NetBSD/sys/dev/usb/ohci.c
dyoung c1b390d493 A pointer typedef entails trading too much flexibility to declare const
and non-const types, and the kernel uses both const and non-const
PMF qualifiers and device suspensors, so change the pmf_qual_t and
device_suspensor_t typedefs from "pointers to const" to non-pointer,
non-const types.
2010-02-24 22:37:54 +00:00

3551 lines
92 KiB
C

/* $NetBSD: ohci.c,v 1.206 2010/02/24 22:38:09 dyoung Exp $ */
/* $FreeBSD: src/sys/dev/usb/ohci.c,v 1.22 1999/11/17 22:33:40 n_hibma Exp $ */
/*
* Copyright (c) 1998, 2004, 2005 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net) at
* Carlstedt Research & Technology.
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* USB Open Host Controller driver.
*
* OHCI spec: http://www.compaq.com/productinfo/development/openhci.html
* USB spec: http://www.usb.org/developers/docs/
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ohci.c,v 1.206 2010/02/24 22:38:09 dyoung Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/select.h>
#include <uvm/uvm_extern.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/bus.h>
#include <machine/endian.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_mem.h>
#include <dev/usb/usb_quirks.h>
#include <dev/usb/ohcireg.h>
#include <dev/usb/ohcivar.h>
#include <dev/usb/usbroothub_subr.h>
#ifdef OHCI_DEBUG
#define DPRINTF(x) if (ohcidebug) logprintf x
#define DPRINTFN(n,x) if (ohcidebug>(n)) logprintf x
int ohcidebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
#if BYTE_ORDER == BIG_ENDIAN
#define SWAP_ENDIAN OHCI_LITTLE_ENDIAN
#else
#define SWAP_ENDIAN OHCI_BIG_ENDIAN
#endif
#define O16TOH(val) (sc->sc_endian == SWAP_ENDIAN ? bswap16(val) : val)
#define O32TOH(val) (sc->sc_endian == SWAP_ENDIAN ? bswap32(val) : val)
#define HTOO16(val) O16TOH(val)
#define HTOO32(val) O32TOH(val)
struct ohci_pipe;
Static ohci_soft_ed_t *ohci_alloc_sed(ohci_softc_t *);
Static void ohci_free_sed(ohci_softc_t *, ohci_soft_ed_t *);
Static ohci_soft_td_t *ohci_alloc_std(ohci_softc_t *);
Static void ohci_free_std(ohci_softc_t *, ohci_soft_td_t *);
Static ohci_soft_itd_t *ohci_alloc_sitd(ohci_softc_t *);
Static void ohci_free_sitd(ohci_softc_t *,ohci_soft_itd_t *);
#if 0
Static void ohci_free_std_chain(ohci_softc_t *, ohci_soft_td_t *,
ohci_soft_td_t *);
#endif
Static usbd_status ohci_alloc_std_chain(struct ohci_pipe *,
ohci_softc_t *, int, int, usbd_xfer_handle,
ohci_soft_td_t *, ohci_soft_td_t **);
Static usbd_status ohci_open(usbd_pipe_handle);
Static void ohci_poll(struct usbd_bus *);
Static void ohci_softintr(void *);
Static void ohci_waitintr(ohci_softc_t *, usbd_xfer_handle);
Static void ohci_rhsc(ohci_softc_t *, usbd_xfer_handle);
Static usbd_status ohci_device_request(usbd_xfer_handle xfer);
Static void ohci_add_ed(ohci_softc_t *, ohci_soft_ed_t *,
ohci_soft_ed_t *);
Static void ohci_rem_ed(ohci_soft_ed_t *, ohci_soft_ed_t *);
Static void ohci_hash_add_td(ohci_softc_t *, ohci_soft_td_t *);
Static void ohci_hash_rem_td(ohci_softc_t *, ohci_soft_td_t *);
Static ohci_soft_td_t *ohci_hash_find_td(ohci_softc_t *, ohci_physaddr_t);
Static void ohci_hash_add_itd(ohci_softc_t *, ohci_soft_itd_t *);
Static void ohci_hash_rem_itd(ohci_softc_t *, ohci_soft_itd_t *);
Static ohci_soft_itd_t *ohci_hash_find_itd(ohci_softc_t *, ohci_physaddr_t);
Static usbd_status ohci_setup_isoc(usbd_pipe_handle pipe);
Static void ohci_device_isoc_enter(usbd_xfer_handle);
Static usbd_status ohci_allocm(struct usbd_bus *, usb_dma_t *, u_int32_t);
Static void ohci_freem(struct usbd_bus *, usb_dma_t *);
Static usbd_xfer_handle ohci_allocx(struct usbd_bus *);
Static void ohci_freex(struct usbd_bus *, usbd_xfer_handle);
Static usbd_status ohci_root_ctrl_transfer(usbd_xfer_handle);
Static usbd_status ohci_root_ctrl_start(usbd_xfer_handle);
Static void ohci_root_ctrl_abort(usbd_xfer_handle);
Static void ohci_root_ctrl_close(usbd_pipe_handle);
Static void ohci_root_ctrl_done(usbd_xfer_handle);
Static usbd_status ohci_root_intr_transfer(usbd_xfer_handle);
Static usbd_status ohci_root_intr_start(usbd_xfer_handle);
Static void ohci_root_intr_abort(usbd_xfer_handle);
Static void ohci_root_intr_close(usbd_pipe_handle);
Static void ohci_root_intr_done(usbd_xfer_handle);
Static usbd_status ohci_device_ctrl_transfer(usbd_xfer_handle);
Static usbd_status ohci_device_ctrl_start(usbd_xfer_handle);
Static void ohci_device_ctrl_abort(usbd_xfer_handle);
Static void ohci_device_ctrl_close(usbd_pipe_handle);
Static void ohci_device_ctrl_done(usbd_xfer_handle);
Static usbd_status ohci_device_bulk_transfer(usbd_xfer_handle);
Static usbd_status ohci_device_bulk_start(usbd_xfer_handle);
Static void ohci_device_bulk_abort(usbd_xfer_handle);
Static void ohci_device_bulk_close(usbd_pipe_handle);
Static void ohci_device_bulk_done(usbd_xfer_handle);
Static usbd_status ohci_device_intr_transfer(usbd_xfer_handle);
Static usbd_status ohci_device_intr_start(usbd_xfer_handle);
Static void ohci_device_intr_abort(usbd_xfer_handle);
Static void ohci_device_intr_close(usbd_pipe_handle);
Static void ohci_device_intr_done(usbd_xfer_handle);
Static usbd_status ohci_device_isoc_transfer(usbd_xfer_handle);
Static usbd_status ohci_device_isoc_start(usbd_xfer_handle);
Static void ohci_device_isoc_abort(usbd_xfer_handle);
Static void ohci_device_isoc_close(usbd_pipe_handle);
Static void ohci_device_isoc_done(usbd_xfer_handle);
Static usbd_status ohci_device_setintr(ohci_softc_t *sc,
struct ohci_pipe *pipe, int ival);
Static void ohci_timeout(void *);
Static void ohci_timeout_task(void *);
Static void ohci_rhsc_enable(void *);
Static void ohci_close_pipe(usbd_pipe_handle, ohci_soft_ed_t *);
Static void ohci_abort_xfer(usbd_xfer_handle, usbd_status);
Static void ohci_device_clear_toggle(usbd_pipe_handle pipe);
Static void ohci_noop(usbd_pipe_handle pipe);
#ifdef OHCI_DEBUG
Static void ohci_dumpregs(ohci_softc_t *);
Static void ohci_dump_tds(ohci_softc_t *, ohci_soft_td_t *);
Static void ohci_dump_td(ohci_softc_t *, ohci_soft_td_t *);
Static void ohci_dump_ed(ohci_softc_t *, ohci_soft_ed_t *);
Static void ohci_dump_itd(ohci_softc_t *, ohci_soft_itd_t *);
Static void ohci_dump_itds(ohci_softc_t *, ohci_soft_itd_t *);
#endif
#define OBARR(sc) bus_space_barrier((sc)->iot, (sc)->ioh, 0, (sc)->sc_size, \
BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE)
#define OWRITE1(sc, r, x) \
do { OBARR(sc); bus_space_write_1((sc)->iot, (sc)->ioh, (r), (x)); } while (0)
#define OWRITE2(sc, r, x) \
do { OBARR(sc); bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x)); } while (0)
#define OWRITE4(sc, r, x) \
do { OBARR(sc); bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x)); } while (0)
static __inline uint8_t
OREAD1(ohci_softc_t *sc, bus_size_t r)
{
OBARR(sc);
return bus_space_read_1(sc->iot, sc->ioh, r);
}
static __inline uint16_t
OREAD2(ohci_softc_t *sc, bus_size_t r)
{
OBARR(sc);
return bus_space_read_2(sc->iot, sc->ioh, r);
}
static __inline uint32_t
OREAD4(ohci_softc_t *sc, bus_size_t r)
{
OBARR(sc);
return bus_space_read_4(sc->iot, sc->ioh, r);
}
/* Reverse the bits in a value 0 .. 31 */
Static u_int8_t revbits[OHCI_NO_INTRS] =
{ 0x00, 0x10, 0x08, 0x18, 0x04, 0x14, 0x0c, 0x1c,
0x02, 0x12, 0x0a, 0x1a, 0x06, 0x16, 0x0e, 0x1e,
0x01, 0x11, 0x09, 0x19, 0x05, 0x15, 0x0d, 0x1d,
0x03, 0x13, 0x0b, 0x1b, 0x07, 0x17, 0x0f, 0x1f };
struct ohci_pipe {
struct usbd_pipe pipe;
ohci_soft_ed_t *sed;
union {
ohci_soft_td_t *td;
ohci_soft_itd_t *itd;
} tail;
/* Info needed for different pipe kinds. */
union {
/* Control pipe */
struct {
usb_dma_t reqdma;
u_int length;
ohci_soft_td_t *setup, *data, *stat;
} ctl;
/* Interrupt pipe */
struct {
int nslots;
int pos;
} intr;
/* Bulk pipe */
struct {
u_int length;
int isread;
} bulk;
/* Iso pipe */
struct iso {
int next, inuse;
} iso;
} u;
};
#define OHCI_INTR_ENDPT 1
Static const struct usbd_bus_methods ohci_bus_methods = {
ohci_open,
ohci_softintr,
ohci_poll,
ohci_allocm,
ohci_freem,
ohci_allocx,
ohci_freex,
};
Static const struct usbd_pipe_methods ohci_root_ctrl_methods = {
ohci_root_ctrl_transfer,
ohci_root_ctrl_start,
ohci_root_ctrl_abort,
ohci_root_ctrl_close,
ohci_noop,
ohci_root_ctrl_done,
};
Static const struct usbd_pipe_methods ohci_root_intr_methods = {
ohci_root_intr_transfer,
ohci_root_intr_start,
ohci_root_intr_abort,
ohci_root_intr_close,
ohci_noop,
ohci_root_intr_done,
};
Static const struct usbd_pipe_methods ohci_device_ctrl_methods = {
ohci_device_ctrl_transfer,
ohci_device_ctrl_start,
ohci_device_ctrl_abort,
ohci_device_ctrl_close,
ohci_noop,
ohci_device_ctrl_done,
};
Static const struct usbd_pipe_methods ohci_device_intr_methods = {
ohci_device_intr_transfer,
ohci_device_intr_start,
ohci_device_intr_abort,
ohci_device_intr_close,
ohci_device_clear_toggle,
ohci_device_intr_done,
};
Static const struct usbd_pipe_methods ohci_device_bulk_methods = {
ohci_device_bulk_transfer,
ohci_device_bulk_start,
ohci_device_bulk_abort,
ohci_device_bulk_close,
ohci_device_clear_toggle,
ohci_device_bulk_done,
};
Static const struct usbd_pipe_methods ohci_device_isoc_methods = {
ohci_device_isoc_transfer,
ohci_device_isoc_start,
ohci_device_isoc_abort,
ohci_device_isoc_close,
ohci_noop,
ohci_device_isoc_done,
};
int
ohci_activate(device_t self, enum devact act)
{
struct ohci_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
sc->sc_dying = 1;
return 0;
default:
return EOPNOTSUPP;
}
}
void
ohci_childdet(device_t self, device_t child)
{
struct ohci_softc *sc = device_private(self);
KASSERT(sc->sc_child == child);
sc->sc_child = NULL;
}
int
ohci_detach(struct ohci_softc *sc, int flags)
{
int rv = 0;
usbd_xfer_handle xfer;
if (sc->sc_child != NULL)
rv = config_detach(sc->sc_child, flags);
if (rv != 0)
return (rv);
usb_uncallout(sc->sc_tmo_rhsc, ohci_rhsc_enable, sc);
usb_delay_ms(&sc->sc_bus, 300); /* XXX let stray task complete */
usb_callout_destroy(sc->sc_tmo_rhsc);
if (sc->sc_hcca != NULL)
usb_freemem(&sc->sc_bus, &sc->sc_hccadma);
while((xfer = SIMPLEQ_FIRST(&sc->sc_free_xfers)) != NULL) {
SIMPLEQ_REMOVE_HEAD(&sc->sc_free_xfers, next);
free(xfer, M_USB);
}
return (rv);
}
ohci_soft_ed_t *
ohci_alloc_sed(ohci_softc_t *sc)
{
ohci_soft_ed_t *sed;
usbd_status err;
int i, offs;
usb_dma_t dma;
if (sc->sc_freeeds == NULL) {
DPRINTFN(2, ("ohci_alloc_sed: allocating chunk\n"));
err = usb_allocmem(&sc->sc_bus, OHCI_SED_SIZE * OHCI_SED_CHUNK,
OHCI_ED_ALIGN, &dma);
