peer.pmode based on the hmode. For appearances only.
|
|
*/
|
|
switch (peer->hmode) {
|
|
|
|
case MODE_ACTIVE:
|
|
peer->pmode = MODE_PASSIVE;
|
|
break;
|
|
|
|
default:
|
|
peer->pmode = MODE_SERVER;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Do driver dependent initialization. The above defaults
|
|
* can be wiggled, then finish up for consistency.
|
|
*/
|
|
if (!((refclock_conf[clktype]->clock_start)(unit, peer))) {
|
|
free(pp);
|
|
return (0);
|
|
}
|
|
peer->hpoll = peer->minpoll;
|
|
peer->ppoll = peer->maxpoll;
|
|
if (peer->stratum <= 1)
|
|
peer->refid = pp->refid;
|
|
else
|
|
peer->refid = peer->srcadr.sin_addr.s_addr;
|
|
return (1);
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_unpeer - shut down a clock
|
|
*/
|
|
void
|
|
refclock_unpeer(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
u_char clktype;
|
|
int unit;
|
|
|
|
/*
|
|
* Wiggle the driver to release its resources, then give back
|
|
* the interface structure.
|
|
*/
|
|
if (!peer->procptr)
|
|
return;
|
|
clktype = peer->refclktype;
|
|
unit = peer->refclkunit;
|
|
if (refclock_conf[clktype]->clock_shutdown != noentry)
|
|
(refclock_conf[clktype]->clock_shutdown)(unit, peer);
|
|
free(peer->procptr);
|
|
peer->procptr = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_transmit - simulate the transmit procedure
|
|
*
|
|
* This routine implements the NTP transmit procedure for a reference
|
|
* clock. This provides a mechanism to call the driver at the NTP poll
|
|
* interval, as well as provides a reachability mechanism to detect a
|
|
* broken radio or other madness.
|
|
*/
|
|
void
|
|
refclock_transmit(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
u_char clktype;
|
|
int unit;
|
|
int hpoll;
|
|
u_long next;
|
|
|
|
clktype = peer->refclktype;
|
|
unit = peer->refclkunit;
|
|
peer->sent++;
|
|
|
|
/*
|
|
* This is a ripoff of the peer transmit routine, but
|
|
* specialized for reference clocks. We do a little less
|
|
* protocol here and call the driver-specific transmit routine.
|
|
*/
|
|
hpoll = peer->hpoll;
|
|
next = peer->outdate;
|
|
if (peer->burst == 0) {
|
|
u_char oreach;
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("refclock_transmit: at %ld %s\n",
|
|
current_time, ntoa(&(peer->srcadr)));
|
|
#endif
|
|
|
|
/*
|
|
* Update reachability and poll variables like the
|
|
* network code.
|
|
*/
|
|
oreach = peer->reach;
|
|
if (oreach & 0x01)
|
|
peer->valid++;
|
|
if (oreach & 0x80)
|
|
peer->valid--;
|
|
peer->reach <<= 1;
|
|
if (peer->reach == 0) {
|
|
if (oreach != 0) {
|
|
report_event(EVNT_UNREACH, peer);
|
|
peer->timereachable = current_time;
|
|
peer_clear(peer);
|
|
}
|
|
} else {
|
|
if ((oreach & 0x03) == 0) {
|
|
clock_filter(peer, 0., 0., MAXDISPERSE);
|
|
clock_select();
|
|
}
|
|
if (peer->valid <= 2) {
|
|
hpoll--;
|
|
} else if (peer->valid > NTP_SHIFT - 2)
|
|
hpoll++;
|
|
if (peer->flags & FLAG_BURST)
|
|
peer->burst = NSTAGE;
|
|
}
|
|
next = current_time;
|
|
}
|
|
get_systime(&peer->xmt);
|
|
if (refclock_conf[clktype]->clock_poll != noentry)
|
|
(refclock_conf[clktype]->clock_poll)(unit, peer);
|
|
peer->outdate = next;
|
|
poll_update(peer, hpoll);
|
|
if (peer->burst > 0)
|
|
peer->burst--;
|
|
poll_update(peer, hpoll);
|
|
}
|
|
|
|
|
|
/*
|
|
* Compare two doubles - used with qsort()
|
|
*/
|
|
#ifdef QSORT_USES_VOID_P
|
|
static int
|
|
refclock_cmpl_fp(
|
|
const void *p1,
|
|
const void *p2
|
|
)
|
|
{
|
|
const double *dp1 = (const double *)p1;
|
|
const double *dp2 = (const double *)p2;
|
|
|
|
if (*dp1 < *dp2)
|
|
return (-1);
|
|
if (*dp1 > *dp2)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
#else
|
|
static int
|
|
refclock_cmpl_fp(
|
|
const double *dp1,
|
|
const double *dp2
|
|
)
|
|
{
|
|
if (*dp1 < *dp2)
|
|
return (-1);
|
|
if (*dp1 > *dp2)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
#endif /* QSORT_USES_VOID_P */
|
|
|
|
|
|
/*
|
|
* refclock_process_offset - update median filter
|
|
*
|
|
* This routine uses the given offset and timestamps to construct a new entry in the median filter circular buffer. Samples that overflow the filter are quietly discarded.
