NetBSD/sys/dev/ic/adw.c
2003-09-18 01:33:58 +00:00

1253 lines
32 KiB
C

/* $NetBSD: adw.c,v 1.41 2003/09/18 01:33:58 mycroft Exp $ */
/*
* Generic driver for the Advanced Systems Inc. SCSI controllers
*
* Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* Author: Baldassare Dante Profeta <dante@mclink.it>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: adw.c,v 1.41 2003/09/18 01:33:58 mycroft Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <uvm/uvm_extern.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/ic/adwlib.h>
#include <dev/ic/adwmcode.h>
#include <dev/ic/adw.h>
#ifndef DDB
#define Debugger() panic("should call debugger here (adw.c)")
#endif /* ! DDB */
/******************************************************************************/
static int adw_alloc_controls(ADW_SOFTC *);
static int adw_alloc_carriers(ADW_SOFTC *);
static int adw_create_ccbs(ADW_SOFTC *, ADW_CCB *, int);
static void adw_free_ccb(ADW_SOFTC *, ADW_CCB *);
static void adw_reset_ccb(ADW_CCB *);
static int adw_init_ccb(ADW_SOFTC *, ADW_CCB *);
static ADW_CCB *adw_get_ccb(ADW_SOFTC *);
static int adw_queue_ccb(ADW_SOFTC *, ADW_CCB *);
static void adw_scsipi_request(struct scsipi_channel *,
scsipi_adapter_req_t, void *);
static int adw_build_req(ADW_SOFTC *, ADW_CCB *);
static void adw_build_sglist(ADW_CCB *, ADW_SCSI_REQ_Q *, ADW_SG_BLOCK *);
static void adwminphys(struct buf *);
static void adw_isr_callback(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
static void adw_async_callback(ADW_SOFTC *, u_int8_t);
static void adw_print_info(ADW_SOFTC *, int);
static int adw_poll(ADW_SOFTC *, struct scsipi_xfer *, int);
static void adw_timeout(void *);
static void adw_reset_bus(ADW_SOFTC *);
/******************************************************************************/
/* DMA Mapping for Control Blocks */
/******************************************************************************/
static int
adw_alloc_controls(ADW_SOFTC *sc)
{
bus_dma_segment_t seg;
int error, rseg;
/*
* Allocate the control structure.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct adw_control),
PAGE_SIZE, 0, &seg, 1, &rseg,
BUS_DMA_NOWAIT)) != 0) {
printf("%s: unable to allocate control structures,"
" error = %d\n", sc->sc_dev.dv_xname, error);
return (error);
}
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
sizeof(struct adw_control), (caddr_t *) & sc->sc_control,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
printf("%s: unable to map control structures, error = %d\n",
sc->sc_dev.dv_xname, error);
return (error);
}
/*
* Create and load the DMA map used for the control blocks.
*/
if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct adw_control),
1, sizeof(struct adw_control), 0, BUS_DMA_NOWAIT,
&sc->sc_dmamap_control)) != 0) {
printf("%s: unable to create control DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
return (error);
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap_control,
sc->sc_control, sizeof(struct adw_control), NULL,
BUS_DMA_NOWAIT)) != 0) {
printf("%s: unable to load control DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
return (error);
}
return (0);
}
static int
adw_alloc_carriers(ADW_SOFTC *sc)
{
bus_dma_segment_t seg;
int error, rseg;
/*
* Allocate the control structure.
*/
sc->sc_control->carriers = malloc(sizeof(ADW_CARRIER) * ADW_MAX_CARRIER,
M_DEVBUF, M_WAITOK);
if(!sc->sc_control->carriers) {
aprint_error(
"%s: malloc() failed in allocating carrier structures\n",
sc->sc_dev.dv_xname);
return (ENOMEM);
}
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(ADW_CARRIER) * ADW_MAX_CARRIER,
0x10, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
aprint_error("%s: unable to allocate carrier structures,"
" error = %d\n", sc->sc_dev.dv_xname, error);
return (error);
}
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
sizeof(ADW_CARRIER) * ADW_MAX_CARRIER,
(caddr_t *) &sc->sc_control->carriers,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
aprint_error("%s: unable to map carrier structures,"
" error = %d\n", sc->sc_dev.dv_xname, error);
return (error);
}
/*
* Create and load the DMA map used for the control blocks.