if (err)
return (0);
for(i = 0; i < OHCI_SED_CHUNK; i++) {
offs = i * OHCI_SED_SIZE;
sed = KERNADDR(&dma, offs);
sed->physaddr = DMAADDR(&dma, offs);
sed->dma = dma;
sed->offs = offs;
sed->next = sc->sc_freeeds;
sc->sc_freeeds = sed;
}
}
sed = sc->sc_freeeds;
sc->sc_freeeds = sed->next;
memset(&sed->ed, 0, sizeof(ohci_ed_t));
sed->next = 0;
return (sed);
}
void
ohci_free_sed(ohci_softc_t *sc, ohci_soft_ed_t *sed)
{
sed->next = sc->sc_freeeds;
sc->sc_freeeds = sed;
}
ohci_soft_td_t *
ohci_alloc_std(ohci_softc_t *sc)
{
ohci_soft_td_t *std;
usbd_status err;
int i, offs;
usb_dma_t dma;
int s;
if (sc->sc_freetds == NULL) {
DPRINTFN(2, ("ohci_alloc_std: allocating chunk\n"));
err = usb_allocmem(&sc->sc_bus, OHCI_STD_SIZE * OHCI_STD_CHUNK,
OHCI_TD_ALIGN, &dma);
if (err)
return (NULL);
s = splusb();
for(i = 0; i < OHCI_STD_CHUNK; i++) {
offs = i * OHCI_STD_SIZE;
std = KERNADDR(&dma, offs);
std->physaddr = DMAADDR(&dma, offs);
std->dma = dma;
std->offs = offs;
std->nexttd = sc->sc_freetds;
sc->sc_freetds = std;
}
splx(s);
}
s = splusb();
std = sc->sc_freetds;
sc->sc_freetds = std->nexttd;
memset(&std->td, 0, sizeof(ohci_td_t));
std->nexttd = NULL;
std->xfer = NULL;
ohci_hash_add_td(sc, std);
splx(s);
return (std);
}
void
ohci_free_std(ohci_softc_t *sc, ohci_soft_td_t *std)
{
int s;
s = splusb();
ohci_hash_rem_td(sc, std);
std->nexttd = sc->sc_freetds;
sc->sc_freetds = std;
splx(s);
}
usbd_status
ohci_alloc_std_chain(struct ohci_pipe *opipe, ohci_softc_t *sc,
int alen, int rd, usbd_xfer_handle xfer,
ohci_soft_td_t *sp, ohci_soft_td_t **ep)
{
ohci_soft_td_t *next, *cur;
ohci_physaddr_t dataphys, dataphysend;
u_int32_t tdflags;
int len, curlen;
usb_dma_t *dma = &xfer->dmabuf;
u_int16_t flags = xfer->flags;
DPRINTFN(alen < 4096,("ohci_alloc_std_chain: start len=%d\n", alen));
len = alen;
cur = sp;
dataphys = DMAADDR(dma, 0);
dataphysend = OHCI_PAGE(dataphys + len - 1);
usb_syncmem(dma, 0, len,
rd ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
tdflags = HTOO32(
(rd ? OHCI_TD_IN : OHCI_TD_OUT) |
(flags & USBD_SHORT_XFER_OK ? OHCI_TD_R : 0) |
OHCI_TD_NOCC | OHCI_TD_TOGGLE_CARRY | OHCI_TD_NOINTR);
for (;;) {
next = ohci_alloc_std(sc);
if (next == NULL)
goto nomem;
/* The OHCI hardware can handle at most one page crossing. */
if (OHCI_PAGE(dataphys) == dataphysend ||
OHCI_PAGE(dataphys) + OHCI_PAGE_SIZE == dataphysend) {
/* we can handle it in this TD */
curlen = len;
} else {
/* must use multiple TDs, fill as much as possible. */
curlen = 2 * OHCI_PAGE_SIZE -
(dataphys & (OHCI_PAGE_SIZE-1));
/* the length must be a multiple of the max size */
curlen -= curlen % UGETW(opipe->pipe.endpoint->edesc->wMaxPacketSize);
#ifdef DIAGNOSTIC
if (curlen == 0)
panic("ohci_alloc_std: curlen == 0");
#endif
}
DPRINTFN(4,("ohci_alloc_std_chain: dataphys=0x%08x "
"dataphysend=0x%08x len=%d curlen=%d\n",
dataphys, dataphysend,
len, curlen));
len -= curlen;
cur->td.td_flags = tdflags;
cur->td.td_cbp = HTOO32(dataphys);
cur->nexttd = next;
cur->td.td_nexttd = HTOO32(next->physaddr);
cur->td.td_be = HTOO32(dataphys + curlen - 1);
cur->len = curlen;
cur->flags = OHCI_ADD_LEN;
cur->xfer = xfer;
usb_syncmem(&cur->dma, cur->offs, sizeof(cur->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
DPRINTFN(10,("ohci_alloc_std_chain: cbp=0x%08x be=0x%08x\n",
dataphys, dataphys + curlen - 1));
if (len == 0)
break;
DPRINTFN(10,("ohci_alloc_std_chain: extend chain\n"));
dataphys += curlen;
cur = next;
}
if (!rd && (flags & USBD_FORCE_SHORT_XFER) &&
alen % UGETW(opipe->pipe.endpoint->edesc->wMaxPacketSize) == 0) {
/* Force a 0 length transfer at the end. */
cur = next;
next = ohci_alloc_std(sc);
if (next == NULL)
goto nomem;
cur->td.td_flags = tdflags;
cur->td.td_cbp = 0; /* indicate 0 length packet */
cur->nexttd = next;
cur->td.td_nexttd = HTOO32(next->physaddr);
cur->td.td_be = ~0;
cur->len = 0;
cur->flags = 0;
cur->xfer = xfer;
usb_syncmem(&cur->dma, cur->offs, sizeof(cur->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
DPRINTFN(2,("ohci_alloc_std_chain: add 0 xfer\n"));
}
*ep = cur;
return (USBD_NORMAL_COMPLETION);
nomem:
/* XXX free chain */
return (USBD_NOMEM);
}
#if 0
Static void
ohci_free_std_chain(ohci_softc_t *sc, ohci_soft_td_t *std,
ohci_soft_td_t *stdend)
{
ohci_soft_td_t *p;
for (; std != stdend; std = p) {
p = std->nexttd;
ohci_free_std(sc, std);
}
}
#endif
ohci_soft_itd_t *
ohci_alloc_sitd(ohci_softc_t *sc)
{
ohci_soft_itd_t *sitd;
usbd_status err;
int i, s, offs;
usb_dma_t dma;
if (sc->sc_freeitds == NULL) {
DPRINTFN(2, ("ohci_alloc_sitd: allocating chunk\n"));
err = usb_allocmem(&sc->sc_bus, OHCI_SITD_SIZE * OHCI_SITD_CHUNK,
OHCI_ITD_ALIGN, &dma);
if (err)
return (NULL);
s = splusb();
for(i = 0; i < OHCI_SITD_CHUNK; i++) {
offs = i * OHCI_SITD_SIZE;
sitd = KERNADDR(&dma, offs);
sitd->physaddr = DMAADDR(&dma, offs);
sitd->dma = dma;
sitd->offs = offs;
sitd->nextitd = sc->sc_freeitds;
sc->sc_freeitds = sitd;
}
splx(s);
}
s = splusb();
sitd = sc->sc_freeitds;
sc->sc_freeitds = sitd->nextitd;
memset(&sitd->itd, 0, sizeof(ohci_itd_t));
sitd->nextitd = NULL;
sitd->xfer = NULL;
ohci_hash_add_itd(sc, sitd);
splx(s);
#ifdef DIAGNOSTIC
sitd->isdone = 0;
#endif
return (sitd);
}
void
ohci_free_sitd(ohci_softc_t *sc, ohci_soft_itd_t *sitd)
{
int s;
DPRINTFN(10,("ohci_free_sitd: sitd=%p\n", sitd));
#ifdef DIAGNOSTIC
if (!sitd->isdone) {
panic("ohci_free_sitd: sitd=%p not done", sitd);
return;
}
/* Warn double free */
sitd->isdone = 0;
#endif
s = splusb();
ohci_hash_rem_itd(sc, sitd);
sitd->nextitd = sc->sc_freeitds;
sc->sc_freeitds = sitd;
splx(s);
}
usbd_status
ohci_init(ohci_softc_t *sc)
{
ohci_soft_ed_t *sed, *psed;
usbd_status err;
int i;
u_int32_t s, ctl, rwc, ival, hcr, fm, per, rev, desca, descb;
DPRINTF(("ohci_init: start\n"));
aprint_normal_dev(sc->sc_dev, "");
sc->sc_hcca = NULL;
usb_callout_init(sc->sc_tmo_rhsc);
for (i = 0; i < OHCI_HASH_SIZE; i++)
LIST_INIT(&sc->sc_hash_tds[i]);
for (i = 0; i < OHCI_HASH_SIZE; i++)
LIST_INIT(&sc->sc_hash_itds[i]);
SIMPLEQ_INIT(&sc->sc_free_xfers);
rev = OREAD4(sc, OHCI_REVISION);
aprint_normal("OHCI version %d.%d%s\n",
OHCI_REV_HI(rev), OHCI_REV_LO(rev),
OHCI_REV_LEGACY(rev) ? ", legacy support" : "");
if (OHCI_REV_HI(rev) != 1 || OHCI_REV_LO(rev) != 0) {
aprint_error_dev(sc->sc_dev, "unsupported OHCI revision\n");
sc->sc_bus.usbrev = USBREV_UNKNOWN;
return (USBD_INVAL);
}
sc->sc_bus.usbrev = USBREV_1_0;
usb_setup_reserve(sc->sc_dev, &sc->sc_dma_reserve, sc->sc_bus.dmatag,
USB_MEM_RESERVE);
/* XXX determine alignment by R/W */
/* Allocate the HCCA area. */
err = usb_allocmem(&sc->sc_bus, OHCI_HCCA_SIZE,
OHCI_HCCA_ALIGN, &sc->sc_hccadma);
if (err) {
sc->sc_hcca = NULL;
return err;
}
sc->sc_hcca = KERNADDR(&sc->sc_hccadma, 0);
memset(sc->sc_hcca, 0, OHCI_HCCA_SIZE);
sc->sc_eintrs = OHCI_NORMAL_INTRS;
/* Allocate dummy ED that starts the control list. */
sc->sc_ctrl_head = ohci_alloc_sed(sc);
if (sc->sc_ctrl_head == NULL) {
err = USBD_NOMEM;
goto bad1;
}
sc->sc_ctrl_head->ed.ed_flags |= HTOO32(OHCI_ED_SKIP);
/* Allocate dummy ED that starts the bulk list. */
sc->sc_bulk_head = ohci_alloc_sed(sc);
if (sc->sc_bulk_head == NULL) {
err = USBD_NOMEM;
goto bad2;
}
sc->sc_bulk_head->ed.ed_flags |= HTOO32(OHCI_ED_SKIP);
usb_syncmem(&sc->sc_bulk_head->dma, sc->sc_bulk_head->offs,
sizeof(sc->sc_bulk_head->ed),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/* Allocate dummy ED that starts the isochronous list. */
sc->sc_isoc_head = ohci_alloc_sed(sc);
if (sc->sc_isoc_head == NULL) {
err = USBD_NOMEM;
goto bad3;
}
sc->sc_isoc_head->ed.ed_flags |= HTOO32(OHCI_ED_SKIP);
usb_syncmem(&sc->sc_isoc_head->dma, sc->sc_isoc_head->offs,
sizeof(sc->sc_isoc_head->ed),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/* Allocate all the dummy EDs that make up the interrupt tree. */
for (i = 0; i < OHCI_NO_EDS; i++) {
sed = ohci_alloc_sed(sc);
if (sed == NULL) {
while (--i >= 0)
ohci_free_sed(sc, sc->sc_eds[i]);
err = USBD_NOMEM;
goto bad4;
}
/* All ED fields are set to 0. */
sc->sc_eds[i] = sed;
sed->ed.ed_flags |= HTOO32(OHCI_ED_SKIP);
if (i != 0)
psed = sc->sc_eds[(i-1) / 2];
else
psed= sc->sc_isoc_head;
sed->next = psed;
sed->ed.ed_nexted = HTOO32(psed->physaddr);
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
/*
* Fill HCCA interrupt table. The bit reversal is to get
* the tree set up properly to spread the interrupts.
*/
for (i = 0; i < OHCI_NO_INTRS; i++)
sc->sc_hcca->hcca_interrupt_table[revbits[i]] =
HTOO32(sc->sc_eds[OHCI_NO_EDS-OHCI_NO_INTRS+i]->physaddr);
usb_syncmem(&sc->sc_hccadma, 0, OHCI_HCCA_SIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
#ifdef OHCI_DEBUG
if (ohcidebug > 15) {
for (i = 0; i < OHCI_NO_EDS; i++) {
printf("ed#%d ", i);
ohci_dump_ed(sc, sc->sc_eds[i]);
}
printf("iso ");
ohci_dump_ed(sc, sc->sc_isoc_head);
}
#endif
/* Preserve values programmed by SMM/BIOS but lost over reset. */
ctl = OREAD4(sc, OHCI_CONTROL);
rwc = ctl & OHCI_RWC;
fm = OREAD4(sc, OHCI_FM_INTERVAL);
desca = OREAD4(sc, OHCI_RH_DESCRIPTOR_A);
descb = OREAD4(sc, OHCI_RH_DESCRIPTOR_B);
/* Determine in what context we are running. */
if (ctl & OHCI_IR) {
/* SMM active, request change */
DPRINTF(("ohci_init: SMM active, request owner change\n"));
if ((sc->sc_intre & (OHCI_OC | OHCI_MIE)) ==
(OHCI_OC | OHCI_MIE))
OWRITE4(sc, OHCI_INTERRUPT_ENABLE, OHCI_MIE);
s = OREAD4(sc, OHCI_COMMAND_STATUS);
OWRITE4(sc, OHCI_COMMAND_STATUS, s | OHCI_OCR);
for (i = 0; i < 100 && (ctl & OHCI_IR); i++) {
usb_delay_ms(&sc->sc_bus, 1);
ctl = OREAD4(sc, OHCI_CONTROL);
}
OWRITE4(sc, OHCI_INTERRUPT_DISABLE, OHCI_MIE);
if ((ctl & OHCI_IR) == 0) {
aprint_error_dev(sc->sc_dev,
"SMM does not respond, resetting\n");
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET | rwc);
goto reset;
}
#if 0
/* Don't bother trying to reuse the BIOS init, we'll reset it anyway. */
} else if ((ctl & OHCI_HCFS_MASK) != OHCI_HCFS_RESET) {
/* BIOS started controller. */
DPRINTF(("ohci_init: BIOS active\n"));
if ((ctl & OHCI_HCFS_MASK) != OHCI_HCFS_OPERATIONAL) {
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_OPERATIONAL | rwc);
usb_delay_ms(&sc->sc_bus, USB_RESUME_DELAY);
}
#endif
} else {
DPRINTF(("ohci_init: cold started\n"));
reset:
/* Controller was cold started. */
usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY);
}
/*
* This reset should not be necessary according to the OHCI spec, but
* without it some controllers do not start.