|
|
*/
|
|
void
|
|
refclock_process_offset(
|
|
struct refclockproc *pp,
|
|
l_fp offset,
|
|
l_fp lastrec,
|
|
double fudge
|
|
)
|
|
{
|
|
double doffset;
|
|
|
|
pp->lastref = offset;
|
|
pp->lastrec = lastrec;
|
|
pp->variance = 0;
|
|
L_SUB(&offset, &lastrec);
|
|
LFPTOD(&offset, doffset);
|
|
SAMPLE(doffset + fudge);
|
|
}
|
|
|
|
/*
|
|
* refclock_process - process a sample from the clock
|
|
*
|
|
* This routine converts the timecode in the form days, hours, minutes,
|
|
* seconds and milliseconds/microseconds to internal timestamp format,
|
|
* then constructs a new entry in the median filter circular buffer.
|
|
* Return success (1) if the data are correct and consistent with the
|
|
* converntional calendar.
|
|
*/
|
|
int
|
|
refclock_process(
|
|
struct refclockproc *pp
|
|
)
|
|
{
|
|
l_fp offset;
|
|
|
|
/*
|
|
* Compute the timecode timestamp from the days, hours, minutes,
|
|
* seconds and milliseconds/microseconds of the timecode. Use
|
|
* clocktime() for the aggregate seconds and the msec/usec for
|
|
* the fraction, when present. Note that this code relies on the
|
|
* filesystem time for the years and does not use the years of
|
|
* the timecode.
|
|
*/
|
|
if (!clocktime(pp->day, pp->hour, pp->minute, pp->second, GMT,
|
|
pp->lastrec.l_ui, &pp->yearstart, &offset.l_ui))
|
|
return (0);
|
|
if (pp->usec) {
|
|
TVUTOTSF(pp->usec, offset.l_uf);
|
|
} else {
|
|
MSUTOTSF(pp->msec, offset.l_uf);
|
|
}
|
|
refclock_process_offset(pp, offset, pp->lastrec,
|
|
pp->fudgetime1);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* refclock_sample - process a pile of samples from the clock
|
|
*
|
|
* This routine implements a recursive median filter to suppress spikes
|
|
* in the data, as well as determine a performance statistic. It
|
|
* calculates the mean offset and mean-square variance. A time
|
|
* adjustment fudgetime1 can be added to the final offset to compensate
|
|
* for various systematic errors. The routine returns the number of
|
|
* samples processed, which could be 0.
|
|
*/
|
|
static int
|
|
refclock_sample(
|
|
struct refclockproc *pp
|
|
)
|
|
{
|
|
int i, j, k, n;
|
|
double offset, disp;
|
|
double off[MAXSTAGE];
|
|
|
|
/*
|
|
* Copy the raw offsets and sort into ascending order. Don't do
|
|
* anything if the buffer is empty.
|
|
*/
|
|
if (pp->codeproc == pp->coderecv)
|
|
return (0);
|
|
n = 0;
|
|
while (pp->codeproc != pp->coderecv)
|
|
off[n++] = pp->filter[pp->codeproc++ % MAXSTAGE];
|
|
if (n > 1)
|
|
qsort((char *)off, n, sizeof(double), refclock_cmpl_fp);
|
|
|
|
/*
|
|
* Reject the furthest from the median of the samples until
|
|
* approximately 60 percent of the samples remain.
|
|
*/
|
|
i = 0; j = n;
|
|
k = n - (n * 2) / NSTAGE;
|
|
while ((j - i) > k) {
|
|
offset = off[(j + i) / 2];
|
|
if (off[j - 1] - offset < offset - off[i])
|
|
i++; /* reject low end */
|
|
else
|
|
j--; /* reject high end */
|
|
}
|
|
|
|
/*
|
|
* Determine the offset and variance.
|
|
*/
|
|
offset = disp = 0;
|
|
for (; i < j; i++) {
|
|
offset += off[i];
|
|
disp += SQUARE(off[i]);
|
|
}
|
|
offset /= k;
|
|
pp->offset = offset;
|
|
pp->variance += disp / k - SQUARE(offset);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf(
|
|
"refclock_sample: n %d offset %.6f disp %.6f std %.6f\n",
|
|
n, pp->offset, pp->disp, SQRT(pp->variance));
|
|
#endif
|
|
return (n);
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_receive - simulate the receive and packet procedures
|
|
*
|
|
* This routine simulates the NTP receive and packet procedures for a
|
|
* reference clock. This provides a mechanism in which the ordinary NTP
|
|
* filter, selection and combining algorithms can be used to suppress
|
|
* misbehaving radios and to mitigate between them when more than one is
|
|
* available for backup.
|
|
*/
|
|
void
|
|
refclock_receive(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
struct refclockproc *pp;
|
|
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("refclock_receive: at %lu %s\n",
|
|
current_time, ntoa(&peer->srcadr));
|
|
#endif
|
|
|
|
/*
|
|
* Do a little sanity dance and update the peer structure. Groom
|
|
* the median filter samples and give the data to the clock
|
|
* filter.
