bb89b7208d
per size, and make vmstat report this information under the "Memory statistics by type" display, which is only printed when the kernel has been compiled with KMEMSTATS defined, like this: Memory statistics by type Type Kern Type InUse MemUse HighUse Limit Requests Limit Limit Size(s) wapbl 15 4192K 4192K 78644K 376426 0 0 32:0,256:3,512:6,131072:1,262144:2,524288:3 Since struct malloc_type is user-visible and is changed, bump kernel revision to 5.99.26. While it is true that malloc(9) is in general on the path of slowly being replaced by kmem(9) (kmem_alloc/kmem_free), there remains a lot of points of usage of malloc/free, and this could aid in finding any leaks. (It helped finding the leak fixed in PR#42661.) This was discussed with and somewhat hestitantly OKed by rmind@
1026 lines
26 KiB
C
1026 lines
26 KiB
C
/* $NetBSD: kern_malloc.c,v 1.129 2010/04/05 07:16:13 he Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1987, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1996 Christopher G. Demetriou. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_malloc.c,v 1.129 2010/04/05 07:16:13 he Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/debug.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/lockdebug.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
static struct vm_map_kernel kmem_map_store;
|
|
struct vm_map *kmem_map = NULL;
|
|
|
|
#include "opt_kmempages.h"
|
|
|
|
#ifdef NKMEMCLUSTERS
|
|
#error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size
|
|
#endif
|
|
|
|
/*
|
|
* Default number of pages in kmem_map. We attempt to calculate this
|
|
* at run-time, but allow it to be either patched or set in the kernel
|
|
* config file.
|
|
*/
|
|
#ifndef NKMEMPAGES
|
|
#define NKMEMPAGES 0
|
|
#endif
|
|
int nkmempages = NKMEMPAGES;
|
|
|
|
/*
|
|
* Defaults for lower- and upper-bounds for the kmem_map page count.
|
|
* Can be overridden by kernel config options.
|
|
*/
|
|
#ifndef NKMEMPAGES_MIN
|
|
#define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
|
|
#endif
|
|
|
|
#ifndef NKMEMPAGES_MAX
|
|
#define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
|
|
#endif
|
|
|
|
#include "opt_kmemstats.h"
|
|
#include "opt_malloclog.h"
|
|
#include "opt_malloc_debug.h"
|
|
|
|
#define MINALLOCSIZE (1 << MINBUCKET)
|
|
#define BUCKETINDX(size) \
|
|
((size) <= (MINALLOCSIZE * 128) \
|
|
? (size) <= (MINALLOCSIZE * 8) \
|
|
? (size) <= (MINALLOCSIZE * 2) \
|
|
? (size) <= (MINALLOCSIZE * 1) \
|
|
? (MINBUCKET + 0) \
|
|
: (MINBUCKET + 1) \
|
|
: (size) <= (MINALLOCSIZE * 4) \
|
|
? (MINBUCKET + 2) \
|
|
: (MINBUCKET + 3) \
|
|
: (size) <= (MINALLOCSIZE* 32) \
|
|
? (size) <= (MINALLOCSIZE * 16) \
|
|
? (MINBUCKET + 4) \
|
|
: (MINBUCKET + 5) \
|
|
: (size) <= (MINALLOCSIZE * 64) \
|
|
? (MINBUCKET + 6) \
|
|
: (MINBUCKET + 7) \
|
|
: (size) <= (MINALLOCSIZE * 2048) \
|
|
? (size) <= (MINALLOCSIZE * 512) \
|
|
? (size) <= (MINALLOCSIZE * 256) \
|
|
? (MINBUCKET + 8) \
|
|
: (MINBUCKET + 9) \
|
|
: (size) <= (MINALLOCSIZE * 1024) \
|
|
? (MINBUCKET + 10) \
|
|
: (MINBUCKET + 11) \
|
|
: (size) <= (MINALLOCSIZE * 8192) \
|
|
? (size) <= (MINALLOCSIZE * 4096) \
|
|
? (MINBUCKET + 12) \
|
|
: (MINBUCKET + 13) \
|
|
: (size) <= (MINALLOCSIZE * 16384) \
|
|
? (MINBUCKET + 14) \
|
|
: (MINBUCKET + 15))
|
|
|
|
/*
|
|
* Array of descriptors that describe the contents of each page
|
|
*/
|
|
struct kmemusage {
|
|
short ku_indx; /* bucket index */
|
|
union {
|
|
u_short freecnt;/* for small allocations, free pieces in page */
|
|