*/
DPRINTF(("%s: resetting\n", device_xname(sc->sc_dev)));
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET | rwc);
usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY);
/* We now own the host controller and the bus has been reset. */
OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_HCR); /* Reset HC */
/* Nominal time for a reset is 10 us. */
for (i = 0; i < 10; i++) {
delay(10);
hcr = OREAD4(sc, OHCI_COMMAND_STATUS) & OHCI_HCR;
if (!hcr)
break;
}
if (hcr) {
aprint_error_dev(sc->sc_dev, "reset timeout\n");
err = USBD_IOERROR;
goto bad5;
}
#ifdef OHCI_DEBUG
if (ohcidebug > 15)
ohci_dumpregs(sc);
#endif
/* The controller is now in SUSPEND state, we have 2ms to finish. */
/* Set up HC registers. */
OWRITE4(sc, OHCI_HCCA, DMAADDR(&sc->sc_hccadma, 0));
OWRITE4(sc, OHCI_CONTROL_HEAD_ED, sc->sc_ctrl_head->physaddr);
OWRITE4(sc, OHCI_BULK_HEAD_ED, sc->sc_bulk_head->physaddr);
/* disable all interrupts and then switch on all desired interrupts */
OWRITE4(sc, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
/* switch on desired functional features */
ctl = OREAD4(sc, OHCI_CONTROL);
ctl &= ~(OHCI_CBSR_MASK | OHCI_LES | OHCI_HCFS_MASK | OHCI_IR);
ctl |= OHCI_PLE | OHCI_IE | OHCI_CLE | OHCI_BLE |
OHCI_RATIO_1_4 | OHCI_HCFS_OPERATIONAL | rwc;
/* And finally start it! */
OWRITE4(sc, OHCI_CONTROL, ctl);
/*
* The controller is now OPERATIONAL. Set a some final
* registers that should be set earlier, but that the
* controller ignores when in the SUSPEND state.
*/
ival = OHCI_GET_IVAL(fm);
fm = (OREAD4(sc, OHCI_FM_INTERVAL) & OHCI_FIT) ^ OHCI_FIT;
fm |= OHCI_FSMPS(ival) | ival;
OWRITE4(sc, OHCI_FM_INTERVAL, fm);
per = OHCI_PERIODIC(ival); /* 90% periodic */
OWRITE4(sc, OHCI_PERIODIC_START, per);
/* Fiddle the No OverCurrent Protection bit to avoid chip bug. */
OWRITE4(sc, OHCI_RH_DESCRIPTOR_A, desca | OHCI_NOCP);
OWRITE4(sc, OHCI_RH_STATUS, OHCI_LPSC); /* Enable port power */
usb_delay_ms(&sc->sc_bus, OHCI_ENABLE_POWER_DELAY);
OWRITE4(sc, OHCI_RH_DESCRIPTOR_A, desca);
/*
* The AMD756 requires a delay before re-reading the register,
* otherwise it will occasionally report 0 ports.
*/
sc->sc_noport = 0;
for (i = 0; i < 10 && sc->sc_noport == 0; i++) {
usb_delay_ms(&sc->sc_bus, OHCI_READ_DESC_DELAY);
sc->sc_noport = OHCI_GET_NDP(OREAD4(sc, OHCI_RH_DESCRIPTOR_A));
}
#ifdef OHCI_DEBUG
if (ohcidebug > 5)
ohci_dumpregs(sc);
#endif
/* Set up the bus struct. */
sc->sc_bus.methods = &ohci_bus_methods;
sc->sc_bus.pipe_size = sizeof(struct ohci_pipe);
sc->sc_control = sc->sc_intre = 0;
/* Finally, turn on interrupts. */
DPRINTFN(1,("ohci_init: enabling\n"));
OWRITE4(sc, OHCI_INTERRUPT_ENABLE, sc->sc_eintrs | OHCI_MIE);
return (USBD_NORMAL_COMPLETION);
bad5:
for (i = 0; i < OHCI_NO_EDS; i++)
ohci_free_sed(sc, sc->sc_eds[i]);
bad4:
ohci_free_sed(sc, sc->sc_isoc_head);
bad3:
ohci_free_sed(sc, sc->sc_bulk_head);
bad2:
ohci_free_sed(sc, sc->sc_ctrl_head);
bad1:
usb_freemem(&sc->sc_bus, &sc->sc_hccadma);
sc->sc_hcca = NULL;
return (err);
}
usbd_status
ohci_allocm(struct usbd_bus *bus, usb_dma_t *dma, u_int32_t size)
{
struct ohci_softc *sc = bus->hci_private;
usbd_status status;
status = usb_allocmem(&sc->sc_bus, size, 0, dma);
if (status == USBD_NOMEM)
status = usb_reserve_allocm(&sc->sc_dma_reserve, dma, size);
return status;
}
void
ohci_freem(struct usbd_bus *bus, usb_dma_t *dma)
{
struct ohci_softc *sc = bus->hci_private;
if (dma->block->flags & USB_DMA_RESERVE) {
usb_reserve_freem(&sc->sc_dma_reserve, dma);
return;
}
usb_freemem(&sc->sc_bus, dma);
}
usbd_xfer_handle
ohci_allocx(struct usbd_bus *bus)
{
struct ohci_softc *sc = bus->hci_private;
usbd_xfer_handle xfer;
xfer = SIMPLEQ_FIRST(&sc->sc_free_xfers);
if (xfer != NULL) {
SIMPLEQ_REMOVE_HEAD(&sc->sc_free_xfers, next);
#ifdef DIAGNOSTIC
if (xfer->busy_free != XFER_FREE) {
printf("ohci_allocx: xfer=%p not free, 0x%08x\n", xfer,
xfer->busy_free);
}
#endif
} else {
xfer = malloc(sizeof(struct ohci_xfer), M_USB, M_NOWAIT);
}
if (xfer != NULL) {
memset(xfer, 0, sizeof (struct ohci_xfer));
#ifdef DIAGNOSTIC
xfer->busy_free = XFER_BUSY;
#endif
}
return (xfer);
}
void
ohci_freex(struct usbd_bus *bus, usbd_xfer_handle xfer)
{
struct ohci_softc *sc = bus->hci_private;
#ifdef DIAGNOSTIC
if (xfer->busy_free != XFER_BUSY) {
printf("ohci_freex: xfer=%p not busy, 0x%08x\n", xfer,
xfer->busy_free);
}
xfer->busy_free = XFER_FREE;
#endif
SIMPLEQ_INSERT_HEAD(&sc->sc_free_xfers, xfer, next);
}
/*
* Shut down the controller when the system is going down.
*/
bool
ohci_shutdown(device_t self, int flags)
{
ohci_softc_t *sc = device_private(self);
DPRINTF(("ohci_shutdown: stopping the HC\n"));
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET);
return true;
}
bool
ohci_resume(device_t dv, const pmf_qual_t *qual)
{
ohci_softc_t *sc = device_private(dv);
uint32_t ctl;
int s;
s = splhardusb();
sc->sc_bus.use_polling++;
/* Some broken BIOSes do not recover these values */
OWRITE4(sc, OHCI_HCCA, DMAADDR(&sc->sc_hccadma, 0));
OWRITE4(sc, OHCI_CONTROL_HEAD_ED,
sc->sc_ctrl_head->physaddr);
OWRITE4(sc, OHCI_BULK_HEAD_ED,
sc->sc_bulk_head->physaddr);
if (sc->sc_intre)
OWRITE4(sc, OHCI_INTERRUPT_ENABLE, sc->sc_intre &
(OHCI_ALL_INTRS | OHCI_MIE));
if (sc->sc_control)
ctl = sc->sc_control;
else
ctl = OREAD4(sc, OHCI_CONTROL);
ctl |= OHCI_HCFS_RESUME;
OWRITE4(sc, OHCI_CONTROL, ctl);
usb_delay_ms(&sc->sc_bus, USB_RESUME_DELAY);
ctl = (ctl & ~OHCI_HCFS_MASK) | OHCI_HCFS_OPERATIONAL;
OWRITE4(sc, OHCI_CONTROL, ctl);
usb_delay_ms(&sc->sc_bus, USB_RESUME_RECOVERY);
sc->sc_control = sc->sc_intre = 0;
sc->sc_bus.use_polling--;
splx(s);
return true;
}
bool
ohci_suspend(device_t dv, const pmf_qual_t *qual)
{
ohci_softc_t *sc = device_private(dv);
uint32_t ctl;
int s;
s = splhardusb();
sc->sc_bus.use_polling++;
ctl = OREAD4(sc, OHCI_CONTROL) & ~OHCI_HCFS_MASK;
if (sc->sc_control == 0) {
/*
* Preserve register values, in case that BIOS
* does not recover them.
*/
sc->sc_control = ctl;
sc->sc_intre = OREAD4(sc,
OHCI_INTERRUPT_ENABLE);
}
ctl |= OHCI_HCFS_SUSPEND;
OWRITE4(sc, OHCI_CONTROL, ctl);
usb_delay_ms(&sc->sc_bus, USB_RESUME_WAIT);
sc->sc_bus.use_polling--;
splx(s);
return true;
}
#ifdef OHCI_DEBUG
void
ohci_dumpregs(ohci_softc_t *sc)
{
DPRINTF(("ohci_dumpregs: rev=0x%08x control=0x%08x command=0x%08x\n",
OREAD4(sc, OHCI_REVISION),
OREAD4(sc, OHCI_CONTROL),
OREAD4(sc, OHCI_COMMAND_STATUS)));
DPRINTF((" intrstat=0x%08x intre=0x%08x intrd=0x%08x\n",
OREAD4(sc, OHCI_INTERRUPT_STATUS),
OREAD4(sc, OHCI_INTERRUPT_ENABLE),
OREAD4(sc, OHCI_INTERRUPT_DISABLE)));
DPRINTF((" hcca=0x%08x percur=0x%08x ctrlhd=0x%08x\n",
OREAD4(sc, OHCI_HCCA),
OREAD4(sc, OHCI_PERIOD_CURRENT_ED),
OREAD4(sc, OHCI_CONTROL_HEAD_ED)));
DPRINTF((" ctrlcur=0x%08x bulkhd=0x%08x bulkcur=0x%08x\n",
OREAD4(sc, OHCI_CONTROL_CURRENT_ED),
OREAD4(sc, OHCI_BULK_HEAD_ED),
OREAD4(sc, OHCI_BULK_CURRENT_ED)));
DPRINTF((" done=0x%08x fmival=0x%08x fmrem=0x%08x\n",
OREAD4(sc, OHCI_DONE_HEAD),
OREAD4(sc, OHCI_FM_INTERVAL),
OREAD4(sc, OHCI_FM_REMAINING)));
DPRINTF((" fmnum=0x%08x perst=0x%08x lsthrs=0x%08x\n",
OREAD4(sc, OHCI_FM_NUMBER),
OREAD4(sc, OHCI_PERIODIC_START),
OREAD4(sc, OHCI_LS_THRESHOLD)));
DPRINTF((" desca=0x%08x descb=0x%08x stat=0x%08x\n",
OREAD4(sc, OHCI_RH_DESCRIPTOR_A),
OREAD4(sc, OHCI_RH_DESCRIPTOR_B),
OREAD4(sc, OHCI_RH_STATUS)));
DPRINTF((" port1=0x%08x port2=0x%08x\n",
OREAD4(sc, OHCI_RH_PORT_STATUS(1)),
OREAD4(sc, OHCI_RH_PORT_STATUS(2))));
DPRINTF((" HCCA: frame_number=0x%04x done_head=0x%08x\n",
O32TOH(sc->sc_hcca->hcca_frame_number),
O32TOH(sc->sc_hcca->hcca_done_head)));
}
#endif
Static int ohci_intr1(ohci_softc_t *);
int
ohci_intr(void *p)
{
ohci_softc_t *sc = p;
if (sc == NULL || sc->sc_dying || !device_has_power(sc->sc_dev))
return (0);
/* If we get an interrupt while polling, then just ignore it. */
if (sc->sc_bus.use_polling) {
#ifdef DIAGNOSTIC
DPRINTFN(16, ("ohci_intr: ignored interrupt while polling\n"));
#endif
/* for level triggered intrs, should do something to ack */
OWRITE4(sc, OHCI_INTERRUPT_STATUS,
OREAD4(sc, OHCI_INTERRUPT_STATUS));
return (0);
}
return (ohci_intr1(sc));
}
Static int
ohci_intr1(ohci_softc_t *sc)
{
u_int32_t intrs, eintrs;
DPRINTFN(14,("ohci_intr1: enter\n"));
/* In case the interrupt occurs before initialization has completed. */
if (sc == NULL || sc->sc_hcca == NULL) {
#ifdef DIAGNOSTIC
printf("ohci_intr: sc->sc_hcca == NULL\n");
#endif
return (0);
}
intrs = OREAD4(sc, OHCI_INTERRUPT_STATUS);
if (!intrs)
return (0);
OWRITE4(sc, OHCI_INTERRUPT_STATUS, intrs & ~(OHCI_MIE|OHCI_WDH)); /* Acknowledge */
eintrs = intrs & sc->sc_eintrs;
if (!eintrs)
return (0);
sc->sc_bus.intr_context++;
sc->sc_bus.no_intrs++;
DPRINTFN(7, ("ohci_intr: sc=%p intrs=0x%x(0x%x) eintrs=0x%x\n",
sc, (u_int)intrs, OREAD4(sc, OHCI_INTERRUPT_STATUS),
(u_int)eintrs));
if (eintrs & OHCI_SO) {
sc->sc_overrun_cnt++;
if (usbd_ratecheck(&sc->sc_overrun_ntc)) {
printf("%s: %u scheduling overruns\n",
device_xname(sc->sc_dev), sc->sc_overrun_cnt);
sc->sc_overrun_cnt = 0;
}
/* XXX do what */
eintrs &= ~OHCI_SO;
}
if (eintrs & OHCI_WDH) {
/*
* We block the interrupt below, and reenable it later from
* ohci_softintr().
*/
usb_schedsoftintr(&sc->sc_bus);
}
if (eintrs & OHCI_RD) {
printf("%s: resume detect\n", device_xname(sc->sc_dev));
/* XXX process resume detect */
}
if (eintrs & OHCI_UE) {
printf("%s: unrecoverable error, controller halted\n",
device_xname(sc->sc_dev));
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET);
/* XXX what else */
}
if (eintrs & OHCI_RHSC) {
/*
* We block the interrupt below, and reenable it later from
* a timeout.