*/
if ((error = bus_dmamap_create(sc->sc_dmat,
sizeof(ADW_CARRIER) * ADW_MAX_CARRIER, 1,
sizeof(ADW_CARRIER) * ADW_MAX_CARRIER, 0,BUS_DMA_NOWAIT,
&sc->sc_dmamap_carrier)) != 0) {
aprint_error("%s: unable to create carriers DMA map,"
" error = %d\n", sc->sc_dev.dv_xname, error);
return (error);
}
if ((error = bus_dmamap_load(sc->sc_dmat,
sc->sc_dmamap_carrier, sc->sc_control->carriers,
sizeof(ADW_CARRIER) * ADW_MAX_CARRIER, NULL,
BUS_DMA_NOWAIT)) != 0) {
aprint_error("%s: unable to load carriers DMA map,"
" error = %d\n", sc->sc_dev.dv_xname, error);
return (error);
}
return (0);
}
/******************************************************************************/
/* Control Blocks routines */
/******************************************************************************/
/*
* Create a set of ccbs and add them to the free list. Called once
* by adw_init(). We return the number of CCBs successfully created.
*/
static int
adw_create_ccbs(ADW_SOFTC *sc, ADW_CCB *ccbstore, int count)
{
ADW_CCB *ccb;
int i, error;
for (i = 0; i < count; i++) {
ccb = &ccbstore[i];
if ((error = adw_init_ccb(sc, ccb)) != 0) {
printf("%s: unable to initialize ccb, error = %d\n",
sc->sc_dev.dv_xname, error);
return (i);
}
TAILQ_INSERT_TAIL(&sc->sc_free_ccb, ccb, chain);
}
return (i);
}
/*
* A ccb is put onto the free list.
*/
static void
adw_free_ccb(ADW_SOFTC *sc, ADW_CCB *ccb)
{
int s;
s = splbio();
adw_reset_ccb(ccb);
TAILQ_INSERT_HEAD(&sc->sc_free_ccb, ccb, chain);
splx(s);
}
static void
adw_reset_ccb(ADW_CCB *ccb)
{
ccb->flags = 0;
}
static int
adw_init_ccb(ADW_SOFTC *sc, ADW_CCB *ccb)
{
int hashnum, error;
/*
* Create the DMA map for this CCB.
*/
error = bus_dmamap_create(sc->sc_dmat,
(ADW_MAX_SG_LIST - 1) * PAGE_SIZE,
ADW_MAX_SG_LIST, (ADW_MAX_SG_LIST - 1) * PAGE_SIZE,
0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->dmamap_xfer);
if (error) {
printf("%s: unable to create CCB DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
return (error);
}
/*
* put in the phystokv hash table
* Never gets taken out.
*/
ccb->hashkey = htole32(sc->sc_dmamap_control->dm_segs[0].ds_addr +
ADW_CCB_OFF(ccb));
hashnum = CCB_HASH(ccb->hashkey);
ccb->nexthash = sc->sc_ccbhash[hashnum];
sc->sc_ccbhash[hashnum] = ccb;
adw_reset_ccb(ccb);
return (0);
}
/*
* Get a free ccb
*
* If there are none, see if we can allocate a new one
*/
static ADW_CCB *
adw_get_ccb(ADW_SOFTC *sc)
{
ADW_CCB *ccb = 0;
int s;
s = splbio();
ccb = sc->sc_free_ccb.tqh_first;
if (ccb != NULL) {
TAILQ_REMOVE(&sc->sc_free_ccb, ccb, chain);
ccb->flags |= CCB_ALLOC;
}
splx(s);
return (ccb);
}
/*
* Given a physical address, find the ccb that it corresponds to.
*/
ADW_CCB *
adw_ccb_phys_kv(ADW_SOFTC *sc, u_int32_t ccb_phys)
{
int hashnum = CCB_HASH(ccb_phys);
ADW_CCB *ccb = sc->sc_ccbhash[hashnum];
while (ccb) {
if (ccb->hashkey == ccb_phys)
break;
ccb = ccb->nexthash;
}
return (ccb);
}
/*
* Queue a CCB to be sent to the controller, and send it if possible.