|
|
*/
|
|
peer->received++;
|
|
pp = peer->procptr;
|
|
peer->processed++;
|
|
peer->timereceived = current_time;
|
|
peer->leap = pp->leap;
|
|
if (peer->leap == LEAP_NOTINSYNC) {
|
|
refclock_report(peer, CEVNT_FAULT);
|
|
return;
|
|
}
|
|
if (peer->reach == 0)
|
|
report_event(EVNT_REACH, peer);
|
|
peer->reach |= 1;
|
|
peer->reftime = peer->org = pp->lastrec;
|
|
peer->rootdispersion = pp->disp + SQRT(pp->variance);
|
|
get_systime(&peer->rec);
|
|
if (!refclock_sample(pp))
|
|
return;
|
|
clock_filter(peer, pp->offset, 0., 0.);
|
|
clock_select();
|
|
record_peer_stats(&peer->srcadr, ctlpeerstatus(peer),
|
|
peer->offset, peer->delay, CLOCK_PHI * (current_time -
|
|
peer->epoch), SQRT(peer->variance));
|
|
if (pps_control && pp->sloppyclockflag & CLK_FLAG1)
|
|
pp->fudgetime1 -= pp->offset * FUDGEFAC;
|
|
}
|
|
|
|
/*
|
|
* refclock_gtlin - groom next input line and extract timestamp
|
|
*
|
|
* This routine processes the timecode received from the clock and
|
|
* removes the parity bit and control characters. If a timestamp is
|
|
* present in the timecode, as produced by the tty_clk STREAMS module,
|
|
* it returns that as the timestamp; otherwise, it returns the buffer
|
|
* timestamp. The routine return code is the number of characters in
|
|
* the line.
|
|
*/
|
|
int
|
|
refclock_gtlin(
|
|
struct recvbuf *rbufp, /* receive buffer pointer */
|
|
char *lineptr, /* current line pointer */
|
|
int bmax, /* remaining characters in line */
|
|
l_fp *tsptr /* pointer to timestamp returned */
|
|
)
|
|
{
|
|
char *dpt, *dpend, *dp;
|
|
int i;
|
|
l_fp trtmp, tstmp;
|
|
char c;
|
|
#ifdef TIOCDCDTIMESTAMP
|
|
struct timeval dcd_time;
|
|
#endif /* TIOCDCDTIMESTAMP */
|
|
#ifdef HAVE_PPSAPI
|
|
pps_info_t pi;
|
|
struct timespec timeout, *tsp;
|
|
double a;
|
|
#endif /* HAVE_PPSAPI */
|
|
|
|
/*
|
|
* Check for the presence of a timestamp left by the tty_clock
|
|
* module and, if present, use that instead of the buffer
|
|
* timestamp captured by the I/O routines. We recognize a
|
|
* timestamp by noting its value is earlier than the buffer
|
|
* timestamp, but not more than one second earlier.
|
|
*/
|
|
dpt = (char *)&rbufp->recv_space;
|
|
dpend = dpt + rbufp->recv_length;
|
|
trtmp = rbufp->recv_time;
|
|
|
|
#ifdef HAVE_PPSAPI
|
|
timeout.tv_sec = 0;
|
|
timeout.tv_nsec = 0;
|
|
if ((rbufp->fd == fdpps) &&
|
|
(time_pps_fetch(fdpps, PPS_TSFMT_TSPEC, &pi, &timeout) >= 0)) {
|
|
if(pps_assert)
|
|
tsp = &pi.assert_timestamp;
|
|
else
|
|
tsp = &pi.clear_timestamp;
|
|
a = tsp->tv_nsec;
|
|
a /= 1e9;
|
|
tstmp.l_uf = a * 4294967296.0;
|
|
tstmp.l_ui = tsp->tv_sec;
|
|
tstmp.l_ui += JAN_1970;
|
|
L_SUB(&trtmp, &tstmp);
|
|
if (trtmp.l_ui == 0) {
|
|
#ifdef DEBUG
|
|
if (debug > 1) {
|
|
printf(
|
|
"refclock_gtlin: fd %d time_pps_fetch %s",
|
|
fdpps, lfptoa(&tstmp, 6));
|
|
printf(" sigio %s\n", lfptoa(&trtmp, 6));
|
|
}
|
|
#endif
|
|
trtmp = tstmp;
|
|
goto gotit;
|
|
} else
|
|
trtmp = rbufp->recv_time;
|
|
}
|
|
#endif /* HAVE_PPSAPI */
|
|
#ifdef TIOCDCDTIMESTAMP
|
|
if(ioctl(rbufp->fd, TIOCDCDTIMESTAMP, &dcd_time) != -1) {
|
|
TVTOTS(&dcd_time, &tstmp);
|
|
tstmp.l_ui += JAN_1970;
|
|
L_SUB(&trtmp, &tstmp);
|
|
if (trtmp.l_ui == 0) {
|
|
#ifdef DEBUG
|
|
if (debug > 1) {
|
|
printf(
|
|
"refclock_gtlin: fd %d DCDTIMESTAMP %s",
|
|
rbufp->fd, lfptoa(&tstmp, 6));
|
|
printf(" sigio %s\n", lfptoa(&trtmp, 6));
|
|
}
|
|
#endif
|
|
trtmp = tstmp;
|
|
goto gotit;
|
|
} else
|
|
trtmp = rbufp->recv_time;
|
|
}
|
|
else
|
|
/* XXX fallback to old method if kernel refuses TIOCDCDTIMESTAMP */
|
|
#endif /* TIOCDCDTIMESTAMP */
|
|
if (dpend >= dpt + 8) {
|
|
if (buftvtots(dpend - 8, &tstmp)) {
|
|
L_SUB(&trtmp, &tstmp);
|
|
if (trtmp.l_ui == 0) {
|
|
#ifdef DEBUG
|
|
if (debug > 1) {
|
|
printf(
|
|
"refclock_gtlin: fd %d ldisc %s",
|
|
rbufp->fd, lfptoa(&trtmp, 6));
|
|
get_systime(&trtmp);
|
|
L_SUB(&trtmp, &tstmp);
|
|
printf(" sigio %s\n", lfptoa(&trtmp, 6));
|
|
}
|
|
#endif
|
|
dpend -= 8;
|
|
trtmp = tstmp;
|
|
} else
|
|
trtmp = rbufp->recv_time;
|
|
}
|
|
}
|
|
|
|
#if defined(HAVE_PPSAPI) || defined(TIOCDCDTIMESTAMP)
|
|
gotit:
|
|
#endif
|
|
/*
|
|
* Edit timecode to remove control chars. Don't monkey with the
|
|
* line buffer if the input buffer contains no ASCII printing
|
|
* characters.