*/
ohci_rhsc(sc, sc->sc_intrxfer);
/* Do not allow RHSC interrupts > 1 per second */
usb_callout(sc->sc_tmo_rhsc, hz, ohci_rhsc_enable, sc);
}
sc->sc_bus.intr_context--;
if (eintrs != 0) {
/* Block unprocessed interrupts. */
OWRITE4(sc, OHCI_INTERRUPT_DISABLE, eintrs);
sc->sc_eintrs &= ~eintrs;
DPRINTFN(1, ("%s: blocking intrs 0x%x\n",
device_xname(sc->sc_dev), eintrs));
}
return (1);
}
void
ohci_rhsc_enable(void *v_sc)
{
ohci_softc_t *sc = v_sc;
int s;
s = splhardusb();
sc->sc_eintrs |= OHCI_RHSC;
OWRITE4(sc, OHCI_INTERRUPT_ENABLE, OHCI_RHSC);
splx(s);
}
#ifdef OHCI_DEBUG
const char *ohci_cc_strs[] = {
"NO_ERROR",
"CRC",
"BIT_STUFFING",
"DATA_TOGGLE_MISMATCH",
"STALL",
"DEVICE_NOT_RESPONDING",
"PID_CHECK_FAILURE",
"UNEXPECTED_PID",
"DATA_OVERRUN",
"DATA_UNDERRUN",
"BUFFER_OVERRUN",
"BUFFER_UNDERRUN",
"reserved",
"reserved",
"NOT_ACCESSED",
"NOT_ACCESSED",
};
#endif
void
ohci_softintr(void *v)
{
struct usbd_bus *bus = v;
ohci_softc_t *sc = bus->hci_private;
ohci_soft_itd_t *sitd, *sidone, *sitdnext;
ohci_soft_td_t *std, *sdone, *stdnext;
usbd_xfer_handle xfer;
struct ohci_pipe *opipe;
int len, cc, s;
int i, j, actlen, iframes, uedir;
ohci_physaddr_t done;
DPRINTFN(10,("ohci_softintr: enter\n"));
sc->sc_bus.intr_context++;
s = splhardusb();
usb_syncmem(&sc->sc_hccadma, offsetof(struct ohci_hcca, hcca_done_head),
sizeof(sc->sc_hcca->hcca_done_head),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
done = O32TOH(sc->sc_hcca->hcca_done_head) & ~OHCI_DONE_INTRS;
sc->sc_hcca->hcca_done_head = 0;
usb_syncmem(&sc->sc_hccadma, offsetof(struct ohci_hcca, hcca_done_head),
sizeof(sc->sc_hcca->hcca_done_head),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
OWRITE4(sc, OHCI_INTERRUPT_STATUS, OHCI_WDH);
sc->sc_eintrs |= OHCI_WDH;
OWRITE4(sc, OHCI_INTERRUPT_ENABLE, OHCI_WDH);
splx(s);
/* Reverse the done list. */
for (sdone = NULL, sidone = NULL; done != 0; ) {
std = ohci_hash_find_td(sc, done);
if (std != NULL) {
usb_syncmem(&std->dma, std->offs, sizeof(std->td),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
std->dnext = sdone;
done = O32TOH(std->td.td_nexttd);
sdone = std;
DPRINTFN(10,("add TD %p\n", std));
continue;
}
sitd = ohci_hash_find_itd(sc, done);
if (sitd != NULL) {
usb_syncmem(&sitd->dma, sitd->offs, sizeof(sitd->itd),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sitd->dnext = sidone;
done = O32TOH(sitd->itd.itd_nextitd);
sidone = sitd;
DPRINTFN(5,("add ITD %p\n", sitd));
continue;
}
panic("ohci_softintr: addr 0x%08lx not found", (u_long)done);
}
DPRINTFN(10,("ohci_softintr: sdone=%p sidone=%p\n", sdone, sidone));
#ifdef OHCI_DEBUG
if (ohcidebug > 10) {
DPRINTF(("ohci_process_done: TD done:\n"));
ohci_dump_tds(sc, sdone);
}
#endif
for (std = sdone; std; std = stdnext) {
xfer = std->xfer;
stdnext = std->dnext;
DPRINTFN(10, ("ohci_process_done: std=%p xfer=%p hcpriv=%p\n",
std, xfer, xfer ? xfer->hcpriv : 0));
if (xfer == NULL) {
/*
* xfer == NULL: There seems to be no xfer associated
* with this TD. It is tailp that happened to end up on
* the done queue.
* Shouldn't happen, but some chips are broken(?).
*/
continue;
}
if (xfer->status == USBD_CANCELLED ||
xfer->status == USBD_TIMEOUT) {
DPRINTF(("ohci_process_done: cancel/timeout %p\n",
xfer));
/* Handled by abort routine. */
continue;
}
usb_uncallout(xfer->timeout_handle, ohci_timeout, xfer);
len = std->len;
if (std->td.td_cbp != 0)
len -= O32TOH(std->td.td_be) -
O32TOH(std->td.td_cbp) + 1;
DPRINTFN(10, ("ohci_process_done: len=%d, flags=0x%x\n", len,
std->flags));
if (std->flags & OHCI_ADD_LEN)
xfer->actlen += len;
cc = OHCI_TD_GET_CC(O32TOH(std->td.td_flags));
if (cc == OHCI_CC_NO_ERROR) {
if (std->flags & OHCI_CALL_DONE) {
xfer->status = USBD_NORMAL_COMPLETION;
s = splusb();
usb_transfer_complete(xfer);
splx(s);
}
ohci_free_std(sc, std);
} else {
/*
* Endpoint is halted. First unlink all the TDs
* belonging to the failed transfer, and then restart
* the endpoint.
*/
ohci_soft_td_t *p, *n;
opipe = (struct ohci_pipe *)xfer->pipe;
DPRINTFN(15,("ohci_process_done: error cc=%d (%s)\n",
OHCI_TD_GET_CC(O32TOH(std->td.td_flags)),
ohci_cc_strs[OHCI_TD_GET_CC(O32TOH(std->td.td_flags))]));
/* remove TDs */
for (p = std; p->xfer == xfer; p = n) {
n = p->nexttd;
ohci_free_std(sc, p);
}
/* clear halt */
opipe->sed->ed.ed_headp = HTOO32(p->physaddr);
OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_CLF);
if (cc == OHCI_CC_STALL)
xfer->status = USBD_STALLED;
else
xfer->status = USBD_IOERROR;
s = splusb();
usb_transfer_complete(xfer);
splx(s);
}
}
#ifdef OHCI_DEBUG
if (ohcidebug > 10) {
DPRINTF(("ohci_softintr: ITD done:\n"));
ohci_dump_itds(sc, sidone);
}
#endif
for (sitd = sidone; sitd != NULL; sitd = sitdnext) {
xfer = sitd->xfer;
sitdnext = sitd->dnext;
DPRINTFN(1, ("ohci_process_done: sitd=%p xfer=%p hcpriv=%p\n",
sitd, xfer, xfer ? xfer->hcpriv : 0));
if (xfer == NULL)
continue;
if (xfer->status == USBD_CANCELLED ||
xfer->status == USBD_TIMEOUT) {
DPRINTF(("ohci_process_done: cancel/timeout %p\n",
xfer));
/* Handled by abort routine. */
continue;
}
#ifdef DIAGNOSTIC
if (sitd->isdone)
printf("ohci_softintr: sitd=%p is done\n", sitd);
sitd->isdone = 1;
#endif
if (sitd->flags & OHCI_CALL_DONE) {
ohci_soft_itd_t *next;
opipe = (struct ohci_pipe *)xfer->pipe;
opipe->u.iso.inuse -= xfer->nframes;
uedir = UE_GET_DIR(xfer->pipe->endpoint->edesc->
bEndpointAddress);
xfer->status = USBD_NORMAL_COMPLETION;
actlen = 0;
for (i = 0, sitd = xfer->hcpriv;;
sitd = next) {
next = sitd->nextitd;
if (OHCI_ITD_GET_CC(O32TOH(sitd->
itd.itd_flags)) != OHCI_CC_NO_ERROR)
xfer->status = USBD_IOERROR;
/* For input, update frlengths with actual */
/* XXX anything necessary for output? */
if (uedir == UE_DIR_IN &&
xfer->status == USBD_NORMAL_COMPLETION) {
iframes = OHCI_ITD_GET_FC(O32TOH(
sitd->itd.itd_flags));
for (j = 0; j < iframes; i++, j++) {
len = O16TOH(sitd->
itd.itd_offset[j]);
if ((OHCI_ITD_PSW_GET_CC(len) &
OHCI_CC_NOT_ACCESSED_MASK)
== OHCI_CC_NOT_ACCESSED)
len = 0;
else
len = OHCI_ITD_PSW_LENGTH(len);
xfer->frlengths[i] = len;
actlen += len;
}
}
if (sitd->flags & OHCI_CALL_DONE)
break;
ohci_free_sitd(sc, sitd);
}
ohci_free_sitd(sc, sitd);
if (uedir == UE_DIR_IN &&
xfer->status == USBD_NORMAL_COMPLETION)
xfer->actlen = actlen;
xfer->hcpriv = NULL;
s = splusb();
usb_transfer_complete(xfer);
splx(s);
}
}
#ifdef USB_USE_SOFTINTR
if (sc->sc_softwake) {
sc->sc_softwake = 0;
wakeup(&sc->sc_softwake);
}
#endif /* USB_USE_SOFTINTR */
sc->sc_bus.intr_context--;
DPRINTFN(10,("ohci_softintr: done:\n"));
}
void
ohci_device_ctrl_done(usbd_xfer_handle xfer)
{
struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe;
int len = UGETW(xfer->request.wLength);
int isread = (xfer->request.bmRequestType & UT_READ);
DPRINTFN(10,("ohci_device_ctrl_done: xfer=%p\n", xfer));
#ifdef DIAGNOSTIC
if (!(xfer->rqflags & URQ_REQUEST)) {
panic("ohci_device_ctrl_done: not a request");
}
#endif
if (len)
usb_syncmem(&xfer->dmabuf, 0, len,
isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
usb_syncmem(&opipe->u.ctl.reqdma, 0,
sizeof(usb_device_request_t), BUS_DMASYNC_POSTWRITE);
}
void
ohci_device_intr_done(usbd_xfer_handle xfer)
{
struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe;
ohci_softc_t *sc = opipe->pipe.device->bus->hci_private;
ohci_soft_ed_t *sed = opipe->sed;
ohci_soft_td_t *data, *tail;
int isread =
(UE_GET_DIR(xfer->pipe->endpoint->edesc->bEndpointAddress) == UE_DIR_IN);
DPRINTFN(10,("ohci_device_intr_done: xfer=%p, actlen=%d\n",
xfer, xfer->actlen));
usb_syncmem(&xfer->dmabuf, 0, xfer->length,
isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
if (xfer->pipe->repeat) {
data = opipe->tail.td;
tail = ohci_alloc_std(sc); /* XXX should reuse TD */
if (tail == NULL) {
xfer->status = USBD_NOMEM;
return;
}
tail->xfer = NULL;
data->td.td_flags = HTOO32(
OHCI_TD_IN | OHCI_TD_NOCC |
OHCI_TD_SET_DI(1) | OHCI_TD_TOGGLE_CARRY);
if (xfer->flags & USBD_SHORT_XFER_OK)
data->td.td_flags |= HTOO32(OHCI_TD_R);
data->td.td_cbp = HTOO32(DMAADDR(&xfer->dmabuf, 0));
data->nexttd = tail;
data->td.td_nexttd = HTOO32(tail->physaddr);
data->td.td_be = HTOO32(O32TOH(data->td.td_cbp) +
xfer->length - 1);
data->len = xfer->length;
data->xfer = xfer;
data->flags = OHCI_CALL_DONE | OHCI_ADD_LEN;
usb_syncmem(&data->dma, data->offs, sizeof(data->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
xfer->hcpriv = data;
xfer->actlen = 0;
sed->ed.ed_tailp = HTOO32(tail->physaddr);
usb_syncmem(&sed->dma,
sed->offs + offsetof(ohci_ed_t, ed_tailp),
sizeof(sed->ed.ed_tailp),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
opipe->tail.td = tail;
}
}
void
ohci_device_bulk_done(usbd_xfer_handle xfer)
{
int isread =
(UE_GET_DIR(xfer->pipe->endpoint->edesc->bEndpointAddress) == UE_DIR_IN);
DPRINTFN(10,("ohci_device_bulk_done: xfer=%p, actlen=%d\n",
xfer, xfer->actlen));
usb_syncmem(&xfer->dmabuf, 0, xfer->length,
isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
}
void
ohci_rhsc(ohci_softc_t *sc, usbd_xfer_handle xfer)
{
usbd_pipe_handle pipe;
u_char *p;
int i, m;
int hstatus;
hstatus = OREAD4(sc, OHCI_RH_STATUS);
DPRINTF(("ohci_rhsc: sc=%p xfer=%p hstatus=0x%08x\n",
sc, xfer, hstatus));
if (xfer == NULL) {
/* Just ignore the change. */
return;
}
pipe = xfer->pipe;
p = KERNADDR(&xfer->dmabuf, 0);
m = min(sc->sc_noport, xfer->length * 8 - 1);
memset(p, 0, xfer->length);
for (i = 1; i <= m; i++) {
/* Pick out CHANGE bits from the status reg. */
if (OREAD4(sc, OHCI_RH_PORT_STATUS(i)) >> 16)
p[i/8] |= 1 << (i%8);
}
DPRINTF(("ohci_rhsc: change=0x%02x\n", *p));
xfer->actlen = xfer->length;
xfer->status = USBD_NORMAL_COMPLETION;
usb_transfer_complete(xfer);
}
void
ohci_root_intr_done(usbd_xfer_handle xfer)
{
}
void
ohci_root_ctrl_done(usbd_xfer_handle xfer)
{
}
/*
* Wait here until controller claims to have an interrupt.
* Then call ohci_intr and return. Use timeout to avoid waiting
* too long.