*/
static int
adw_queue_ccb(ADW_SOFTC *sc, ADW_CCB *ccb)
{
int errcode = ADW_SUCCESS;
TAILQ_INSERT_TAIL(&sc->sc_waiting_ccb, ccb, chain);
while ((ccb = sc->sc_waiting_ccb.tqh_first) != NULL) {
TAILQ_REMOVE(&sc->sc_waiting_ccb, ccb, chain);
errcode = AdwExeScsiQueue(sc, &ccb->scsiq);
switch(errcode) {
case ADW_SUCCESS:
break;
case ADW_BUSY:
printf("ADW_BUSY\n");
return(ADW_BUSY);
case ADW_ERROR:
printf("ADW_ERROR\n");
return(ADW_ERROR);
}
TAILQ_INSERT_TAIL(&sc->sc_pending_ccb, ccb, chain);
if ((ccb->xs->xs_control & XS_CTL_POLL) == 0)
callout_reset(&ccb->xs->xs_callout,
mstohz(ccb->timeout), adw_timeout, ccb);
}
return(errcode);
}
/******************************************************************************/
/* SCSI layer interfacing routines */
/******************************************************************************/
int
adw_init(ADW_SOFTC *sc)
{
u_int16_t warn_code;
sc->cfg.lib_version = (ADW_LIB_VERSION_MAJOR << 8) |
ADW_LIB_VERSION_MINOR;
sc->cfg.chip_version =
ADW_GET_CHIP_VERSION(sc->sc_iot, sc->sc_ioh, sc->bus_type);
/*
* Reset the chip to start and allow register writes.
*/
if (ADW_FIND_SIGNATURE(sc->sc_iot, sc->sc_ioh) == 0) {
panic("adw_init: adw_find_signature failed");
} else {
AdwResetChip(sc->sc_iot, sc->sc_ioh);
warn_code = AdwInitFromEEPROM(sc);
if (warn_code & ADW_WARN_EEPROM_CHKSUM)
aprint_error("%s: Bad checksum found. "
"Setting default values\n",
sc->sc_dev.dv_xname);
if (warn_code & ADW_WARN_EEPROM_TERMINATION)
aprint_error("%s: Bad bus termination setting."
"Using automatic termination.\n",
sc->sc_dev.dv_xname);
}
sc->isr_callback = (ADW_CALLBACK) adw_isr_callback;
sc->async_callback = (ADW_CALLBACK) adw_async_callback;
return 0;
}
void
adw_attach(ADW_SOFTC *sc)
{
struct scsipi_adapter *adapt = &sc->sc_adapter;
struct scsipi_channel *chan = &sc->sc_channel;
int ncontrols, error;
TAILQ_INIT(&sc->sc_free_ccb);
TAILQ_INIT(&sc->sc_waiting_ccb);
TAILQ_INIT(&sc->sc_pending_ccb);
/*
* Allocate the Control Blocks.
*/
error = adw_alloc_controls(sc);
if (error)
return; /* (error) */ ;
memset(sc->sc_control, 0, sizeof(struct adw_control));
/*
* Create and initialize the Control Blocks.
*/
ncontrols = adw_create_ccbs(sc, sc->sc_control->ccbs, ADW_MAX_CCB);
if (ncontrols == 0) {
aprint_error("%s: unable to create Control Blocks\n",
sc->sc_dev.dv_xname);
return; /* (ENOMEM) */ ;
} else if (ncontrols != ADW_MAX_CCB) {
aprint_error("%s: WARNING: only %d of %d Control Blocks"
" created\n",
sc->sc_dev.dv_xname, ncontrols, ADW_MAX_CCB);
}
/*
* Create and initialize the Carriers.
*/
error = adw_alloc_carriers(sc);
if (error)
return; /* (error) */ ;
/*
* Zero's the freeze_device status
*/
memset(sc->sc_freeze_dev, 0, sizeof(sc->sc_freeze_dev));
/*
* Initialize the adapter
*/
switch (AdwInitDriver(sc)) {
case ADW_IERR_BIST_PRE_TEST:
panic("%s: BIST pre-test error",
sc->sc_dev.dv_xname);
break;
case ADW_IERR_BIST_RAM_TEST:
panic("%s: BIST RAM test error",
sc->sc_dev.dv_xname);
break;
case ADW_IERR_MCODE_CHKSUM:
panic("%s: Microcode checksum error",
sc->sc_dev.dv_xname);
break;
case ADW_IERR_ILLEGAL_CONNECTION:
panic("%s: All three connectors are in use",
sc->sc_dev.dv_xname);
break;
case ADW_IERR_REVERSED_CABLE:
panic("%s: Cable is reversed",
sc->sc_dev.dv_xname);
break;
case ADW_IERR_HVD_DEVICE:
panic("%s: HVD attached to LVD connector",
sc->sc_dev.dv_xname);
break;
case ADW_IERR_SINGLE_END_DEVICE:
panic("%s: single-ended device is attached to"
" one of the connectors",
sc->sc_dev.dv_xname);
break;
case ADW_IERR_NO_CARRIER:
panic("%s: unable to create Carriers",
sc->sc_dev.dv_xname);
break;
case ADW_WARN_BUSRESET_ERROR:
aprint_error("%s: WARNING: Bus Reset Error\n",
sc->sc_dev.dv_xname);
break;
}
/*
* Fill in the scsipi_adapter.