|
|
*/
|
|
if (dpend - dpt > bmax - 1)
|
|
dpend = dpt + bmax - 1;
|
|
for (dp = lineptr; dpt < dpend; dpt++) {
|
|
c = *dpt & 0x7f;
|
|
if (c >= ' ')
|
|
*dp++ = c;
|
|
}
|
|
i = dp - lineptr;
|
|
if (i > 0)
|
|
*dp = '\0';
|
|
#ifdef DEBUG
|
|
if (debug > 1 && i > 0)
|
|
printf("refclock_gtlin: fd %d time %s timecode %d %s\n",
|
|
rbufp->fd, ulfptoa(&trtmp, 6), i, lineptr);
|
|
#endif
|
|
*tsptr = trtmp;
|
|
return (i);
|
|
}
|
|
|
|
/*
|
|
* The following code does not apply to WINNT & VMS ...
|
|
*/
|
|
#if !defined SYS_VXWORKS && !defined SYS_WINNT
|
|
#if defined(HAVE_TERMIOS) || defined(HAVE_SYSV_TTYS) || defined(HAVE_BSD_TTYS)
|
|
|
|
/*
|
|
* refclock_open - open serial port for reference clock
|
|
*
|
|
* This routine opens a serial port for I/O and sets default options. It
|
|
* returns the file descriptor if success and zero if failure.
|
|
*/
|
|
int
|
|
refclock_open(
|
|
char *dev, /* device name pointer */
|
|
int speed, /* serial port speed (code) */
|
|
int lflags /* line discipline flags */
|
|
)
|
|
{
|
|
int fd, i;
|
|
int flags;
|
|
#ifdef HAVE_TERMIOS
|
|
struct termios ttyb, *ttyp;
|
|
#endif /* HAVE_TERMIOS */
|
|
#ifdef HAVE_SYSV_TTYS
|
|
struct termio ttyb, *ttyp;
|
|
#endif /* HAVE_SYSV_TTYS */
|
|
#ifdef HAVE_BSD_TTYS
|
|
struct sgttyb ttyb, *ttyp;
|
|
#endif /* HAVE_BSD_TTYS */
|
|
#ifdef TIOCMGET
|
|
u_long ltemp;
|
|
#endif /* TIOCMGET */
|
|
|
|
/*
|
|
* Open serial port and set default options
|
|
*/
|
|
flags = lflags;
|
|
if (strcmp(dev, pps_device) == 0)
|
|
flags |= LDISC_PPS;
|
|
#ifdef O_NONBLOCK
|
|
fd = open(dev, O_RDWR | O_NONBLOCK, 0777);
|
|
#else
|
|
fd = open(dev, O_RDWR, 0777);
|
|
#endif /* O_NONBLOCK */
|
|
if (fd == -1) {
|
|
msyslog(LOG_ERR, "refclock_open: %s: %m", dev);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The following sections initialize the serial line port in
|
|
* canonical (line-oriented) mode and set the specified line
|
|
* speed, 8 bits and no parity. The modem control, break, erase
|
|
* and kill functions are normally disabled. There is a
|
|
* different section for each terminal interface, as selected at
|
|
* compile time.
|
|
*/
|
|
ttyp = &ttyb;
|
|
|
|
#ifdef HAVE_TERMIOS
|
|
/*
|
|
* POSIX serial line parameters (termios interface)
|
|
*/
|
|
if (tcgetattr(fd, ttyp) < 0) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_open: fd %d tcgetattr: %m", fd);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set canonical mode and local connection; set specified speed,
|
|
* 8 bits and no parity; map CR to NL; ignore break.