*/
void
ohci_waitintr(ohci_softc_t *sc, usbd_xfer_handle xfer)
{
int timo;
u_int32_t intrs;
xfer->status = USBD_IN_PROGRESS;
for (timo = xfer->timeout; timo >= 0; timo--) {
usb_delay_ms(&sc->sc_bus, 1);
if (sc->sc_dying)
break;
intrs = OREAD4(sc, OHCI_INTERRUPT_STATUS) & sc->sc_eintrs;
DPRINTFN(15,("ohci_waitintr: 0x%04x\n", intrs));
#ifdef OHCI_DEBUG
if (ohcidebug > 15)
ohci_dumpregs(sc);
#endif
if (intrs) {
ohci_intr1(sc);
if (xfer->status != USBD_IN_PROGRESS)
return;
}
}
/* Timeout */
DPRINTF(("ohci_waitintr: timeout\n"));
xfer->status = USBD_TIMEOUT;
usb_transfer_complete(xfer);
/* XXX should free TD */
}
void
ohci_poll(struct usbd_bus *bus)
{
ohci_softc_t *sc = bus->hci_private;
#ifdef OHCI_DEBUG
static int last;
int new;
new = OREAD4(sc, OHCI_INTERRUPT_STATUS);
if (new != last) {
DPRINTFN(10,("ohci_poll: intrs=0x%04x\n", new));
last = new;
}
#endif
if (OREAD4(sc, OHCI_INTERRUPT_STATUS) & sc->sc_eintrs)
ohci_intr1(sc);
}
usbd_status
ohci_device_request(usbd_xfer_handle xfer)
{
struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe;
usb_device_request_t *req = &xfer->request;
usbd_device_handle dev = opipe->pipe.device;
ohci_softc_t *sc = dev->bus->hci_private;
int addr = dev->address;
ohci_soft_td_t *setup, *stat, *next, *tail;
ohci_soft_ed_t *sed;
int isread;
int len;
usbd_status err;
int s;
isread = req->bmRequestType & UT_READ;
len = UGETW(req->wLength);
DPRINTFN(3,("ohci_device_control type=0x%02x, request=0x%02x, "
"wValue=0x%04x, wIndex=0x%04x len=%d, addr=%d, endpt=%d\n",
req->bmRequestType, req->bRequest, UGETW(req->wValue),
UGETW(req->wIndex), len, addr,
opipe->pipe.endpoint->edesc->bEndpointAddress));
setup = opipe->tail.td;
stat = ohci_alloc_std(sc);
if (stat == NULL) {
err = USBD_NOMEM;
goto bad1;
}
tail = ohci_alloc_std(sc);
if (tail == NULL) {
err = USBD_NOMEM;
goto bad2;
}
tail->xfer = NULL;
sed = opipe->sed;
opipe->u.ctl.length = len;
/* Update device address and length since they may have changed
during the setup of the control pipe in usbd_new_device(). */
/* XXX This only needs to be done once, but it's too early in open. */
/* XXXX Should not touch ED here! */
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->ed.ed_flags = HTOO32(
(O32TOH(sed->ed.ed_flags) & ~(OHCI_ED_ADDRMASK | OHCI_ED_MAXPMASK)) |
OHCI_ED_SET_FA(addr) |
OHCI_ED_SET_MAXP(UGETW(opipe->pipe.endpoint->edesc->wMaxPacketSize)));
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
next = stat;
/* Set up data transaction */
if (len != 0) {
ohci_soft_td_t *std = stat;
err = ohci_alloc_std_chain(opipe, sc, len, isread, xfer,
std, &stat);
stat = stat->nexttd; /* point at free TD */
if (err)
goto bad3;
/* Start toggle at 1 and then use the carried toggle. */
std->td.td_flags &= HTOO32(~OHCI_TD_TOGGLE_MASK);
std->td.td_flags |= HTOO32(OHCI_TD_TOGGLE_1);
usb_syncmem(&std->dma,
std->offs + offsetof(ohci_td_t, td_flags),
sizeof(std->td.td_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
memcpy(KERNADDR(&opipe->u.ctl.reqdma, 0), req, sizeof *req);
usb_syncmem(&opipe->u.ctl.reqdma, 0, sizeof *req, BUS_DMASYNC_PREWRITE);
setup->td.td_flags = HTOO32(OHCI_TD_SETUP | OHCI_TD_NOCC |
OHCI_TD_TOGGLE_0 | OHCI_TD_NOINTR);
setup->td.td_cbp = HTOO32(DMAADDR(&opipe->u.ctl.reqdma, 0));
setup->nexttd = next;
setup->td.td_nexttd = HTOO32(next->physaddr);
setup->td.td_be = HTOO32(O32TOH(setup->td.td_cbp) + sizeof *req - 1);
setup->len = 0;
setup->xfer = xfer;
setup->flags = 0;
xfer->hcpriv = setup;
usb_syncmem(&setup->dma, setup->offs, sizeof(setup->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
stat->td.td_flags = HTOO32(
(isread ? OHCI_TD_OUT : OHCI_TD_IN) |
OHCI_TD_NOCC | OHCI_TD_TOGGLE_1 | OHCI_TD_SET_DI(1));
stat->td.td_cbp = 0;
stat->nexttd = tail;
stat->td.td_nexttd = HTOO32(tail->physaddr);
stat->td.td_be = 0;
stat->flags = OHCI_CALL_DONE;
stat->len = 0;
stat->xfer = xfer;
usb_syncmem(&stat->dma, stat->offs, sizeof(stat->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
#ifdef OHCI_DEBUG
if (ohcidebug > 5) {
DPRINTF(("ohci_device_request:\n"));
ohci_dump_ed(sc, sed);
ohci_dump_tds(sc, setup);
}
#endif
/* Insert ED in schedule */
s = splusb();
sed->ed.ed_tailp = HTOO32(tail->physaddr);
usb_syncmem(&sed->dma,
sed->offs + offsetof(ohci_ed_t, ed_tailp),
sizeof(sed->ed.ed_tailp),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
opipe->tail.td = tail;
OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_CLF);
if (xfer->timeout && !sc->sc_bus.use_polling) {
usb_callout(xfer->timeout_handle, mstohz(xfer->timeout),
ohci_timeout, xfer);
}
splx(s);
#ifdef OHCI_DEBUG
if (ohcidebug > 20) {
delay(10000);
DPRINTF(("ohci_device_request: status=%x\n",
OREAD4(sc, OHCI_COMMAND_STATUS)));
ohci_dumpregs(sc);
printf("ctrl head:\n");
ohci_dump_ed(sc, sc->sc_ctrl_head);
printf("sed:\n");
ohci_dump_ed(sc, sed);
ohci_dump_tds(sc, setup);
}
#endif
return (USBD_NORMAL_COMPLETION);
bad3:
ohci_free_std(sc, tail);
bad2:
ohci_free_std(sc, stat);
bad1:
return (err);
}
/*
* Add an ED to the schedule. Called at splusb().
*/
void
ohci_add_ed(ohci_softc_t *sc, ohci_soft_ed_t *sed, ohci_soft_ed_t *head)
{
DPRINTFN(8,("ohci_add_ed: sed=%p head=%p\n", sed, head));
SPLUSBCHECK;
usb_syncmem(&head->dma, head->offs + offsetof(ohci_ed_t, ed_nexted),
sizeof(head->ed.ed_nexted),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->next = head->next;
sed->ed.ed_nexted = head->ed.ed_nexted;
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_nexted),
sizeof(sed->ed.ed_nexted),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
head->next = sed;
head->ed.ed_nexted = HTOO32(sed->physaddr);
usb_syncmem(&head->dma, head->offs + offsetof(ohci_ed_t, ed_nexted),
sizeof(head->ed.ed_nexted),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
/*
* Remove an ED from the schedule. Called at splusb().
*/
void
ohci_rem_ed(ohci_soft_ed_t *sed, ohci_soft_ed_t *head)
{
ohci_soft_ed_t *p;
SPLUSBCHECK;
/* XXX */
for (p = head; p != NULL && p->next != sed; p = p->next)
;
if (p == NULL)
panic("ohci_rem_ed: ED not found");
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_nexted),
sizeof(sed->ed.ed_nexted),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
p->next = sed->next;
p->ed.ed_nexted = sed->ed.ed_nexted;
usb_syncmem(&p->dma, p->offs + offsetof(ohci_ed_t, ed_nexted),
sizeof(p->ed.ed_nexted),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
/*
* When a transfer is completed the TD is added to the done queue by
* the host controller. This queue is the processed by software.
* Unfortunately the queue contains the physical address of the TD
* and we have no simple way to translate this back to a kernel address.
* To make the translation possible (and fast) we use a hash table of
* TDs currently in the schedule. The physical address is used as the
* hash value.
*/
#define HASH(a) (((a) >> 4) % OHCI_HASH_SIZE)
/* Called at splusb() */
void
ohci_hash_add_td(ohci_softc_t *sc, ohci_soft_td_t *std)
{
int h = HASH(std->physaddr);
SPLUSBCHECK;
LIST_INSERT_HEAD(&sc->sc_hash_tds[h], std, hnext);
}
/* Called at splusb() */
void
ohci_hash_rem_td(ohci_softc_t *sc, ohci_soft_td_t *std)
{
SPLUSBCHECK;
LIST_REMOVE(std, hnext);
}
ohci_soft_td_t *
ohci_hash_find_td(ohci_softc_t *sc, ohci_physaddr_t a)
{
int h = HASH(a);
ohci_soft_td_t *std;
for (std = LIST_FIRST(&sc->sc_hash_tds[h]);
std != NULL;
std = LIST_NEXT(std, hnext))
if (std->physaddr == a)
return (std);
return (NULL);
}
/* Called at splusb() */
void
ohci_hash_add_itd(ohci_softc_t *sc, ohci_soft_itd_t *sitd)
{
int h = HASH(sitd->physaddr);
SPLUSBCHECK;
DPRINTFN(10,("ohci_hash_add_itd: sitd=%p physaddr=0x%08lx\n",
sitd, (u_long)sitd->physaddr));
LIST_INSERT_HEAD(&sc->sc_hash_itds[h], sitd, hnext);
}
/* Called at splusb() */
void
ohci_hash_rem_itd(ohci_softc_t *sc, ohci_soft_itd_t *sitd)
{
SPLUSBCHECK;
DPRINTFN(10,("ohci_hash_rem_itd: sitd=%p physaddr=0x%08lx\n",
sitd, (u_long)sitd->physaddr));
LIST_REMOVE(sitd, hnext);
}
ohci_soft_itd_t *
ohci_hash_find_itd(ohci_softc_t *sc, ohci_physaddr_t a)
{
int h = HASH(a);
ohci_soft_itd_t *sitd;
for (sitd = LIST_FIRST(&sc->sc_hash_itds[h]);
sitd != NULL;
sitd = LIST_NEXT(sitd, hnext))
if (sitd->physaddr == a)
return (sitd);
return (NULL);
}
void
ohci_timeout(void *addr)
{
struct ohci_xfer *oxfer = addr;
struct ohci_pipe *opipe = (struct ohci_pipe *)oxfer->xfer.pipe;
ohci_softc_t *sc = opipe->pipe.device->bus->hci_private;
DPRINTF(("ohci_timeout: oxfer=%p\n", oxfer));
if (sc->sc_dying) {
ohci_abort_xfer(&oxfer->xfer, USBD_TIMEOUT);
return;
}
/* Execute the abort in a process context. */
usb_init_task(&oxfer->abort_task, ohci_timeout_task, addr);
usb_add_task(oxfer->xfer.pipe->device, &oxfer->abort_task,
USB_TASKQ_HC);
}
void
ohci_timeout_task(void *addr)
{
usbd_xfer_handle xfer = addr;
int s;
DPRINTF(("ohci_timeout_task: xfer=%p\n", xfer));
s = splusb();
ohci_abort_xfer(xfer, USBD_TIMEOUT);
splx(s);
}
#ifdef OHCI_DEBUG
void
ohci_dump_tds(ohci_softc_t *sc, ohci_soft_td_t *std)
{
for (; std; std = std->nexttd)
ohci_dump_td(sc, std);
}
void
ohci_dump_td(ohci_softc_t *sc, ohci_soft_td_t *std)
{
char sbuf[128];
usb_syncmem(&std->dma, std->offs, sizeof(std->td),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
snprintb(sbuf, sizeof(sbuf),
"\20\23R\24OUT\25IN\31TOG1\32SETTOGGLE",
(u_int32_t)O32TOH(std->td.td_flags));
printf("TD(%p) at %08lx: %s delay=%d ec=%d cc=%d\ncbp=0x%08lx "
"nexttd=0x%08lx be=0x%08lx\n",
std, (u_long)std->physaddr, sbuf,
OHCI_TD_GET_DI(O32TOH(std->td.td_flags)),
OHCI_TD_GET_EC(O32TOH(std->td.td_flags)),
OHCI_TD_GET_CC(O32TOH(std->td.td_flags)),
(u_long)O32TOH(std->td.td_cbp),
(u_long)O32TOH(std->td.td_nexttd),
(u_long)O32TOH(std->td.td_be));
}
void
ohci_dump_itd(ohci_softc_t *sc, ohci_soft_itd_t *sitd)
{
int i;
usb_syncmem(&sitd->dma, sitd->offs, sizeof(sitd->itd),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
printf("ITD(%p) at %08lx: sf=%d di=%d fc=%d cc=%d\n"
"bp0=0x%08lx next=0x%08lx be=0x%08lx\n",
sitd, (u_long)sitd->physaddr,
OHCI_ITD_GET_SF(O32TOH(sitd->itd.itd_flags)),
OHCI_ITD_GET_DI(O32TOH(sitd->itd.itd_flags)),
OHCI_ITD_GET_FC(O32TOH(sitd->itd.itd_flags)),
OHCI_ITD_GET_CC(O32TOH(sitd->itd.itd_flags)),
(u_long)O32TOH(sitd->itd.itd_bp0),
(u_long)O32TOH(sitd->itd.itd_nextitd),
(u_long)O32TOH(sitd->itd.itd_be));
for (i = 0; i < OHCI_ITD_NOFFSET; i++)
printf("offs[%d]=0x%04x ", i,
(u_int)O16TOH(sitd->itd.itd_offset[i]));
printf("\n");
}
void
ohci_dump_itds(ohci_softc_t *sc, ohci_soft_itd_t *sitd)
{
for (; sitd; sitd = sitd->nextitd)
ohci_dump_itd(sc, sitd);
}
void
ohci_dump_ed(ohci_softc_t *sc, ohci_soft_ed_t *sed)
{
char sbuf[128], sbuf2[128];
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
snprintb(sbuf, sizeof(sbuf),
"\20\14OUT\15IN\16LOWSPEED\17SKIP\20ISO",
(u_int32_t)O32TOH(sed->ed.ed_flags));
snprintb(sbuf2, sizeof(sbuf2), "\20\1HALT\2CARRY",
(u_int32_t)O32TOH(sed->ed.ed_headp));
printf("ED(%p) at 0x%08lx: addr=%d endpt=%d maxp=%d flags=%s\ntailp=0x%08lx "
"headflags=%s headp=0x%08lx nexted=0x%08lx\n",
sed, (u_long)sed->physaddr,
OHCI_ED_GET_FA(O32TOH(sed->ed.ed_flags)),
OHCI_ED_GET_EN(O32TOH(sed->ed.ed_flags)),
OHCI_ED_GET_MAXP(O32TOH(sed->ed.ed_flags)), sbuf,
(u_long)O32TOH(sed->ed.ed_tailp), sbuf2,
(u_long)O32TOH(sed->ed.ed_headp),
(u_long)O32TOH(sed->ed.ed_nexted));
}
#endif
usbd_status
ohci_open(usbd_pipe_handle pipe)
{
usbd_device_handle dev = pipe->device;
ohci_softc_t *sc = dev->bus->hci_private;
usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc;
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
u_int8_t addr = dev->address;
u_int8_t xfertype = ed->bmAttributes & UE_XFERTYPE;
ohci_soft_ed_t *sed;
ohci_soft_td_t *std;
ohci_soft_itd_t *sitd;
ohci_physaddr_t tdphys;
u_int32_t fmt;
usbd_status err;
int s;
int ival;
DPRINTFN(1, ("ohci_open: pipe=%p, addr=%d, endpt=%d (%d)\n",
pipe, addr, ed->bEndpointAddress, sc->sc_addr));
if (sc->sc_dying)
return (USBD_IOERROR);
std = NULL;
sed = NULL;
if (addr == sc->sc_addr) {
switch (ed->bEndpointAddress) {
case USB_CONTROL_ENDPOINT:
pipe->methods = &ohci_root_ctrl_methods;
break;
case UE_DIR_IN | OHCI_INTR_ENDPT:
pipe->methods = &ohci_root_intr_methods;
break;
default:
return (USBD_INVAL);
}
} else {
sed = ohci_alloc_sed(sc);
if (sed == NULL)
goto bad0;
opipe->sed = sed;
if (xfertype == UE_ISOCHRONOUS) {
sitd = ohci_alloc_sitd(sc);
if (sitd == NULL)
goto bad1;
opipe->tail.itd = sitd;
tdphys = sitd->physaddr;
fmt = OHCI_ED_FORMAT_ISO;
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN)
fmt |= OHCI_ED_DIR_IN;
else
fmt |= OHCI_ED_DIR_OUT;
} else {
std = ohci_alloc_std(sc);
if (std == NULL)
goto bad1;
opipe->tail.td = std;
tdphys = std->physaddr;
fmt = OHCI_ED_FORMAT_GEN | OHCI_ED_DIR_TD;
}
sed->ed.ed_flags = HTOO32(
OHCI_ED_SET_FA(addr) |
OHCI_ED_SET_EN(UE_GET_ADDR(ed->bEndpointAddress)) |
(dev->speed == USB_SPEED_LOW ? OHCI_ED_SPEED : 0) |
fmt |
OHCI_ED_SET_MAXP(UGETW(ed->wMaxPacketSize)));
sed->ed.ed_headp = sed->ed.ed_tailp = HTOO32(tdphys);
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
switch (xfertype) {
case UE_CONTROL:
pipe->methods = &ohci_device_ctrl_methods;
err = usb_allocmem(&sc->sc_bus,
sizeof(usb_device_request_t),
0, &opipe->u.ctl.reqdma);
if (err)
goto bad;
s = splusb();
ohci_add_ed(sc, sed, sc->sc_ctrl_head);
splx(s);
break;
case UE_INTERRUPT:
pipe->methods = &ohci_device_intr_methods;
ival = pipe->interval;
if (ival == USBD_DEFAULT_INTERVAL)
ival = ed->bInterval;
return (ohci_device_setintr(sc, opipe, ival));
case UE_ISOCHRONOUS:
pipe->methods = &ohci_device_isoc_methods;
return (ohci_setup_isoc(pipe));
case UE_BULK:
pipe->methods = &ohci_device_bulk_methods;
s = splusb();
ohci_add_ed(sc, sed, sc->sc_bulk_head);
splx(s);
break;
}
}
return (USBD_NORMAL_COMPLETION);
bad:
if (std != NULL)
ohci_free_std(sc, std);
bad1:
if (sed != NULL)
ohci_free_sed(sc, sed);
bad0:
return (USBD_NOMEM);
}
/*
* Close a reqular pipe.