*/
memset(adapt, 0, sizeof(*adapt));
adapt->adapt_dev = &sc->sc_dev;
adapt->adapt_nchannels = 1;
adapt->adapt_openings = ncontrols;
adapt->adapt_max_periph = adapt->adapt_openings;
adapt->adapt_request = adw_scsipi_request;
adapt->adapt_minphys = adwminphys;
/*
* Fill in the scsipi_channel.
*/
memset(chan, 0, sizeof(*chan));
chan->chan_adapter = adapt;
chan->chan_bustype = &scsi_bustype;
chan->chan_channel = 0;
chan->chan_ntargets = ADW_MAX_TID + 1;
chan->chan_nluns = 8;
chan->chan_id = sc->chip_scsi_id;
config_found(&sc->sc_dev, &sc->sc_channel, scsiprint);
}
static void
adwminphys(struct buf *bp)
{
if (bp->b_bcount > ((ADW_MAX_SG_LIST - 1) * PAGE_SIZE))
bp->b_bcount = ((ADW_MAX_SG_LIST - 1) * PAGE_SIZE);
minphys(bp);
}
/*
* start a scsi operation given the command and the data address.
* Also needs the unit, target and lu.
*/
static void
adw_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
void *arg)
{
struct scsipi_xfer *xs;
ADW_SOFTC *sc = (void *)chan->chan_adapter->adapt_dev;
ADW_CCB *ccb;
int s, retry;
switch (req) {
case ADAPTER_REQ_RUN_XFER:
xs = arg;
/*
* get a ccb to use. If the transfer
* is from a buf (possibly from interrupt time)
* then we can't allow it to sleep
*/
ccb = adw_get_ccb(sc);
#ifdef DIAGNOSTIC
/*
* This should never happen as we track the resources
* in the mid-layer.
*/
if (ccb == NULL) {
scsipi_printaddr(xs->xs_periph);
printf("unable to allocate ccb\n");
panic("adw_scsipi_request");
}
#endif
ccb->xs = xs;
ccb->timeout = xs->timeout;
if (adw_build_req(sc, ccb)) {
s = splbio();
retry = adw_queue_ccb(sc, ccb);
splx(s);
switch(retry) {
case ADW_BUSY:
xs->error = XS_RESOURCE_SHORTAGE;
adw_free_ccb(sc, ccb);
scsipi_done(xs);
return;
case ADW_ERROR:
xs->error = XS_DRIVER_STUFFUP;
adw_free_ccb(sc, ccb);
scsipi_done(xs);
return;
}
if ((xs->xs_control & XS_CTL_POLL) == 0)
return;
/*
* Not allowed to use interrupts, poll for completion.
*/
if (adw_poll(sc, xs, ccb->timeout)) {
adw_timeout(ccb);
if (adw_poll(sc, xs, ccb->timeout))
adw_timeout(ccb);
}
}
return;
case ADAPTER_REQ_GROW_RESOURCES:
/* XXX Not supported. */
return;
case ADAPTER_REQ_SET_XFER_MODE:
/* XXX XXX XXX */
return;
}
}
/*
* Build a request structure for the Wide Boards.
*/
static int
adw_build_req(ADW_SOFTC *sc, ADW_CCB *ccb)
{
struct scsipi_xfer *xs = ccb->xs;
struct scsipi_periph *periph = xs->xs_periph;
bus_dma_tag_t dmat = sc->sc_dmat;
ADW_SCSI_REQ_Q *scsiqp;
int error;
scsiqp = &ccb->scsiq;
memset(scsiqp, 0, sizeof(ADW_SCSI_REQ_Q));
/*
* Set the ADW_SCSI_REQ_Q 'ccb_ptr' to point to the
* physical CCB structure.
*/
scsiqp->ccb_ptr = ccb->hashkey;
/*
* Build the ADW_SCSI_REQ_Q request.
*/
/*
* Set CDB length and copy it to the request structure.
* For wide boards a CDB length maximum of 16 bytes
* is supported.
*/
memcpy(&scsiqp->cdb, xs->cmd, ((scsiqp->cdb_len = xs->cmdlen) <= 12)?
xs->cmdlen : 12 );
if(xs->cmdlen > 12)
memcpy(&scsiqp->cdb16, &(xs->cmd[12]), xs->cmdlen - 12);
scsiqp->target_id = periph->periph_target;
scsiqp->target_lun = periph->periph_lun;
scsiqp->vsense_addr = &ccb->scsi_sense;
scsiqp->sense_addr = htole32(sc->sc_dmamap_control->dm_segs[0].ds_addr +
ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsi_sense));
scsiqp->sense_len = sizeof(struct scsipi_sense_data);
/*
* Build ADW_SCSI_REQ_Q for a scatter-gather buffer command.