u_short pagecnt;/* for large allocations, pages alloced */
|
|
} ku_un;
|
|
};
|
|
#define ku_freecnt ku_un.freecnt
|
|
#define ku_pagecnt ku_un.pagecnt
|
|
|
|
struct kmembuckets kmembuckets[MINBUCKET + 16];
|
|
struct kmemusage *kmemusage;
|
|
char *kmembase, *kmemlimit;
|
|
|
|
#ifdef DEBUG
|
|
static void *malloc_freecheck;
|
|
#endif
|
|
|
|
/*
|
|
* Turn virtual addresses into kmem map indicies
|
|
*/
|
|
#define btokup(addr) (&kmemusage[((char *)(addr) - kmembase) >> PGSHIFT])
|
|
|
|
struct malloc_type *kmemstatistics;
|
|
|
|
#ifdef MALLOCLOG
|
|
#ifndef MALLOCLOGSIZE
|
|
#define MALLOCLOGSIZE 100000
|
|
#endif
|
|
|
|
struct malloclog {
|
|
void *addr;
|
|
long size;
|
|
struct malloc_type *type;
|
|
int action;
|
|
const char *file;
|
|
long line;
|
|
} malloclog[MALLOCLOGSIZE];
|
|
|
|
long malloclogptr;
|
|
|
|
/*
|
|
* Fuzz factor for neighbour address match this must be a mask of the lower
|
|
* bits we wish to ignore when comparing addresses
|
|
*/
|
|
__uintptr_t malloclog_fuzz = 0x7FL;
|
|
|
|
|
|
static void
|
|
domlog(void *a, long size, struct malloc_type *type, int action,
|
|
const char *file, long line)
|
|
{
|
|
|
|
malloclog[malloclogptr].addr = a;
|
|
malloclog[malloclogptr].size = size;
|
|
malloclog[malloclogptr].type = type;
|
|
malloclog[malloclogptr].action = action;
|
|
malloclog[malloclogptr].file = file;
|
|
malloclog[malloclogptr].line = line;
|
|
malloclogptr++;
|
|
if (malloclogptr >= MALLOCLOGSIZE)
|
|
malloclogptr = 0;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
static void
|
|
hitmlog(void *a)
|
|
{
|
|
struct malloclog *lp;
|
|
long l;
|
|
|
|
#define PRT do { \
|
|
lp = &malloclog[l]; \
|
|
if (lp->addr == a && lp->action) { \
|
|
printf("malloc log entry %ld:\n", l); \
|
|
printf("\taddr = %p\n", lp->addr); \
|
|
printf("\tsize = %ld\n", lp->size); \
|
|
printf("\ttype = %s\n", lp->type->ks_shortdesc); \
|
|
printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
|
|
printf("\tfile = %s\n", lp->file); \
|
|
printf("\tline = %ld\n", lp->line); \
|
|
} \
|
|
} while (/* CONSTCOND */0)
|
|
|
|
/*
|
|
* Print fuzzy matched "neighbour" - look for the memory block that has
|
|
* been allocated below the address we are interested in. We look for a
|
|
* base address + size that is within malloclog_fuzz of our target
|
|
* address. If the base address and target address are the same then it is
|
|
* likely we have found a free (size is 0 in this case) so we won't report
|
|
* those, they will get reported by PRT anyway.
|
|
*/
|
|
#define NPRT do { \
|
|
__uintptr_t fuzz_mask = ~(malloclog_fuzz); \
|
|
lp = &malloclog[l]; \
|
|
if ((__uintptr_t)lp->addr != (__uintptr_t)a && \
|
|
(((__uintptr_t)lp->addr + lp->size + malloclog_fuzz) & fuzz_mask) \
|
|
== ((__uintptr_t)a & fuzz_mask) && lp->action) { \
|
|
printf("neighbour malloc log entry %ld:\n", l); \
|
|
printf("\taddr = %p\n", lp->addr); \
|
|
printf("\tsize = %ld\n", lp->size); \
|
|
printf("\ttype = %s\n", lp->type->ks_shortdesc); \
|
|
printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
|
|
printf("\tfile = %s\n", lp->file); \
|
|
printf("\tline = %ld\n", lp->line); \
|
|
} \
|
|
} while (/* CONSTCOND */0)
|
|
|
|
for (l = malloclogptr; l < MALLOCLOGSIZE; l++) {
|
|
PRT;
|
|
NPRT;
|
|
}
|
|
|
|
|
|
for (l = 0; l < malloclogptr; l++) {
|
|
PRT;
|
|
NPRT;
|
|
}
|
|
|
|
#undef PRT
|
|
}
|
|
#endif /* DIAGNOSTIC */
|
|
#endif /* MALLOCLOG */
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* This structure provides a set of masks to catch unaligned frees.