|
|
*/
|
|
ttyp->c_iflag = IGNBRK | IGNPAR | ICRNL;
|
|
ttyp->c_oflag = 0;
|
|
ttyp->c_cflag = CS8 | CLOCAL | CREAD;
|
|
(void)cfsetispeed(&ttyb, (u_int)speed);
|
|
(void)cfsetospeed(&ttyb, (u_int)speed);
|
|
ttyp->c_lflag = ICANON;
|
|
for (i = 0; i < NCCS; ++i)
|
|
{
|
|
ttyp->c_cc[i] = '\0';
|
|
}
|
|
|
|
/*
|
|
* Some special cases
|
|
*/
|
|
if (flags & LDISC_RAW) {
|
|
ttyp->c_iflag = 0;
|
|
ttyp->c_lflag = 0;
|
|
ttyp->c_cc[VMIN] = 1;
|
|
}
|
|
#if defined(TIOCMGET) && !defined(SCO5_CLOCK)
|
|
/*
|
|
* If we have modem control, check to see if modem leads are
|
|
* active; if so, set remote connection. This is necessary for
|
|
* the kernel pps mods to work.
|
|
*/
|
|
ltemp = 0;
|
|
if (ioctl(fd, TIOCMGET, (char *)<emp) < 0)
|
|
msyslog(LOG_ERR,
|
|
"refclock_open: fd %d TIOCMGET failed: %m", fd);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("refclock_open: fd %d modem status 0x%lx\n",
|
|
fd, ltemp);
|
|
#endif
|
|
if (ltemp & TIOCM_DSR)
|
|
ttyp->c_cflag &= ~CLOCAL;
|
|
#endif /* TIOCMGET */
|
|
if (tcsetattr(fd, TCSANOW, ttyp) < 0) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_open: fd %d TCSANOW failed: %m", fd);
|
|
return (0);
|
|
}
|
|
if (tcflush(fd, TCIOFLUSH) < 0) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_open: fd %d TCIOFLUSH failed: %m", fd);
|
|
return (0);
|
|
}
|
|
#endif /* HAVE_TERMIOS */
|
|
|
|
#ifdef HAVE_SYSV_TTYS
|
|
|
|
/*
|
|
* System V serial line parameters (termio interface)
|
|
*
|
|
*/
|
|
if (ioctl(fd, TCGETA, ttyp) < 0) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_open: fd %d TCGETA failed: %m", fd);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set canonical mode and local connection; set specified speed,
|
|
* 8 bits and no parity; map CR to NL; ignore break.
|
|
*/
|
|
ttyp->c_iflag = IGNBRK | IGNPAR | ICRNL;
|
|
ttyp->c_oflag = 0;
|
|
ttyp->c_cflag = speed | CS8 | CLOCAL | CREAD;
|
|
ttyp->c_lflag = ICANON;
|
|
ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0';
|
|
|
|
/*
|
|
* Some special cases
|
|
*/
|
|
if (flags & LDISC_RAW) {
|
|
ttyp->c_iflag = 0;
|
|
ttyp->c_lflag = 0;
|
|
}
|
|
#ifdef TIOCMGET
|
|
/*
|
|
* If we have modem control, check to see if modem leads are
|
|
* active; if so, set remote connection. This is necessary for
|
|
* the kernel pps mods to work.
|
|
*/
|
|
ltemp = 0;
|
|
if (ioctl(fd, TIOCMGET, (char *)<emp) < 0)
|
|
msyslog(LOG_ERR,
|
|
"refclock_open: fd %d TIOCMGET failed: %m", fd);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("refclock_open: fd %d modem status %lx\n",
|
|
fd, ltemp);
|
|
#endif
|
|
if (ltemp & TIOCM_DSR)
|
|
ttyp->c_cflag &= ~CLOCAL;
|
|
#endif /* TIOCMGET */
|
|
if (ioctl(fd, TCSETA, ttyp) < 0) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_open: fd %d TCSETA failed: %m", fd);
|
|
return (0);
|
|
}
|
|
#endif /* HAVE_SYSV_TTYS */
|
|
|
|
#ifdef HAVE_BSD_TTYS
|
|
|
|
/*
|
|
* 4.3bsd serial line parameters (sgttyb interface)
|
|
*/
|
|
if (ioctl(fd, TIOCGETP, (char *)ttyp) < 0) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_open: fd %d TIOCGETP %m", fd);
|
|
return (0);
|
|
}
|
|
ttyp->sg_ispeed = ttyp->sg_ospeed = speed;
|
|
ttyp->sg_flags = EVENP | ODDP | CRMOD;
|
|
if (ioctl(fd, TIOCSETP, (char *)ttyp) < 0) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_open: TIOCSETP failed: %m");
|
|
return (0);
|
|
}
|
|
#endif /* HAVE_BSD_TTYS */
|
|
if (!refclock_ioctl(fd, flags)) {
|
|
(void)close(fd);
|
|
msyslog(LOG_ERR,
|
|
"refclock_open: fd %d ioctl failed: %m", fd);
|
|
return (0);
|
|
}
|
|
return (fd);
|
|
}
|
|
#endif /* HAVE_TERMIOS || HAVE_SYSV_TTYS || HAVE_BSD_TTYS */
|
|
#endif /* SYS_VXWORKS SYS_WINNT */
|
|
|
|
/*
|
|
* refclock_ioctl - set serial port control functions
|
|
*
|
|
* This routine attempts to hide the internal, system-specific details
|
|
* of serial ports. It can handle POSIX (termios), SYSV (termio) and BSD
|
|
* (sgtty) interfaces with varying degrees of success. The routine sets
|
|
* up optional features such as tty_clk, ppsclock and ppsapi, as well as
|
|
* their many other variants. The routine returns 1 if success and 0 if
|
|
* failure.