*/
if (xs->datalen) {
/*
* Map the DMA transfer.
*/
#ifdef TFS
if (xs->xs_control & SCSI_DATA_UIO) {
error = bus_dmamap_load_uio(dmat,
ccb->dmamap_xfer, (struct uio *) xs->data,
((flags & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT :
BUS_DMA_WAITOK) | BUS_DMA_STREAMING |
((flags & XS_CTL_DATA_IN) ? BUS_DMA_READ :
BUS_DMA_WRITE));
} else
#endif /* TFS */
{
error = bus_dmamap_load(dmat,
ccb->dmamap_xfer, xs->data, xs->datalen, NULL,
((xs->xs_control & XS_CTL_NOSLEEP) ?
BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
BUS_DMA_STREAMING |
((xs->xs_control & XS_CTL_DATA_IN) ?
BUS_DMA_READ : BUS_DMA_WRITE));
}
switch (error) {
case 0:
break;
case ENOMEM:
case EAGAIN:
xs->error = XS_RESOURCE_SHORTAGE;
goto out_bad;
default:
xs->error = XS_DRIVER_STUFFUP;
printf("%s: error %d loading DMA map\n",
sc->sc_dev.dv_xname, error);
out_bad:
adw_free_ccb(sc, ccb);
scsipi_done(xs);
return(0);
}
bus_dmamap_sync(dmat, ccb->dmamap_xfer, 0,
ccb->dmamap_xfer->dm_mapsize,
(xs->xs_control & XS_CTL_DATA_IN) ?
BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
/*
* Build scatter-gather list.
*/
scsiqp->data_cnt = htole32(xs->datalen);
scsiqp->vdata_addr = xs->data;
scsiqp->data_addr = htole32(ccb->dmamap_xfer->dm_segs[0].ds_addr);
memset(ccb->sg_block, 0,
sizeof(ADW_SG_BLOCK) * ADW_NUM_SG_BLOCK);
adw_build_sglist(ccb, scsiqp, ccb->sg_block);
} else {
/*
* No data xfer, use non S/G values.
*/
scsiqp->data_cnt = 0;
scsiqp->vdata_addr = 0;
scsiqp->data_addr = 0;
}
return (1);
}
/*
* Build scatter-gather list for Wide Boards.
*/
static void
adw_build_sglist(ADW_CCB *ccb, ADW_SCSI_REQ_Q *scsiqp, ADW_SG_BLOCK *sg_block)
{
u_long sg_block_next_addr; /* block and its next */
u_int32_t sg_block_physical_addr;
int i; /* how many SG entries */
bus_dma_segment_t *sg_list = &ccb->dmamap_xfer->dm_segs[0];
int sg_elem_cnt = ccb->dmamap_xfer->dm_nsegs;
sg_block_next_addr = (u_long) sg_block; /* allow math operation */
sg_block_physical_addr = le32toh(ccb->hashkey) +
offsetof(struct adw_ccb, sg_block[0]);
scsiqp->sg_real_addr = htole32(sg_block_physical_addr);
/*
* If there are more than NO_OF_SG_PER_BLOCK DMA segments (hw sg-list)
* then split the request into multiple sg-list blocks.
*/
do {
for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
sg_block->sg_list[i].sg_addr = htole32(sg_list->ds_addr);
sg_block->sg_list[i].sg_count = htole32(sg_list->ds_len);
if (--sg_elem_cnt == 0) {
/* last entry, get out */
sg_block->sg_cnt = i + 1;
sg_block->sg_ptr = NULL; /* next link = NULL */
return;
}
sg_list++;
}
sg_block_next_addr += sizeof(ADW_SG_BLOCK);
sg_block_physical_addr += sizeof(ADW_SG_BLOCK);
sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
sg_block->sg_ptr = htole32(sg_block_physical_addr);
sg_block = (ADW_SG_BLOCK *) sg_block_next_addr; /* virt. addr */
} while (1);
}
/******************************************************************************/
/* Interrupts and TimeOut routines */
/******************************************************************************/
int
adw_intr(void *arg)
{
ADW_SOFTC *sc = arg;
if(AdwISR(sc) != ADW_FALSE) {
return (1);
}
return (0);
}
/*
* Poll a particular unit, looking for a particular xs
*/
static int
adw_poll(ADW_SOFTC *sc, struct scsipi_xfer *xs, int count)
{
/* timeouts are in msec, so we loop in 1000 usec cycles */
while (count) {
adw_intr(sc);
if (xs->xs_status & XS_STS_DONE)
return (0);
delay(1000); /* only happens in boot so ok */
count--;
}
return (1);
}
static void
adw_timeout(void *arg)
{
ADW_CCB *ccb = arg;
struct scsipi_xfer *xs = ccb->xs;
struct scsipi_periph *periph = xs->xs_periph;
ADW_SOFTC *sc =
(void *)periph->periph_channel->chan_adapter->adapt_dev;
int s;
scsipi_printaddr(periph);
printf("timed out");
s = splbio();
if (ccb->flags & CCB_ABORTED) {
/*
* Abort Timed Out
*
* No more opportunities. Lets try resetting the bus and
* reinitialize the host adapter.