|
|
*/
|
|
const long addrmask[] = { 0,
|
|
0x00000001, 0x00000003, 0x00000007, 0x0000000f,
|
|
0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
|
|
0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
|
|
0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
|
|
};
|
|
|
|
/*
|
|
* The WEIRD_ADDR is used as known text to copy into free objects so
|
|
* that modifications after frees can be detected.
|
|
*/
|
|
#define WEIRD_ADDR ((uint32_t) 0xdeadbeef)
|
|
#ifdef DEBUG
|
|
#define MAX_COPY PAGE_SIZE
|
|
#else
|
|
#define MAX_COPY 32
|
|
#endif
|
|
|
|
/*
|
|
* Normally the freelist structure is used only to hold the list pointer
|
|
* for free objects. However, when running with diagnostics, the first
|
|
* 8/16 bytes of the structure is unused except for diagnostic information,
|
|
* and the free list pointer is at offset 8/16 in the structure. Since the
|
|
* first 8 bytes is the portion of the structure most often modified, this
|
|
* helps to detect memory reuse problems and avoid free list corruption.
|
|
*/
|
|
struct freelist {
|
|
uint32_t spare0;
|
|
#ifdef _LP64
|
|
uint32_t spare1; /* explicit padding */
|
|
#endif
|
|
struct malloc_type *type;
|
|
void * next;
|
|
};
|
|
#else /* !DIAGNOSTIC */
|
|
struct freelist {
|
|
void * next;
|
|
};
|
|
#endif /* DIAGNOSTIC */
|
|
|
|
kmutex_t malloc_lock;
|
|
|
|
/*
|
|
* Allocate a block of memory
|
|
*/
|
|
#ifdef MALLOCLOG
|
|
void *
|
|
_kern_malloc(unsigned long size, struct malloc_type *ksp, int flags,
|
|
const char *file, long line)
|
|
#else
|
|
void *
|
|
kern_malloc(unsigned long size, struct malloc_type *ksp, int flags)
|
|
#endif /* MALLOCLOG */
|
|
{
|
|
struct kmembuckets *kbp;
|
|
struct kmemusage *kup;
|
|
struct freelist *freep;
|
|
long indx, npg, allocsize;
|
|
char *va, *cp, *savedlist;
|
|
#ifdef DIAGNOSTIC
|
|
uint32_t *end, *lp;
|
|
int copysize;
|
|
#endif
|
|
|
|
#ifdef LOCKDEBUG
|
|
if ((flags & M_NOWAIT) == 0) {
|
|
ASSERT_SLEEPABLE();
|
|
}
|
|
#endif
|
|
#ifdef MALLOC_DEBUG
|
|
if (debug_malloc(size, ksp, flags, (void *) &va)) {
|
|
if (va != 0) {
|
|
FREECHECK_OUT(&malloc_freecheck, (void *)va);
|
|
}
|
|
return ((void *) va);
|
|
}
|
|
#endif
|
|
indx = BUCKETINDX(size);
|
|
kbp = &kmembuckets[indx];
|
|
mutex_spin_enter(&malloc_lock);
|
|
#ifdef KMEMSTATS
|
|
while (ksp->ks_memuse >= ksp->ks_limit) {
|
|
if (flags & M_NOWAIT) {
|
|
mutex_spin_exit(&malloc_lock);
|
|
return ((void *) NULL);
|
|
}
|
|
if (ksp->ks_limblocks < 65535)
|
|
ksp->ks_limblocks++;
|
|
mtsleep((void *)ksp, PSWP+2, ksp->ks_shortdesc, 0,
|
|
&malloc_lock);
|
|
}
|
|
ksp->ks_size |= 1 << indx;
|
|
ksp->ks_active[indx]++;
|
|
#endif
|
|
#ifdef DIAGNOSTIC
|
|
copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
|
|
#endif
|
|
if (kbp->kb_next == NULL) {
|
|
int s;
|
|
kbp->kb_last = NULL;
|
|
if (size > MAXALLOCSAVE)
|
|
allocsize = round_page(size);
|
|
else
|
|
allocsize = 1 << indx;
|
|
npg = btoc(allocsize);
|
|
mutex_spin_exit(&malloc_lock);
|
|
s = splvm();
|
|
va = (void *) uvm_km_alloc(kmem_map,
|
|
(vsize_t)ctob(npg), 0,
|
|
((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) |
|
|
((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0) |
|
|
UVM_KMF_WIRED);
|
|
splx(s);
|
|
if (__predict_false(va == NULL)) {
|
|
/*
|
|
* Kmem_malloc() can return NULL, even if it can
|
|
* wait, if there is no map space available, because
|
|
* it can't fix that problem. Neither can we,
|
|
* right now. (We should release pages which
|
|
* are completely free and which are in kmembuckets
|
|
* with too many free elements.)