* Assumes that there are no pending transactions.
*/
void
ohci_close_pipe(usbd_pipe_handle pipe, ohci_soft_ed_t *head)
{
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
ohci_softc_t *sc = pipe->device->bus->hci_private;
ohci_soft_ed_t *sed = opipe->sed;
int s;
s = splusb();
#ifdef DIAGNOSTIC
sed->ed.ed_flags |= HTOO32(OHCI_ED_SKIP);
if ((O32TOH(sed->ed.ed_tailp) & OHCI_HEADMASK) !=
(O32TOH(sed->ed.ed_headp) & OHCI_HEADMASK)) {
ohci_soft_td_t *std;
std = ohci_hash_find_td(sc, O32TOH(sed->ed.ed_headp));
printf("ohci_close_pipe: pipe not empty sed=%p hd=0x%x "
"tl=0x%x pipe=%p, std=%p\n", sed,
(int)O32TOH(sed->ed.ed_headp),
(int)O32TOH(sed->ed.ed_tailp),
pipe, std);
#ifdef USB_DEBUG
usbd_dump_pipe(&opipe->pipe);
#endif
#ifdef OHCI_DEBUG
ohci_dump_ed(sc, sed);
if (std)
ohci_dump_td(sc, std);
#endif
usb_delay_ms(&sc->sc_bus, 2);
if ((O32TOH(sed->ed.ed_tailp) & OHCI_HEADMASK) !=
(O32TOH(sed->ed.ed_headp) & OHCI_HEADMASK))
printf("ohci_close_pipe: pipe still not empty\n");
}
#endif
ohci_rem_ed(sed, head);
/* Make sure the host controller is not touching this ED */
usb_delay_ms(&sc->sc_bus, 1);
splx(s);
ohci_free_sed(sc, opipe->sed);
}
/*
* Abort a device request.
* If this routine is called at splusb() it guarantees that the request
* will be removed from the hardware scheduling and that the callback
* for it will be called with USBD_CANCELLED status.
* It's impossible to guarantee that the requested transfer will not
* have happened since the hardware runs concurrently.
* If the transaction has already happened we rely on the ordinary
* interrupt processing to process it.
*/
void
ohci_abort_xfer(usbd_xfer_handle xfer, usbd_status status)
{
struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe;
ohci_softc_t *sc = opipe->pipe.device->bus->hci_private;
ohci_soft_ed_t *sed = opipe->sed;
ohci_soft_td_t *p, *n;
ohci_physaddr_t headp;
int s, hit;
int wake;
DPRINTF(("ohci_abort_xfer: xfer=%p pipe=%p sed=%p\n", xfer, opipe,sed));
if (sc->sc_dying) {
/* If we're dying, just do the software part. */
s = splusb();
xfer->status = status; /* make software ignore it */
usb_uncallout(xfer->timeout_handle, ohci_timeout, xfer);
usb_transfer_complete(xfer);
splx(s);
return;
}
if (xfer->device->bus->intr_context || !curproc)
panic("ohci_abort_xfer: not in process context");
/*
* If an abort is already in progress then just wait for it to
* complete and return.
*/
if (xfer->hcflags & UXFER_ABORTING) {
DPRINTFN(2, ("ohci_abort_xfer: already aborting\n"));
#ifdef DIAGNOSTIC
if (status == USBD_TIMEOUT)
printf("0hci_abort_xfer: TIMEOUT while aborting\n");
#endif
/* Override the status which might be USBD_TIMEOUT. */
xfer->status = status;
DPRINTFN(2, ("ohci_abort_xfer: waiting for abort to finish\n"));
xfer->hcflags |= UXFER_ABORTWAIT;
while (xfer->hcflags & UXFER_ABORTING)
tsleep(&xfer->hcflags, PZERO, "ohciaw", 0);
return;
}
xfer->hcflags |= UXFER_ABORTING;
/*
* Step 1: Make interrupt routine and hardware ignore xfer.
*/
s = splusb();
xfer->status = status; /* make software ignore it */
usb_uncallout(xfer->timeout_handle, ohci_timeout, xfer);
splx(s);
DPRINTFN(1,("ohci_abort_xfer: stop ed=%p\n", sed));
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->ed.ed_flags |= HTOO32(OHCI_ED_SKIP); /* force hardware skip */
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/*
* Step 2: Wait until we know hardware has finished any possible
* use of the xfer. Also make sure the soft interrupt routine
* has run.
*/
usb_delay_ms(opipe->pipe.device->bus, 20); /* Hardware finishes in 1ms */
s = splusb();
#ifdef USB_USE_SOFTINTR
sc->sc_softwake = 1;
#endif /* USB_USE_SOFTINTR */
usb_schedsoftintr(&sc->sc_bus);
#ifdef USB_USE_SOFTINTR
tsleep(&sc->sc_softwake, PZERO, "ohciab", 0);
#endif /* USB_USE_SOFTINTR */
splx(s);
/*
* Step 3: Remove any vestiges of the xfer from the hardware.
* The complication here is that the hardware may have executed
* beyond the xfer we're trying to abort. So as we're scanning
* the TDs of this xfer we check if the hardware points to
* any of them.
*/
s = splusb(); /* XXX why? */
p = xfer->hcpriv;
#ifdef DIAGNOSTIC
if (p == NULL) {
xfer->hcflags &= ~UXFER_ABORTING; /* XXX */
splx(s);
printf("ohci_abort_xfer: hcpriv is NULL\n");
return;
}
#endif
#ifdef OHCI_DEBUG
if (ohcidebug > 1) {
DPRINTF(("ohci_abort_xfer: sed=\n"));
ohci_dump_ed(sc, sed);
ohci_dump_tds(sc, p);
}
#endif
headp = O32TOH(sed->ed.ed_headp) & OHCI_HEADMASK;
hit = 0;
for (; p->xfer == xfer; p = n) {
hit |= headp == p->physaddr;
n = p->nexttd;
ohci_free_std(sc, p);
}
/* Zap headp register if hardware pointed inside the xfer. */
if (hit) {
DPRINTFN(1,("ohci_abort_xfer: set hd=0x%08x, tl=0x%08x\n",
(int)p->physaddr, (int)O32TOH(sed->ed.ed_tailp)));
sed->ed.ed_headp = HTOO32(p->physaddr); /* unlink TDs */
usb_syncmem(&sed->dma,
sed->offs + offsetof(ohci_ed_t, ed_headp),
sizeof(sed->ed.ed_headp),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
} else {
DPRINTFN(1,("ohci_abort_xfer: no hit\n"));
}
/*
* Step 4: Turn on hardware again.
*/
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->ed.ed_flags &= HTOO32(~OHCI_ED_SKIP); /* remove hardware skip */
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/*
* Step 5: Execute callback.
*/
wake = xfer->hcflags & UXFER_ABORTWAIT;
xfer->hcflags &= ~(UXFER_ABORTING | UXFER_ABORTWAIT);
usb_transfer_complete(xfer);
if (wake)
wakeup(&xfer->hcflags);
splx(s);
}
/*
* Data structures and routines to emulate the root hub.
*/
Static usb_device_descriptor_t ohci_devd = {
USB_DEVICE_DESCRIPTOR_SIZE,
UDESC_DEVICE, /* type */
{0x00, 0x01}, /* USB version */
UDCLASS_HUB, /* class */
UDSUBCLASS_HUB, /* subclass */
UDPROTO_FSHUB, /* protocol */
64, /* max packet */
{0},{0},{0x00,0x01}, /* device id */
1,2,0, /* string indicies */
1 /* # of configurations */
};
Static const usb_config_descriptor_t ohci_confd = {
USB_CONFIG_DESCRIPTOR_SIZE,
UDESC_CONFIG,
{USB_CONFIG_DESCRIPTOR_SIZE +
USB_INTERFACE_DESCRIPTOR_SIZE +
USB_ENDPOINT_DESCRIPTOR_SIZE},
1,
1,
0,
UC_ATTR_MBO | UC_SELF_POWERED,
0 /* max power */
};
Static const usb_interface_descriptor_t ohci_ifcd = {
USB_INTERFACE_DESCRIPTOR_SIZE,
UDESC_INTERFACE,
0,
0,
1,
UICLASS_HUB,
UISUBCLASS_HUB,
UIPROTO_FSHUB,
0
};
Static const usb_endpoint_descriptor_t ohci_endpd = {
.bLength = USB_ENDPOINT_DESCRIPTOR_SIZE,
.bDescriptorType = UDESC_ENDPOINT,
.bEndpointAddress = UE_DIR_IN | OHCI_INTR_ENDPT,
.bmAttributes = UE_INTERRUPT,
.wMaxPacketSize = {8, 0}, /* max packet */
.bInterval = 255,
};
Static const usb_hub_descriptor_t ohci_hubd = {
.bDescLength = USB_HUB_DESCRIPTOR_SIZE,
.bDescriptorType = UDESC_HUB,
};
/*
* Simulate a hardware hub by handling all the necessary requests.
*/
Static usbd_status
ohci_root_ctrl_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/* Pipe isn't running, start first */
return (ohci_root_ctrl_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
Static usbd_status
ohci_root_ctrl_start(usbd_xfer_handle xfer)
{
ohci_softc_t *sc = xfer->pipe->device->bus->hci_private;
usb_device_request_t *req;
void *buf = NULL;
int port, i;
int s, len, value, index, l, totlen = 0;
usb_port_status_t ps;
usb_hub_descriptor_t hubd;
usbd_status err;
u_int32_t v;
if (sc->sc_dying)
return (USBD_IOERROR);
#ifdef DIAGNOSTIC
if (!(xfer->rqflags & URQ_REQUEST))
/* XXX panic */
return (USBD_INVAL);
#endif
req = &xfer->request;
DPRINTFN(4,("ohci_root_ctrl_control type=0x%02x request=%02x\n",
req->bmRequestType, req->bRequest));
len = UGETW(req->wLength);
value = UGETW(req->wValue);
index = UGETW(req->wIndex);
if (len != 0)
buf = KERNADDR(&xfer->dmabuf, 0);
#define C(x,y) ((x) | ((y) << 8))
switch(C(req->bRequest, req->bmRequestType)) {
case C(UR_CLEAR_FEATURE, UT_WRITE_DEVICE):
case C(UR_CLEAR_FEATURE, UT_WRITE_INTERFACE):
case C(UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT):
/*
* DEVICE_REMOTE_WAKEUP and ENDPOINT_HALT are no-ops
* for the integrated root hub.