*/
callout_stop(&xs->xs_callout);
printf(" AGAIN. Resetting SCSI Bus\n");
adw_reset_bus(sc);
splx(s);
return;
} else if (ccb->flags & CCB_ABORTING) {
/*
* Abort the operation that has timed out.
*
* Second opportunity.
*/
printf("\n");
xs->error = XS_TIMEOUT;
ccb->flags |= CCB_ABORTED;
#if 0
/*
* - XXX - 3.3a microcode is BROKEN!!!
*
* We cannot abort a CCB, so we can only hope the command
* get completed before the next timeout, otherwise a
* Bus Reset will arrive inexorably.
*/
/*
* ADW_ABORT_CCB() makes the board to generate an interrupt
*
* - XXX - The above assertion MUST be verified (and this
* code changed as well [callout_*()]), when the
* ADW_ABORT_CCB will be working again
*/
ADW_ABORT_CCB(sc, ccb);
#endif
/*
* waiting for multishot callout_reset() let's restart it
* by hand so the next time a timeout event will occour
* we will reset the bus.
*/
callout_reset(&xs->xs_callout,
mstohz(ccb->timeout), adw_timeout, ccb);
} else {
/*
* Abort the operation that has timed out.
*
* First opportunity.
*/
printf("\n");
xs->error = XS_TIMEOUT;
ccb->flags |= CCB_ABORTING;
#if 0
/*
* - XXX - 3.3a microcode is BROKEN!!!
*
* We cannot abort a CCB, so we can only hope the command
* get completed before the next 2 timeout, otherwise a
* Bus Reset will arrive inexorably.
*/
/*
* ADW_ABORT_CCB() makes the board to generate an interrupt
*
* - XXX - The above assertion MUST be verified (and this
* code changed as well [callout_*()]), when the
* ADW_ABORT_CCB will be working again
*/
ADW_ABORT_CCB(sc, ccb);
#endif
/*
* waiting for multishot callout_reset() let's restart it
* by hand so to give a second opportunity to the command
* which timed-out.
*/
callout_reset(&xs->xs_callout,
mstohz(ccb->timeout), adw_timeout, ccb);
}
splx(s);
}
static void
adw_reset_bus(ADW_SOFTC *sc)
{
ADW_CCB *ccb;
int s;
struct scsipi_xfer *xs;
s = splbio();
AdwResetSCSIBus(sc);
while((ccb = TAILQ_LAST(&sc->sc_pending_ccb,
adw_pending_ccb)) != NULL) {
callout_stop(&ccb->xs->xs_callout);
TAILQ_REMOVE(&sc->sc_pending_ccb, ccb, chain);
xs = ccb->xs;
adw_free_ccb(sc, ccb);
xs->error = XS_RESOURCE_SHORTAGE;
scsipi_done(xs);
}
splx(s);
}
/******************************************************************************/
/* Host Adapter and Peripherals Information Routines */
/******************************************************************************/
static void
adw_print_info(ADW_SOFTC *sc, int tid)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int16_t wdtr_able, wdtr_done, wdtr;
u_int16_t sdtr_able, sdtr_done, sdtr, period;
static int wdtr_reneg = 0, sdtr_reneg = 0;
if (tid == 0){
wdtr_reneg = sdtr_reneg = 0;
}
printf("%s: target %d ", sc->sc_dev.dv_xname, tid);
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, wdtr_able);
if(wdtr_able & ADW_TID_TO_TIDMASK(tid)) {
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE, wdtr_done);
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_DEVICE_HSHK_CFG_TABLE +
(2 * tid), wdtr);
printf("using %d-bits wide, ", (wdtr & 0x8000)? 16 : 8);
if((wdtr_done & ADW_TID_TO_TIDMASK(tid)) == 0)
wdtr_reneg = 1;
} else {
printf("wide transfers disabled, ");
}
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
if(sdtr_able & ADW_TID_TO_TIDMASK(tid)) {
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE, sdtr_done);
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_DEVICE_HSHK_CFG_TABLE +
(2 * tid), sdtr);
sdtr &= ~0x8000;
if((sdtr & 0x1F) != 0) {
if((sdtr & 0x1F00) == 0x1100){
printf("80.0 MHz");
} else if((sdtr & 0x1F00) == 0x1000){
printf("40.0 MHz");
} else {
/* <= 20.0 MHz */
period = (((sdtr >> 8) * 25) + 50)/4;
if(period == 0) {