|
|
*/
|
|
int
|
|
refclock_ioctl(
|
|
int fd, /* file descriptor */
|
|
int flags /* line discipline flags */
|
|
)
|
|
{
|
|
/* simply return 1 if no UNIX line discipline is supported */
|
|
#if !defined SYS_VXWORKS && !defined SYS_WINNT
|
|
#if defined(HAVE_TERMIOS) || defined(HAVE_SYSV_TTYS) || defined(HAVE_BSD_TTYS)
|
|
|
|
#ifdef TTYCLK
|
|
#ifdef HAVE_TERMIOS
|
|
struct termios ttyb, *ttyp;
|
|
#endif /* HAVE_TERMIOS */
|
|
#ifdef HAVE_SYSV_TTYS
|
|
struct termio ttyb, *ttyp;
|
|
#endif /* HAVE_SYSV_TTYS */
|
|
#ifdef HAVE_BSD_TTYS
|
|
struct sgttyb ttyb, *ttyp;
|
|
#endif /* HAVE_BSD_TTYS */
|
|
#endif /* TTYCLK */
|
|
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("refclock_ioctl: fd %d flags 0x%x\n", fd, flags);
|
|
#endif
|
|
|
|
/*
|
|
* The following sections select optional features, such as
|
|
* modem control, PPS capture and so forth. Some require
|
|
* specific operating system support in the form of STREAMS
|
|
* modules, which can be loaded and unloaded at run time without
|
|
* rebooting the kernel. The STREAMS modules require System
|
|
* V STREAMS support. The checking frenzy is attenuated here,
|
|
* since the device is already open.
|
|
*
|
|
* Note that the tty_clk and ppsclock modules are optional; if
|
|
* configured and unavailable, the dang thing still works, but
|
|
* the accuracy improvement using them will not be available.
|
|
* The only known implmentations of these moldules are specific
|
|
* to SunOS 4.x. Use the ppsclock module ONLY with Sun baseboard
|
|
* ttya or ttyb. Using it with the SPIF multipexor crashes the
|
|
* kernel.
|
|
*
|
|
* The preferred way to capture PPS timestamps is using the
|
|
* ppsapi interface, which is machine independent. The SunOS 4.x
|
|
* and Digital Unix 4.x interfaces use STREAMS modules and
|
|
* support both the ppsapi specification and ppsclock
|
|
* functionality, but other systems may vary widely.
|
|
*/
|
|
if (flags == 0)
|
|
return (1);
|
|
#if !(defined(HAVE_TERMIOS) || defined(HAVE_BSD_TTYS))
|
|
if (flags & (LDISC_CLK | LDISC_PPS | LDISC_ACTS)) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_ioctl: unsupported terminal interface");
|
|
return (0);
|
|
}
|
|
#endif /* HAVE_TERMIOS HAVE_BSD_TTYS */
|
|
#ifdef TTYCLK
|
|
ttyp = &ttyb;
|
|
#endif /* TTYCLK */
|
|
|
|
/*
|
|
* The following features may or may not require System V
|
|
* STREAMS support, depending on the particular implementation.
|
|
*/
|
|
#if defined(TTYCLK)
|
|
/*
|
|
* The TTYCLK option provides timestamping at the driver level.
|
|
* It requires the tty_clk streams module and System V STREAMS
|
|
* support. If not available, don't complain.
|
|
*/
|
|
if (flags & (LDISC_CLK | LDISC_CLKPPS | LDISC_ACTS)) {
|
|
int rval = 0;
|
|
|
|
if (ioctl(fd, I_PUSH, "clk") < 0) {
|
|
msyslog(LOG_NOTICE,
|
|
"refclock_ioctl: I_PUSH clk failed: %m");
|
|
} else {
|
|
char *str;
|
|
|
|
if (flags & LDISC_CLKPPS)
|
|
str = "\377";
|
|
else if (flags & LDISC_ACTS)
|
|
str = "*";
|
|
else
|
|
str = "\n";
|
|
#ifdef CLK_SETSTR
|
|
if ((rval = ioctl(fd, CLK_SETSTR, str)) < 0)
|
|
msyslog(LOG_ERR,
|
|
"refclock_ioctl: CLK_SETSTR failed: %m");
|
|
if (debug)
|
|
printf("refclock_ioctl: fd %d CLK_SETSTR %d str %s\n",
|
|
fd, rval, str);
|
|
#endif
|
|
}
|
|
}
|
|
#endif /* TTYCLK */
|
|
|
|
#if defined(PPS) && !defined(HAVE_PPSAPI)
|
|
/*
|
|
* The PPS option provides timestamping at the driver level.
|
|
* It uses a 1-pps signal and level converter (gadget box) and
|
|
* requires the ppsclock streams module and System V STREAMS
|
|
* support. This option has been superseded by the ppsapi
|
|
* option and may be withdrawn in future.