*/
break;
case C(UR_GET_CONFIG, UT_READ_DEVICE):
if (len > 0) {
*(u_int8_t *)buf = sc->sc_conf;
totlen = 1;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
DPRINTFN(8,("ohci_root_ctrl_control wValue=0x%04x\n", value));
if (len == 0)
break;
switch(value >> 8) {
case UDESC_DEVICE:
if ((value & 0xff) != 0) {
err = USBD_IOERROR;
goto ret;
}
totlen = l = min(len, USB_DEVICE_DESCRIPTOR_SIZE);
USETW(ohci_devd.idVendor, sc->sc_id_vendor);
memcpy(buf, &ohci_devd, l);
break;
case UDESC_CONFIG:
if ((value & 0xff) != 0) {
err = USBD_IOERROR;
goto ret;
}
totlen = l = min(len, USB_CONFIG_DESCRIPTOR_SIZE);
memcpy(buf, &ohci_confd, l);
buf = (char *)buf + l;
len -= l;
l = min(len, USB_INTERFACE_DESCRIPTOR_SIZE);
totlen += l;
memcpy(buf, &ohci_ifcd, l);
buf = (char *)buf + l;
len -= l;
l = min(len, USB_ENDPOINT_DESCRIPTOR_SIZE);
totlen += l;
memcpy(buf, &ohci_endpd, l);
break;
case UDESC_STRING:
#define sd ((usb_string_descriptor_t *)buf)
switch (value & 0xff) {
case 0: /* Language table */
totlen = usb_makelangtbl(sd, len);
break;
case 1: /* Vendor */
totlen = usb_makestrdesc(sd, len,
sc->sc_vendor);
break;
case 2: /* Product */
totlen = usb_makestrdesc(sd, len,
"OHCI root hub");
break;
}
#undef sd
break;
default:
err = USBD_IOERROR;
goto ret;
}
break;
case C(UR_GET_INTERFACE, UT_READ_INTERFACE):
if (len > 0) {
*(u_int8_t *)buf = 0;
totlen = 1;
}
break;
case C(UR_GET_STATUS, UT_READ_DEVICE):
if (len > 1) {
USETW(((usb_status_t *)buf)->wStatus,UDS_SELF_POWERED);
totlen = 2;
}
break;
case C(UR_GET_STATUS, UT_READ_INTERFACE):
case C(UR_GET_STATUS, UT_READ_ENDPOINT):
if (len > 1) {
USETW(((usb_status_t *)buf)->wStatus, 0);
totlen = 2;
}
break;
case C(UR_SET_ADDRESS, UT_WRITE_DEVICE):
if (value >= USB_MAX_DEVICES) {
err = USBD_IOERROR;
goto ret;
}
sc->sc_addr = value;
break;
case C(UR_SET_CONFIG, UT_WRITE_DEVICE):
if (value != 0 && value != 1) {
err = USBD_IOERROR;
goto ret;
}
sc->sc_conf = value;
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_DEVICE):
case C(UR_SET_FEATURE, UT_WRITE_INTERFACE):
case C(UR_SET_FEATURE, UT_WRITE_ENDPOINT):
err = USBD_IOERROR;
goto ret;
case C(UR_SET_INTERFACE, UT_WRITE_INTERFACE):
break;
case C(UR_SYNCH_FRAME, UT_WRITE_ENDPOINT):
break;
/* Hub requests */
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
DPRINTFN(8, ("ohci_root_ctrl_control: UR_CLEAR_PORT_FEATURE "
"port=%d feature=%d\n",
index, value));
if (index < 1 || index > sc->sc_noport) {
err = USBD_IOERROR;
goto ret;
}
port = OHCI_RH_PORT_STATUS(index);
switch(value) {
case UHF_PORT_ENABLE:
OWRITE4(sc, port, UPS_CURRENT_CONNECT_STATUS);
break;
case UHF_PORT_SUSPEND:
OWRITE4(sc, port, UPS_OVERCURRENT_INDICATOR);
break;
case UHF_PORT_POWER:
/* Yes, writing to the LOW_SPEED bit clears power. */
OWRITE4(sc, port, UPS_LOW_SPEED);
break;
case UHF_C_PORT_CONNECTION:
OWRITE4(sc, port, UPS_C_CONNECT_STATUS << 16);
break;
case UHF_C_PORT_ENABLE:
OWRITE4(sc, port, UPS_C_PORT_ENABLED << 16);
break;
case UHF_C_PORT_SUSPEND:
OWRITE4(sc, port, UPS_C_SUSPEND << 16);
break;
case UHF_C_PORT_OVER_CURRENT:
OWRITE4(sc, port, UPS_C_OVERCURRENT_INDICATOR << 16);
break;
case UHF_C_PORT_RESET:
OWRITE4(sc, port, UPS_C_PORT_RESET << 16);
break;
default:
err = USBD_IOERROR;
goto ret;
}
switch(value) {
case UHF_C_PORT_CONNECTION:
case UHF_C_PORT_ENABLE:
case UHF_C_PORT_SUSPEND:
case UHF_C_PORT_OVER_CURRENT:
case UHF_C_PORT_RESET:
/* Enable RHSC interrupt if condition is cleared. */
if ((OREAD4(sc, port) >> 16) == 0)
ohci_rhsc_enable(sc);
break;
default:
break;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
if (len == 0)
break;
if ((value & 0xff) != 0) {
err = USBD_IOERROR;
goto ret;
}
v = OREAD4(sc, OHCI_RH_DESCRIPTOR_A);
hubd = ohci_hubd;
hubd.bNbrPorts = sc->sc_noport;
USETW(hubd.wHubCharacteristics,
(v & OHCI_NPS ? UHD_PWR_NO_SWITCH :
v & OHCI_PSM ? UHD_PWR_GANGED : UHD_PWR_INDIVIDUAL)
/* XXX overcurrent */
);
hubd.bPwrOn2PwrGood = OHCI_GET_POTPGT(v);
v = OREAD4(sc, OHCI_RH_DESCRIPTOR_B);
for (i = 0, l = sc->sc_noport; l > 0; i++, l -= 8, v >>= 8)
hubd.DeviceRemovable[i++] = (u_int8_t)v;
hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i;
l = min(len, hubd.bDescLength);
totlen = l;
memcpy(buf, &hubd, l);
break;
case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
if (len != 4) {
err = USBD_IOERROR;
goto ret;
}
memset(buf, 0, len); /* ? XXX */
totlen = len;
break;
case C(UR_GET_STATUS, UT_READ_CLASS_OTHER):
DPRINTFN(8,("ohci_root_ctrl_transfer: get port status i=%d\n",
index));
if (index < 1 || index > sc->sc_noport) {
err = USBD_IOERROR;
goto ret;
}
if (len != 4) {
err = USBD_IOERROR;
goto ret;
}
v = OREAD4(sc, OHCI_RH_PORT_STATUS(index));
DPRINTFN(8,("ohci_root_ctrl_transfer: port status=0x%04x\n",
v));
USETW(ps.wPortStatus, v);
USETW(ps.wPortChange, v >> 16);
l = min(len, sizeof ps);
memcpy(buf, &ps, l);
totlen = l;
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
err = USBD_IOERROR;
goto ret;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
if (index < 1 || index > sc->sc_noport) {
err = USBD_IOERROR;
goto ret;
}
port = OHCI_RH_PORT_STATUS(index);
switch(value) {
case UHF_PORT_ENABLE:
OWRITE4(sc, port, UPS_PORT_ENABLED);
break;
case UHF_PORT_SUSPEND:
OWRITE4(sc, port, UPS_SUSPEND);
break;
case UHF_PORT_RESET:
DPRINTFN(5,("ohci_root_ctrl_transfer: reset port %d\n",
index));
OWRITE4(sc, port, UPS_RESET);
for (i = 0; i < 5; i++) {
usb_delay_ms(&sc->sc_bus,
USB_PORT_ROOT_RESET_DELAY);
if (sc->sc_dying) {
err = USBD_IOERROR;
goto ret;
}
if ((OREAD4(sc, port) & UPS_RESET) == 0)
break;
}
DPRINTFN(8,("ohci port %d reset, status = 0x%04x\n",
index, OREAD4(sc, port)));
break;
case UHF_PORT_POWER:
DPRINTFN(2,("ohci_root_ctrl_transfer: set port power "
"%d\n", index));
OWRITE4(sc, port, UPS_PORT_POWER);
break;
default:
err = USBD_IOERROR;
goto ret;
}
break;
default:
err = USBD_IOERROR;
goto ret;
}
xfer->actlen = totlen;
err = USBD_NORMAL_COMPLETION;
ret:
xfer->status = err;
s = splusb();
usb_transfer_complete(xfer);
splx(s);
return (USBD_IN_PROGRESS);
}
/* Abort a root control request. */
Static void
ohci_root_ctrl_abort(usbd_xfer_handle xfer)
{
/* Nothing to do, all transfers are synchronous. */
}
/* Close the root pipe. */
Static void
ohci_root_ctrl_close(usbd_pipe_handle pipe)
{
DPRINTF(("ohci_root_ctrl_close\n"));
/* Nothing to do. */
}
Static usbd_status
ohci_root_intr_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/* Pipe isn't running, start first */
return (ohci_root_intr_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
Static usbd_status
ohci_root_intr_start(usbd_xfer_handle xfer)
{
usbd_pipe_handle pipe = xfer->pipe;
ohci_softc_t *sc = pipe->device->bus->hci_private;
if (sc->sc_dying)
return (USBD_IOERROR);
sc->sc_intrxfer = xfer;
return (USBD_IN_PROGRESS);
}
/* Abort a root interrupt request. */
Static void
ohci_root_intr_abort(usbd_xfer_handle xfer)
{
int s;
if (xfer->pipe->intrxfer == xfer) {
DPRINTF(("ohci_root_intr_abort: remove\n"));
xfer->pipe->intrxfer = NULL;
}
xfer->status = USBD_CANCELLED;
s = splusb();
usb_transfer_complete(xfer);
splx(s);
}
/* Close the root pipe. */
Static void
ohci_root_intr_close(usbd_pipe_handle pipe)
{
ohci_softc_t *sc = pipe->device->bus->hci_private;
DPRINTF(("ohci_root_intr_close\n"));
sc->sc_intrxfer = NULL;
}
/************************/
Static usbd_status
ohci_device_ctrl_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/* Pipe isn't running, start first */
return (ohci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
Static usbd_status
ohci_device_ctrl_start(usbd_xfer_handle xfer)
{
ohci_softc_t *sc = xfer->pipe->device->bus->hci_private;
usbd_status err;
if (sc->sc_dying)
return (USBD_IOERROR);
#ifdef DIAGNOSTIC
if (!(xfer->rqflags & URQ_REQUEST)) {
/* XXX panic */
printf("ohci_device_ctrl_transfer: not a request\n");
return (USBD_INVAL);
}
#endif
err = ohci_device_request(xfer);
if (err)
return (err);
if (sc->sc_bus.use_polling)
ohci_waitintr(sc, xfer);
return (USBD_IN_PROGRESS);
}
/* Abort a device control request. */
Static void
ohci_device_ctrl_abort(usbd_xfer_handle xfer)
{
DPRINTF(("ohci_device_ctrl_abort: xfer=%p\n", xfer));
ohci_abort_xfer(xfer, USBD_CANCELLED);
}
/* Close a device control pipe. */
Static void
ohci_device_ctrl_close(usbd_pipe_handle pipe)
{
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
ohci_softc_t *sc = pipe->device->bus->hci_private;
DPRINTF(("ohci_device_ctrl_close: pipe=%p\n", pipe));
ohci_close_pipe(pipe, sc->sc_ctrl_head);
ohci_free_std(sc, opipe->tail.td);
}
/************************/
Static void
ohci_device_clear_toggle(usbd_pipe_handle pipe)
{
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
ohci_softc_t *sc = pipe->device->bus->hci_private;
opipe->sed->ed.ed_headp &= HTOO32(~OHCI_TOGGLECARRY);
}
Static void
ohci_noop(usbd_pipe_handle pipe)
{
}
Static usbd_status
ohci_device_bulk_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/* Pipe isn't running, start first */
return (ohci_device_bulk_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
Static usbd_status
ohci_device_bulk_start(usbd_xfer_handle xfer)
{
struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe;
usbd_device_handle dev = opipe->pipe.device;
ohci_softc_t *sc = dev->bus->hci_private;
int addr = dev->address;
ohci_soft_td_t *data, *tail, *tdp;
ohci_soft_ed_t *sed;
int s, len, isread, endpt;
usbd_status err;
if (sc->sc_dying)
return (USBD_IOERROR);
#ifdef DIAGNOSTIC
if (xfer->rqflags & URQ_REQUEST) {
/* XXX panic */
printf("ohci_device_bulk_start: a request\n");
return (USBD_INVAL);
}
#endif
len = xfer->length;
endpt = xfer->pipe->endpoint->edesc->bEndpointAddress;
isread = UE_GET_DIR(endpt) == UE_DIR_IN;
sed = opipe->sed;
DPRINTFN(4,("ohci_device_bulk_start: xfer=%p len=%d isread=%d "
"flags=%d endpt=%d\n", xfer, len, isread, xfer->flags,
endpt));
opipe->u.bulk.isread = isread;
opipe->u.bulk.length = len;
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
/* Update device address */
sed->ed.ed_flags = HTOO32(
(O32TOH(sed->ed.ed_flags) & ~OHCI_ED_ADDRMASK) |
OHCI_ED_SET_FA(addr));
/* Allocate a chain of new TDs (including a new tail). */
data = opipe->tail.td;
err = ohci_alloc_std_chain(opipe, sc, len, isread, xfer,
data, &tail);
/* We want interrupt at the end of the transfer. */
tail->td.td_flags &= HTOO32(~OHCI_TD_INTR_MASK);
tail->td.td_flags |= HTOO32(OHCI_TD_SET_DI(1));
tail->flags |= OHCI_CALL_DONE;
tail = tail->nexttd; /* point at sentinel */
usb_syncmem(&tail->dma, tail->offs + offsetof(ohci_td_t, td_flags),
sizeof(tail->td.td_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
if (err)
return (err);
tail->xfer = NULL;
xfer->hcpriv = data;
DPRINTFN(4,("ohci_device_bulk_start: ed_flags=0x%08x td_flags=0x%08x "
"td_cbp=0x%08x td_be=0x%08x\n",
(int)O32TOH(sed->ed.ed_flags),
(int)O32TOH(data->td.td_flags),
(int)O32TOH(data->td.td_cbp),
(int)O32TOH(data->td.td_be)));
#ifdef OHCI_DEBUG
if (ohcidebug > 5) {
ohci_dump_ed(sc, sed);
ohci_dump_tds(sc, data);
}
#endif
/* Insert ED in schedule */
s = splusb();
for (tdp = data; tdp != tail; tdp = tdp->nexttd) {
tdp->xfer = xfer;
}
sed->ed.ed_tailp = HTOO32(tail->physaddr);
opipe->tail.td = tail;
sed->ed.ed_flags &= HTOO32(~OHCI_ED_SKIP);
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_BLF);
if (xfer->timeout && !sc->sc_bus.use_polling) {
usb_callout(xfer->timeout_handle, mstohz(xfer->timeout),
ohci_timeout, xfer);
}
#if 0
/* This goes wrong if we are too slow. */
if (ohcidebug > 10) {
delay(10000);
DPRINTF(("ohci_device_intr_transfer: status=%x\n",
OREAD4(sc, OHCI_COMMAND_STATUS)));
ohci_dump_ed(sc, sed);
ohci_dump_tds(sc, data);
}
#endif
splx(s);
return (USBD_IN_PROGRESS);
}
Static void
ohci_device_bulk_abort(usbd_xfer_handle xfer)
{
DPRINTF(("ohci_device_bulk_abort: xfer=%p\n", xfer));
ohci_abort_xfer(xfer, USBD_CANCELLED);
}
/*
* Close a device bulk pipe.