|
|
*/
|
|
if ((flags & (M_NOWAIT|M_CANFAIL)) == 0)
|
|
panic("malloc: out of space in kmem_map");
|
|
return (NULL);
|
|
}
|
|
mutex_spin_enter(&malloc_lock);
|
|
#ifdef KMEMSTATS
|
|
kbp->kb_total += kbp->kb_elmpercl;
|
|
#endif
|
|
kup = btokup(va);
|
|
kup->ku_indx = indx;
|
|
if (allocsize > MAXALLOCSAVE) {
|
|
if (npg > 65535)
|
|
panic("malloc: allocation too large");
|
|
kup->ku_pagecnt = npg;
|
|
#ifdef KMEMSTATS
|
|
ksp->ks_memuse += allocsize;
|
|
#endif
|
|
goto out;
|
|
}
|
|
#ifdef KMEMSTATS
|
|
kup->ku_freecnt = kbp->kb_elmpercl;
|
|
kbp->kb_totalfree += kbp->kb_elmpercl;
|
|
#endif
|
|
/*
|
|
* Just in case we blocked while allocating memory,
|
|
* and someone else also allocated memory for this
|
|
* kmembucket, don't assume the list is still empty.
|
|
*/
|
|
savedlist = kbp->kb_next;
|
|
kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize;
|
|
for (;;) {
|
|
freep = (struct freelist *)cp;
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Copy in known text to detect modification
|
|
* after freeing.
|
|
*/
|
|
end = (uint32_t *)&cp[copysize];
|
|
for (lp = (uint32_t *)cp; lp < end; lp++)
|
|
*lp = WEIRD_ADDR;
|
|
freep->type = M_FREE;
|
|
#endif /* DIAGNOSTIC */
|
|
if (cp <= va)
|
|
break;
|
|
cp -= allocsize;
|
|
freep->next = cp;
|
|
}
|
|
freep->next = savedlist;
|
|
if (savedlist == NULL)
|
|
kbp->kb_last = (void *)freep;
|
|
}
|
|
va = kbp->kb_next;
|
|
kbp->kb_next = ((struct freelist *)va)->next;
|
|
#ifdef DIAGNOSTIC
|
|
freep = (struct freelist *)va;
|
|
/* XXX potential to get garbage pointer here. */
|
|
if (kbp->kb_next) {
|
|
int rv;
|
|
vaddr_t addr = (vaddr_t)kbp->kb_next;
|
|
|
|
vm_map_lock(kmem_map);
|
|
rv = uvm_map_checkprot(kmem_map, addr,
|
|
addr + sizeof(struct freelist), VM_PROT_WRITE);
|
|
vm_map_unlock(kmem_map);
|
|
|
|
if (__predict_false(rv == 0)) {
|
|
printf("Data modified on freelist: "
|
|
"word %ld of object %p size %ld previous type %s "
|
|
"(invalid addr %p)\n",
|
|
(long)((int32_t *)&kbp->kb_next - (int32_t *)kbp),
|
|
va, size, "foo", kbp->kb_next);
|
|
#ifdef MALLOCLOG
|
|
hitmlog(va);
|
|
#endif
|
|
kbp->kb_next = NULL;
|
|
}
|
|
}
|
|
|
|
/* Fill the fields that we've used with WEIRD_ADDR */
|
|
#ifdef _LP64
|
|
freep->type = (struct malloc_type *)
|
|
(WEIRD_ADDR | (((u_long) WEIRD_ADDR) << 32));
|
|
#else
|
|
freep->type = (struct malloc_type *) WEIRD_ADDR;
|
|
#endif
|
|
end = (uint32_t *)&freep->next +
|
|
(sizeof(freep->next) / sizeof(int32_t));
|
|
for (lp = (uint32_t *)&freep->next; lp < end; lp++)
|
|
*lp = WEIRD_ADDR;
|
|
|
|
/* and check that the data hasn't been modified. */
|
|
end = (uint32_t *)&va[copysize];
|
|
for (lp = (uint32_t *)va; lp < end; lp++) {
|
|
if (__predict_true(*lp == WEIRD_ADDR))
|
|
continue;
|
|
printf("Data modified on freelist: "
|
|
"word %ld of object %p size %ld previous type %s "
|
|
"(0x%x != 0x%x)\n",
|
|
(long)(lp - (uint32_t *)va), va, size,
|
|
"bar", *lp, WEIRD_ADDR);
|
|
#ifdef MALLOCLOG
|