|
|
*/
|
|
if (flags & LDISC_PPS) {
|
|
int rval = 0;
|
|
#ifdef HAVE_TIOCSPPS /* Solaris */
|
|
int one = 1;
|
|
#endif /* HAVE_TIOCSPPS */
|
|
|
|
if (fdpps > 0) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_ioctl: PPS already configured");
|
|
return (0);
|
|
}
|
|
#ifdef HAVE_TIOCSPPS /* Solaris */
|
|
if (ioctl(fd, TIOCSPPS, &one) < 0) {
|
|
msyslog(LOG_NOTICE,
|
|
"refclock_ioctl: TIOCSPPS failed: %m");
|
|
return (0);
|
|
}
|
|
if (debug)
|
|
printf("refclock_ioctl: fd %d TIOCSPPS %d\n",
|
|
fd, rval);
|
|
#else
|
|
if (ioctl(fd, I_PUSH, "ppsclock") < 0) {
|
|
msyslog(LOG_NOTICE,
|
|
"refclock_ioctl: I_PUSH ppsclock failed: %m");
|
|
return (0);
|
|
}
|
|
if (debug)
|
|
printf("refclock_ioctl: fd %d ppsclock %d\n",
|
|
fd, rval);
|
|
#endif /* not HAVE_TIOCSPPS */
|
|
fdpps = fd;
|
|
}
|
|
#endif /* PPS HAVE_PPSAPI */
|
|
|
|
#ifdef HAVE_PPSAPI
|
|
/*
|
|
* The PPSAPI option provides timestamping at the driver level.
|
|
* It uses a 1-pps signal and level converter (gadget box) and
|
|
* requires ppsapi compiled into the kernel on non STREAMS
|
|
* systems. This is the preferred way to capture PPS timestamps
|
|
* and is expected to become an IETF cross-platform standard.
|
|
*/
|
|
if (flags & (LDISC_PPS | LDISC_CLKPPS)) {
|
|
pps_params_t pp;
|
|
int mode, temp;
|
|
pps_handle_t handle;
|
|
|
|
memset((char *)&pp, 0, sizeof(pp));
|
|
if (fdpps > 0) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_ioctl: ppsapi already configured");
|
|
return (0);
|
|
}
|
|
if (time_pps_create(fd, &handle) < 0) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_ioctl: time_pps_create failed: %m");
|
|
return (0);
|
|
}
|
|
if (time_pps_getcap(handle, &mode) < 0) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_ioctl: time_pps_getcap failed: %m");
|
|
return (0);
|
|
}
|
|
pp.mode = mode & PPS_CAPTUREBOTH;
|
|
if (time_pps_setparams(handle, &pp) < 0) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_ioctl: time_pps_setparams failed: %m");
|
|
return (0);
|
|
}
|
|
if (!pps_hardpps)
|
|
temp = 0;
|
|
else if (pps_assert)
|
|
temp = mode & PPS_CAPTUREASSERT;
|
|
else
|
|
temp = mode & PPS_CAPTURECLEAR;
|
|
if (time_pps_kcbind(handle, PPS_KC_HARDPPS, temp,
|
|
PPS_TSFMT_TSPEC) < 0) {
|
|
msyslog(LOG_ERR,
|
|
"refclock_ioctl: time_pps_kcbind failed: %m");
|
|
return (0);
|
|
}
|
|
(void)time_pps_getparams(handle, &pp);
|
|
fdpps = (int)handle;
|
|
if (debug)
|
|
printf(
|
|
"refclock_ioctl: fd %d ppsapi vers %d mode 0x%x cap 0x%x\n",
|
|
fdpps, pp.api_version, pp.mode, mode);
|
|
}
|
|
#endif /* HAVE_PPSAPI */
|
|
#endif /* HAVE_TERMIOS || HAVE_SYSV_TTYS || HAVE_BSD_TTYS */
|
|
#endif /* SYS_VXWORKS SYS_WINNT */
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* refclock_control - set and/or return clock values
|
|
*
|
|
* This routine is used mainly for debugging. It returns designated
|
|
* values from the interface structure that can be displayed using
|
|
* ntpdc and the clockstat command. It can also be used to initialize
|
|
* configuration variables, such as fudgetimes, fudgevalues, reference
|
|
* ID and stratum.