/* Should never happen. */
printf("? MHz");
} else {
printf("%d.%d MHz", 250/period,
ADW_TENTHS(250, period));
}
}
printf(" synchronous transfers\n");
} else {
printf("asynchronous transfers\n");
}
if((sdtr_done & ADW_TID_TO_TIDMASK(tid)) == 0)
sdtr_reneg = 1;
} else {
printf("synchronous transfers disabled\n");
}
if(wdtr_reneg || sdtr_reneg) {
printf("%s: target %d %s", sc->sc_dev.dv_xname, tid,
(wdtr_reneg)? ((sdtr_reneg)? "wide/sync" : "wide") :
((sdtr_reneg)? "sync" : "") );
printf(" renegotiation pending before next command.\n");
}
}
/******************************************************************************/
/* WIDE boards Interrupt callbacks */
/******************************************************************************/
/*
* adw_isr_callback() - Second Level Interrupt Handler called by AdwISR()
*
* Interrupt callback function for the Wide SCSI Adv Library.
*
* Notice:
* Interrupts are disabled by the caller (AdwISR() function), and will be
* enabled at the end of the caller.
*/
static void
adw_isr_callback(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
{
bus_dma_tag_t dmat = sc->sc_dmat;
ADW_CCB *ccb;
struct scsipi_xfer *xs;
struct scsipi_sense_data *s1, *s2;
ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
callout_stop(&ccb->xs->xs_callout);
xs = ccb->xs;
/*
* If we were a data transfer, unload the map that described
* the data buffer.
*/
if (xs->datalen) {
bus_dmamap_sync(dmat, ccb->dmamap_xfer, 0,
ccb->dmamap_xfer->dm_mapsize,
(xs->xs_control & XS_CTL_DATA_IN) ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dmat, ccb->dmamap_xfer);
}
if ((ccb->flags & CCB_ALLOC) == 0) {
printf("%s: exiting ccb not allocated!\n", sc->sc_dev.dv_xname);
Debugger();
return;
}
/*
* 'done_status' contains the command's ending status.
* 'host_status' conatins the host adapter status.
* 'scsi_status' contains the scsi peripheral status.
*/
if ((scsiq->host_status == QHSTA_NO_ERROR) &&
((scsiq->done_status == QD_NO_ERROR) ||
(scsiq->done_status == QD_WITH_ERROR))) {
switch (scsiq->scsi_status) {
case SCSI_STATUS_GOOD:
if ((scsiq->cdb[0] == INQUIRY) &&
(scsiq->target_lun == 0)) {
adw_print_info(sc, scsiq->target_id);
}
xs->error = XS_NOERROR;
xs->resid = le32toh(scsiq->data_cnt);
sc->sc_freeze_dev[scsiq->target_id] = 0;
break;
case SCSI_STATUS_CHECK_CONDITION:
case SCSI_STATUS_CMD_TERMINATED:
s1 = &ccb->scsi_sense;
s2 = &xs->sense.scsi_sense;
*s2 = *s1;
xs->error = XS_SENSE;
sc->sc_freeze_dev[scsiq->target_id] = 1;
break;
default:
xs->error = XS_BUSY;
sc->sc_freeze_dev[scsiq->target_id] = 1;
break;
}
} else if (scsiq->done_status == QD_ABORTED_BY_HOST) {
xs->error = XS_DRIVER_STUFFUP;
} else {
switch (scsiq->host_status) {
case QHSTA_M_SEL_TIMEOUT:
xs->error = XS_SELTIMEOUT;
break;
case QHSTA_M_SXFR_OFF_UFLW:
case QHSTA_M_SXFR_OFF_OFLW:
case QHSTA_M_DATA_OVER_RUN:
printf("%s: Overrun/Overflow/Underflow condition\n",
sc->sc_dev.dv_xname);
xs->error = XS_DRIVER_STUFFUP;
break;
case QHSTA_M_SXFR_DESELECTED:
case QHSTA_M_UNEXPECTED_BUS_FREE:
printf("%s: Unexpected BUS free\n",sc->sc_dev.dv_xname);
xs->error = XS_DRIVER_STUFFUP;
break;
case QHSTA_M_SCSI_BUS_RESET:
case QHSTA_M_SCSI_BUS_RESET_UNSOL:
printf("%s: BUS Reset\n", sc->sc_dev.dv_xname);
xs->error = XS_DRIVER_STUFFUP;
break;
case QHSTA_M_BUS_DEVICE_RESET:
printf("%s: Device Reset\n", sc->sc_dev.dv_xname);
xs->error = XS_DRIVER_STUFFUP;
break;
case QHSTA_M_QUEUE_ABORTED:
printf("%s: Queue Aborted\n", sc->sc_dev.dv_xname);
xs->error = XS_DRIVER_STUFFUP;
break;
case QHSTA_M_SXFR_SDMA_ERR:
case QHSTA_M_SXFR_SXFR_PERR:
case QHSTA_M_RDMA_PERR:
/*
* DMA Error. This should *NEVER* happen!