*/
Static void
ohci_device_bulk_close(usbd_pipe_handle pipe)
{
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
ohci_softc_t *sc = pipe->device->bus->hci_private;
DPRINTF(("ohci_device_bulk_close: pipe=%p\n", pipe));
ohci_close_pipe(pipe, sc->sc_bulk_head);
ohci_free_std(sc, opipe->tail.td);
}
/************************/
Static usbd_status
ohci_device_intr_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/* Pipe isn't running, start first */
return (ohci_device_intr_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
Static usbd_status
ohci_device_intr_start(usbd_xfer_handle xfer)
{
struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe;
usbd_device_handle dev = opipe->pipe.device;
ohci_softc_t *sc = dev->bus->hci_private;
ohci_soft_ed_t *sed = opipe->sed;
ohci_soft_td_t *data, *tail;
int s, len, isread, endpt;
if (sc->sc_dying)
return (USBD_IOERROR);
DPRINTFN(3, ("ohci_device_intr_transfer: xfer=%p len=%d "
"flags=%d priv=%p\n",
xfer, xfer->length, xfer->flags, xfer->priv));
#ifdef DIAGNOSTIC
if (xfer->rqflags & URQ_REQUEST)
panic("ohci_device_intr_transfer: a request");
#endif
len = xfer->length;
endpt = xfer->pipe->endpoint->edesc->bEndpointAddress;
isread = UE_GET_DIR(endpt) == UE_DIR_IN;
data = opipe->tail.td;
tail = ohci_alloc_std(sc);
if (tail == NULL)
return (USBD_NOMEM);
tail->xfer = NULL;
data->td.td_flags = HTOO32(
isread ? OHCI_TD_IN : OHCI_TD_OUT |
OHCI_TD_NOCC |
OHCI_TD_SET_DI(1) | OHCI_TD_TOGGLE_CARRY);
if (xfer->flags & USBD_SHORT_XFER_OK)
data->td.td_flags |= HTOO32(OHCI_TD_R);
data->td.td_cbp = HTOO32(DMAADDR(&xfer->dmabuf, 0));
data->nexttd = tail;
data->td.td_nexttd = HTOO32(tail->physaddr);
data->td.td_be = HTOO32(O32TOH(data->td.td_cbp) + len - 1);
data->len = len;
data->xfer = xfer;
data->flags = OHCI_CALL_DONE | OHCI_ADD_LEN;
usb_syncmem(&data->dma, data->offs, sizeof(data->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
xfer->hcpriv = data;
#ifdef OHCI_DEBUG
if (ohcidebug > 5) {
DPRINTF(("ohci_device_intr_transfer:\n"));
ohci_dump_ed(sc, sed);
ohci_dump_tds(sc, data);
}
#endif
/* Insert ED in schedule */
s = splusb();
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->ed.ed_tailp = HTOO32(tail->physaddr);
opipe->tail.td = tail;
sed->ed.ed_flags &= HTOO32(~OHCI_ED_SKIP);
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
#if 0
/*
* This goes horribly wrong, printing thousands of descriptors,
* because false references are followed due to the fact that the
* TD is gone.
*/
if (ohcidebug > 5) {
usb_delay_ms(&sc->sc_bus, 5);
DPRINTF(("ohci_device_intr_transfer: status=%x\n",
OREAD4(sc, OHCI_COMMAND_STATUS)));
ohci_dump_ed(sc, sed);
ohci_dump_tds(sc, data);
}
#endif
splx(s);
return (USBD_IN_PROGRESS);
}
/* Abort a device control request. */
Static void
ohci_device_intr_abort(usbd_xfer_handle xfer)
{
if (xfer->pipe->intrxfer == xfer) {
DPRINTF(("ohci_device_intr_abort: remove\n"));
xfer->pipe->intrxfer = NULL;
}
ohci_abort_xfer(xfer, USBD_CANCELLED);
}
/* Close a device interrupt pipe. */
Static void
ohci_device_intr_close(usbd_pipe_handle pipe)
{
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
ohci_softc_t *sc = pipe->device->bus->hci_private;
int nslots = opipe->u.intr.nslots;
int pos = opipe->u.intr.pos;
int j;
ohci_soft_ed_t *p, *sed = opipe->sed;
int s;
DPRINTFN(1,("ohci_device_intr_close: pipe=%p nslots=%d pos=%d\n",
pipe, nslots, pos));
s = splusb();
usb_syncmem(&sed->dma, sed->offs,
sizeof(sed->ed), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->ed.ed_flags |= HTOO32(OHCI_ED_SKIP);
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
if ((O32TOH(sed->ed.ed_tailp) & OHCI_HEADMASK) !=
(O32TOH(sed->ed.ed_headp) & OHCI_HEADMASK))
usb_delay_ms(&sc->sc_bus, 2);
for (p = sc->sc_eds[pos]; p && p->next != sed; p = p->next)
continue;
#ifdef DIAGNOSTIC
if (p == NULL)
panic("ohci_device_intr_close: ED not found");
#endif
p->next = sed->next;
p->ed.ed_nexted = sed->ed.ed_nexted;
usb_syncmem(&p->dma, p->offs + offsetof(ohci_ed_t, ed_nexted),
sizeof(p->ed.ed_nexted),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
splx(s);
for (j = 0; j < nslots; j++)
--sc->sc_bws[(pos * nslots + j) % OHCI_NO_INTRS];
ohci_free_std(sc, opipe->tail.td);
ohci_free_sed(sc, opipe->sed);
}
Static usbd_status
ohci_device_setintr(ohci_softc_t *sc, struct ohci_pipe *opipe, int ival)
{
int i, j, s, best;
u_int npoll, slow, shigh, nslots;
u_int bestbw, bw;
ohci_soft_ed_t *hsed, *sed = opipe->sed;
DPRINTFN(2, ("ohci_setintr: pipe=%p\n", opipe));
if (ival == 0) {
printf("ohci_setintr: 0 interval\n");
return (USBD_INVAL);
}
npoll = OHCI_NO_INTRS;
while (npoll > ival)
npoll /= 2;
DPRINTFN(2, ("ohci_setintr: ival=%d npoll=%d\n", ival, npoll));
/*
* We now know which level in the tree the ED must go into.
* Figure out which slot has most bandwidth left over.
* Slots to examine:
* npoll
* 1 0
* 2 1 2
* 4 3 4 5 6
* 8 7 8 9 10 11 12 13 14
* N (N-1) .. (N-1+N-1)
*/
slow = npoll-1;
shigh = slow + npoll;
nslots = OHCI_NO_INTRS / npoll;
for (best = i = slow, bestbw = ~0; i < shigh; i++) {
bw = 0;
for (j = 0; j < nslots; j++)
bw += sc->sc_bws[(i * nslots + j) % OHCI_NO_INTRS];
if (bw < bestbw) {
best = i;
bestbw = bw;
}
}
DPRINTFN(2, ("ohci_setintr: best=%d(%d..%d) bestbw=%d\n",
best, slow, shigh, bestbw));
s = splusb();
hsed = sc->sc_eds[best];
sed->next = hsed->next;
usb_syncmem(&hsed->dma, hsed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(hsed->ed.ed_flags),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->ed.ed_nexted = hsed->ed.ed_nexted;
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
hsed->next = sed;
hsed->ed.ed_nexted = HTOO32(sed->physaddr);
usb_syncmem(&hsed->dma, hsed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(hsed->ed.ed_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
splx(s);
for (j = 0; j < nslots; j++)
++sc->sc_bws[(best * nslots + j) % OHCI_NO_INTRS];
opipe->u.intr.nslots = nslots;
opipe->u.intr.pos = best;
DPRINTFN(5, ("ohci_setintr: returns %p\n", opipe));
return (USBD_NORMAL_COMPLETION);
}
/***********************/
usbd_status
ohci_device_isoc_transfer(usbd_xfer_handle xfer)
{
usbd_status err;
DPRINTFN(5,("ohci_device_isoc_transfer: xfer=%p\n", xfer));
/* Put it on our queue, */
err = usb_insert_transfer(xfer);
/* bail out on error, */
if (err && err != USBD_IN_PROGRESS)
return (err);
/* XXX should check inuse here */
/* insert into schedule, */
ohci_device_isoc_enter(xfer);
/* and start if the pipe wasn't running */
if (!err)
ohci_device_isoc_start(SIMPLEQ_FIRST(&xfer->pipe->queue));
return (err);
}
void
ohci_device_isoc_enter(usbd_xfer_handle xfer)
{
struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe;
usbd_device_handle dev = opipe->pipe.device;
ohci_softc_t *sc = dev->bus->hci_private;
ohci_soft_ed_t *sed = opipe->sed;
struct iso *iso = &opipe->u.iso;
ohci_soft_itd_t *sitd, *nsitd;
ohci_physaddr_t buf, offs, noffs, bp0;
int i, ncur, nframes;
int s;
DPRINTFN(1,("ohci_device_isoc_enter: used=%d next=%d xfer=%p "
"nframes=%d\n",
iso->inuse, iso->next, xfer, xfer->nframes));
if (sc->sc_dying)
return;
if (iso->next == -1) {
/* Not in use yet, schedule it a few frames ahead. */
iso->next = O32TOH(sc->sc_hcca->hcca_frame_number) + 5;
DPRINTFN(2,("ohci_device_isoc_enter: start next=%d\n",
iso->next));
}
sitd = opipe->tail.itd;
buf = DMAADDR(&xfer->dmabuf, 0);
bp0 = OHCI_PAGE(buf);
offs = OHCI_PAGE_OFFSET(buf);
nframes = xfer->nframes;
xfer->hcpriv = sitd;
for (i = ncur = 0; i < nframes; i++, ncur++) {
noffs = offs + xfer->frlengths[i];
if (ncur == OHCI_ITD_NOFFSET || /* all offsets used */
OHCI_PAGE(buf + noffs) > bp0 + OHCI_PAGE_SIZE) { /* too many page crossings */
/* Allocate next ITD */
nsitd = ohci_alloc_sitd(sc);
if (nsitd == NULL) {
/* XXX what now? */
printf("%s: isoc TD alloc failed\n",
device_xname(sc->sc_dev));
return;
}
/* Fill current ITD */
sitd->itd.itd_flags = HTOO32(
OHCI_ITD_NOCC |
OHCI_ITD_SET_SF(iso->next) |
OHCI_ITD_SET_DI(6) | /* delay intr a little */
OHCI_ITD_SET_FC(ncur));
sitd->itd.itd_bp0 = HTOO32(bp0);
sitd->nextitd = nsitd;
sitd->itd.itd_nextitd = HTOO32(nsitd->physaddr);
sitd->itd.itd_be = HTOO32(bp0 + offs - 1);
sitd->xfer = xfer;
sitd->flags = 0;
usb_syncmem(&sitd->dma, sitd->offs, sizeof(sitd->itd),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
sitd = nsitd;
iso->next = iso->next + ncur;
bp0 = OHCI_PAGE(buf + offs);
ncur = 0;
}
sitd->itd.itd_offset[ncur] = HTOO16(OHCI_ITD_MK_OFFS(offs));
offs = noffs;
}
nsitd = ohci_alloc_sitd(sc);
if (nsitd == NULL) {
/* XXX what now? */
printf("%s: isoc TD alloc failed\n",
device_xname(sc->sc_dev));
return;
}
/* Fixup last used ITD */
sitd->itd.itd_flags = HTOO32(
OHCI_ITD_NOCC |
OHCI_ITD_SET_SF(iso->next) |
OHCI_ITD_SET_DI(0) |
OHCI_ITD_SET_FC(ncur));
sitd->itd.itd_bp0 = HTOO32(bp0);
sitd->nextitd = nsitd;
sitd->itd.itd_nextitd = HTOO32(nsitd->physaddr);
sitd->itd.itd_be = HTOO32(bp0 + offs - 1);
sitd->xfer = xfer;
sitd->flags = OHCI_CALL_DONE;
usb_syncmem(&sitd->dma, sitd->offs, sizeof(sitd->itd),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
iso->next = iso->next + ncur;
iso->inuse += nframes;
xfer->actlen = offs; /* XXX pretend we did it all */
xfer->status = USBD_IN_PROGRESS;
#ifdef OHCI_DEBUG
if (ohcidebug > 5) {
DPRINTF(("ohci_device_isoc_enter: frame=%d\n",
O32TOH(sc->sc_hcca->hcca_frame_number)));
ohci_dump_itds(sc, xfer->hcpriv);
ohci_dump_ed(sc, sed);
}
#endif
s = splusb();
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->ed.ed_tailp = HTOO32(nsitd->physaddr);
opipe->tail.itd = nsitd;
sed->ed.ed_flags &= HTOO32(~OHCI_ED_SKIP);
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
splx(s);
#ifdef OHCI_DEBUG
if (ohcidebug > 5) {
delay(150000);
DPRINTF(("ohci_device_isoc_enter: after frame=%d\n",
O32TOH(sc->sc_hcca->hcca_frame_number)));
ohci_dump_itds(sc, xfer->hcpriv);
ohci_dump_ed(sc, sed);
}
#endif
}
usbd_status
ohci_device_isoc_start(usbd_xfer_handle xfer)
{
struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe;
ohci_softc_t *sc = opipe->pipe.device->bus->hci_private;
DPRINTFN(5,("ohci_device_isoc_start: xfer=%p\n", xfer));
if (sc->sc_dying)
return (USBD_IOERROR);
#ifdef DIAGNOSTIC
if (xfer->status != USBD_IN_PROGRESS)
printf("ohci_device_isoc_start: not in progress %p\n", xfer);
#endif
/* XXX anything to do? */
return (USBD_IN_PROGRESS);
}
void
ohci_device_isoc_abort(usbd_xfer_handle xfer)
{
struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe;
ohci_softc_t *sc = opipe->pipe.device->bus->hci_private;
ohci_soft_ed_t *sed;
ohci_soft_itd_t *sitd;
int s;
s = splusb();
DPRINTFN(1,("ohci_device_isoc_abort: xfer=%p\n", xfer));
/* Transfer is already done. */
if (xfer->status != USBD_NOT_STARTED &&
xfer->status != USBD_IN_PROGRESS) {
splx(s);
printf("ohci_device_isoc_abort: early return\n");
return;
}
/* Give xfer the requested abort code. */
xfer->status = USBD_CANCELLED;
sed = opipe->sed;
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->ed.ed_flags |= HTOO32(OHCI_ED_SKIP); /* force hardware skip */
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
sitd = xfer->hcpriv;
#ifdef DIAGNOSTIC
if (sitd == NULL) {
splx(s);
printf("ohci_device_isoc_abort: hcpriv==0\n");
return;
}
#endif
for (; sitd->xfer == xfer; sitd = sitd->nextitd) {
#ifdef DIAGNOSTIC
DPRINTFN(1,("abort sets done sitd=%p\n", sitd));
sitd->isdone = 1;
#endif
}
splx(s);
usb_delay_ms(&sc->sc_bus, OHCI_ITD_NOFFSET);
s = splusb();
/* Run callback. */
usb_transfer_complete(xfer);
sed->ed.ed_headp = HTOO32(sitd->physaddr); /* unlink TDs */
sed->ed.ed_flags &= HTOO32(~OHCI_ED_SKIP); /* remove hardware skip */
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
splx(s);
}
void
ohci_device_isoc_done(usbd_xfer_handle xfer)
{
DPRINTFN(1,("ohci_device_isoc_done: xfer=%p\n", xfer));
}
usbd_status
ohci_setup_isoc(usbd_pipe_handle pipe)
{
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
ohci_softc_t *sc = pipe->device->bus->hci_private;
struct iso *iso = &opipe->u.iso;
int s;
iso->next = -1;
iso->inuse = 0;
s = splusb();
ohci_add_ed(sc, opipe->sed, sc->sc_isoc_head);
splx(s);
return (USBD_NORMAL_COMPLETION);
}
void
ohci_device_isoc_close(usbd_pipe_handle pipe)
{
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
ohci_softc_t *sc = pipe->device->bus->hci_private;
DPRINTF(("ohci_device_isoc_close: pipe=%p\n", pipe));
ohci_close_pipe(pipe, sc->sc_isoc_head);
#ifdef DIAGNOSTIC
opipe->tail.itd->isdone = 1;
#endif
ohci_free_sitd(sc, opipe->tail.itd);
}