|
|
*/
|
|
void
|
|
refclock_control(
|
|
struct sockaddr_in *srcadr,
|
|
struct refclockstat *in,
|
|
struct refclockstat *out
|
|
)
|
|
{
|
|
struct peer *peer;
|
|
struct refclockproc *pp;
|
|
u_char clktype;
|
|
int unit;
|
|
|
|
/*
|
|
* Check for valid address and running peer
|
|
*/
|
|
if (!ISREFCLOCKADR(srcadr))
|
|
return;
|
|
clktype = (u_char)REFCLOCKTYPE(srcadr);
|
|
unit = REFCLOCKUNIT(srcadr);
|
|
if (clktype >= num_refclock_conf || unit >= MAXUNIT)
|
|
return;
|
|
if (!(peer = typeunit[clktype][unit]))
|
|
return;
|
|
pp = peer->procptr;
|
|
|
|
/*
|
|
* Initialize requested data
|
|
*/
|
|
if (in != 0) {
|
|
if (in->haveflags & CLK_HAVETIME1)
|
|
pp->fudgetime1 = in->fudgetime1;
|
|
if (in->haveflags & CLK_HAVETIME2)
|
|
pp->fudgetime2 = in->fudgetime2;
|
|
if (in->haveflags & CLK_HAVEVAL1)
|
|
peer->stratum = (u_char) in->fudgeval1;
|
|
if (in->haveflags & CLK_HAVEVAL2)
|
|
pp->refid = in->fudgeval2;
|
|
if (peer->stratum <= 1)
|
|
peer->refid = pp->refid;
|
|
else
|
|
peer->refid = peer->srcadr.sin_addr.s_addr;
|
|
if (in->haveflags & CLK_HAVEFLAG1) {
|
|
pp->sloppyclockflag &= ~CLK_FLAG1;
|
|
pp->sloppyclockflag |= in->flags & CLK_FLAG1;
|
|
}
|
|
if (in->haveflags & CLK_HAVEFLAG2) {
|
|
pp->sloppyclockflag &= ~CLK_FLAG2;
|
|
pp->sloppyclockflag |= in->flags & CLK_FLAG2;
|
|
}
|
|
if (in->haveflags & CLK_HAVEFLAG3) {
|
|
pp->sloppyclockflag &= ~CLK_FLAG3;
|
|
pp->sloppyclockflag |= in->flags & CLK_FLAG3;
|
|
}
|
|
if (in->haveflags & CLK_HAVEFLAG4) {
|
|
pp->sloppyclockflag &= ~CLK_FLAG4;
|
|
pp->sloppyclockflag |= in->flags & CLK_FLAG4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Readback requested data
|
|
*/
|
|
if (out != 0) {
|
|
out->haveflags = CLK_HAVETIME1 | CLK_HAVEVAL1 |
|
|
CLK_HAVEVAL2 | CLK_HAVEFLAG4;
|
|
out->fudgetime1 = pp->fudgetime1;
|
|
out->fudgetime2 = pp->fudgetime2;
|
|
out->fudgeval1 = peer->stratum;
|
|
out->fudgeval2 = pp->refid;
|
|
out->flags = (u_char) pp->sloppyclockflag;
|
|
|
|
out->timereset = current_time - pp->timestarted;
|
|
out->polls = pp->polls;
|
|
out->noresponse = pp->noreply;
|
|
out->badformat = pp->badformat;
|
|
out->baddata = pp->baddata;
|
|
|
|
out->lastevent = pp->lastevent;
|
|
out->currentstatus = pp->currentstatus;
|
|
out->type = pp->type;
|
|
out->clockdesc = pp->clockdesc;
|
|
out->lencode = pp->lencode;
|
|
out->p_lastcode = pp->a_lastcode;
|
|
}
|
|
|
|
/*
|
|
* Give the stuff to the clock
|
|
*/
|
|
if (refclock_conf[clktype]->clock_control != noentry)
|
|
(refclock_conf[clktype]->clock_control)(unit, in, out, peer);
|
|
}
|
|
|
|
|
|
/*
|
|
* refclock_buginfo - return debugging info
|
|
*
|
|
* This routine is used mainly for debugging. It returns designated
|
|
* values from the interface structure that can be displayed using
|
|
* ntpdc and the clkbug command.
|
|
*/
|
|
void
|
|
refclock_buginfo(
|
|
struct sockaddr_in *srcadr, /* clock address */
|
|
struct refclockbug *bug /* output structure */
|
|
)
|
|
{
|
|
struct peer *peer;
|
|
struct refclockproc *pp;
|
|
u_char clktype;
|
|
int unit;
|
|
int i;
|
|
|
|
/*
|
|
* Check for valid address and peer structure
|
|
*/
|
|
if (!ISREFCLOCKADR(srcadr))
|
|
return;
|
|
clktype = (u_char) REFCLOCKTYPE(srcadr);
|
|
unit = REFCLOCKUNIT(srcadr);
|
|
if (clktype >= num_refclock_conf || unit >= MAXUNIT)
|
|
return;
|
|
if (!(peer = typeunit[clktype][unit]))
|
|
return;
|
|
pp = peer->procptr;
|
|
|
|
/*
|
|
* Copy structure values
|
|
*/
|
|
bug->nvalues = 8;
|
|
bug->svalues = 0x0000003f;
|
|
bug->values[0] = pp->year;
|
|
bug->values[1] = pp->day;
|
|
bug->values[2] = pp->hour;
|
|
bug->values[3] = pp->minute;
|
|
bug->values[4] = pp->second;
|
|
bug->values[5] = pp->msec;
|
|
bug->values[6] = pp->yearstart;
|
|
bug->values[7] = pp->coderecv;
|
|
bug->stimes = 0xfffffffc;
|
|
bug->times[0] = pp->lastref;
|
|
bug->times[1] = pp->lastrec;
|
|
for (i = 2; i < (int)bug->ntimes; i++)
|
|
DTOLFP(pp->filter[i - 2], &bug->times[i]);
|
|
|
|
/*
|
|
* Give the stuff to the clock
|
|
*/
|
|
if (refclock_conf[clktype]->clock_buginfo != noentry)
|
|
(refclock_conf[clktype]->clock_buginfo)(unit, bug, peer);
|
|
}
|
|
|
|
#endif /* REFCLOCK */
|