*
* Lets try resetting the bus and reinitialize
* the host adapter.
*/
printf("%s: DMA Error. Reseting bus\n",
sc->sc_dev.dv_xname);
TAILQ_REMOVE(&sc->sc_pending_ccb, ccb, chain);
adw_reset_bus(sc);
xs->error = XS_BUSY;
goto done;
case QHSTA_M_WTM_TIMEOUT:
case QHSTA_M_SXFR_WD_TMO:
/* The SCSI bus hung in a phase */
printf("%s: Watch Dog timer expired. Reseting bus\n",
sc->sc_dev.dv_xname);
TAILQ_REMOVE(&sc->sc_pending_ccb, ccb, chain);
adw_reset_bus(sc);
xs->error = XS_BUSY;
goto done;
case QHSTA_M_SXFR_XFR_PH_ERR:
printf("%s: Transfer Error\n", sc->sc_dev.dv_xname);
xs->error = XS_DRIVER_STUFFUP;
break;
case QHSTA_M_BAD_CMPL_STATUS_IN:
/* No command complete after a status message */
printf("%s: Bad Completion Status\n",
sc->sc_dev.dv_xname);
xs->error = XS_DRIVER_STUFFUP;
break;
case QHSTA_M_AUTO_REQ_SENSE_FAIL:
printf("%s: Auto Sense Failed\n", sc->sc_dev.dv_xname);
xs->error = XS_DRIVER_STUFFUP;
break;
case QHSTA_M_INVALID_DEVICE:
printf("%s: Invalid Device\n", sc->sc_dev.dv_xname);
xs->error = XS_DRIVER_STUFFUP;
break;
case QHSTA_M_NO_AUTO_REQ_SENSE:
/*
* User didn't request sense, but we got a
* check condition.
*/
printf("%s: Unexpected Check Condition\n",
sc->sc_dev.dv_xname);
xs->error = XS_DRIVER_STUFFUP;
break;
case QHSTA_M_SXFR_UNKNOWN_ERROR:
printf("%s: Unknown Error\n", sc->sc_dev.dv_xname);
xs->error = XS_DRIVER_STUFFUP;
break;
default:
panic("%s: Unhandled Host Status Error %x",
sc->sc_dev.dv_xname, scsiq->host_status);
}
}
TAILQ_REMOVE(&sc->sc_pending_ccb, ccb, chain);
done: adw_free_ccb(sc, ccb);
scsipi_done(xs);
}
/*
* adw_async_callback() - Adv Library asynchronous event callback function.
*/
static void
adw_async_callback(ADW_SOFTC *sc, u_int8_t code)
{
switch (code) {
case ADV_ASYNC_SCSI_BUS_RESET_DET:
/* The firmware detected a SCSI Bus reset. */
printf("%s: SCSI Bus reset detected\n", sc->sc_dev.dv_xname);
break;
case ADV_ASYNC_RDMA_FAILURE:
/*
* Handle RDMA failure by resetting the SCSI Bus and
* possibly the chip if it is unresponsive.
*/
printf("%s: RDMA failure. Resetting the SCSI Bus and"
" the adapter\n", sc->sc_dev.dv_xname);
AdwResetSCSIBus(sc);
break;
case ADV_HOST_SCSI_BUS_RESET:
/* Host generated SCSI bus reset occurred. */
printf("%s: Host generated SCSI bus reset occurred\n",
sc->sc_dev.dv_xname);
break;
case ADV_ASYNC_CARRIER_READY_FAILURE:
/* Carrier Ready failure. */
printf("%s: Carrier Ready failure!\n", sc->sc_dev.dv_xname);
break;
default:
break;
}
}