|
hitmlog(va);
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
freep->spare0 = 0;
|
|
#endif /* DIAGNOSTIC */
|
|
#ifdef KMEMSTATS
|
|
kup = btokup(va);
|
|
if (kup->ku_indx != indx)
|
|
panic("malloc: wrong bucket");
|
|
if (kup->ku_freecnt == 0)
|
|
panic("malloc: lost data");
|
|
kup->ku_freecnt--;
|
|
kbp->kb_totalfree--;
|
|
ksp->ks_memuse += 1 << indx;
|
|
out:
|
|
kbp->kb_calls++;
|
|
ksp->ks_inuse++;
|
|
ksp->ks_calls++;
|
|
if (ksp->ks_memuse > ksp->ks_maxused)
|
|
ksp->ks_maxused = ksp->ks_memuse;
|
|
#else
|
|
out:
|
|
#endif
|
|
#ifdef MALLOCLOG
|
|
domlog(va, size, ksp, 1, file, line);
|
|
#endif
|
|
mutex_spin_exit(&malloc_lock);
|
|
if ((flags & M_ZERO) != 0)
|
|
memset(va, 0, size);
|
|
FREECHECK_OUT(&malloc_freecheck, (void *)va);
|
|
return ((void *) va);
|
|
}
|
|
|
|
/*
|
|
* Free a block of memory allocated by malloc.
|
|
*/
|
|
#ifdef MALLOCLOG
|
|
void
|
|
_kern_free(void *addr, struct malloc_type *ksp, const char *file, long line)
|
|
#else
|
|
void
|
|
kern_free(void *addr, struct malloc_type *ksp)
|
|
#endif /* MALLOCLOG */
|
|
{
|
|
struct kmembuckets *kbp;
|
|
struct kmemusage *kup;
|
|
struct freelist *freep;
|
|
long size;
|
|
#ifdef DIAGNOSTIC
|
|
void *cp;
|
|
int32_t *end, *lp;
|
|
long alloc, copysize;
|
|
#endif
|
|
|
|
FREECHECK_IN(&malloc_freecheck, addr);
|
|
#ifdef MALLOC_DEBUG
|
|
if (debug_free(addr, ksp))
|
|
return;
|
|
#endif
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Ensure that we're free'ing something that we could
|
|
* have allocated in the first place. That is, check
|
|
* to see that the address is within kmem_map.
|
|
*/
|
|
if (__predict_false((vaddr_t)addr < vm_map_min(kmem_map) ||
|
|
(vaddr_t)addr >= vm_map_max(kmem_map)))
|
|
panic("free: addr %p not within kmem_map", addr);
|
|
#endif
|
|
|
|
kup = btokup(addr);
|
|
size = 1 << kup->ku_indx;
|
|
kbp = &kmembuckets[kup->ku_indx];
|
|
|
|
LOCKDEBUG_MEM_CHECK(addr,
|
|
size <= MAXALLOCSAVE ? size : ctob(kup->ku_pagecnt));
|
|
|
|
mutex_spin_enter(&malloc_lock);
|
|
#ifdef MALLOCLOG
|
|
domlog(addr, 0, ksp, 2, file, line);
|
|
#endif
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Check for returns of data that do not point to the
|
|
* beginning of the allocation.
|
|
*/
|
|
if (size > PAGE_SIZE)
|
|
alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
|
|
else
|
|
alloc = addrmask[kup->ku_indx];
|
|
if (((u_long)addr & alloc) != 0)
|
|
panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
|
|
addr, size, ksp->ks_shortdesc, alloc);
|
|
#endif /* DIAGNOSTIC */
|
|
if (size > MAXALLOCSAVE) {
|
|
uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt),
|
|
UVM_KMF_WIRED);
|
|
#ifdef KMEMSTATS
|
|
size = kup->ku_pagecnt << PGSHIFT;
|
|
ksp->ks_memuse -= size;
|
|
ksp->ks_active[kup->ku_indx]--;
|
|
kup->ku_indx = 0;
|
|
kup->ku_pagecnt = 0;
|
|
if (ksp->ks_memuse + size >= ksp->ks_limit &&
|
|
ksp->ks_memuse < ksp->ks_limit)
|
|
wakeup((void *)ksp);
|
|
#ifdef DIAGNOSTIC
|
|
if (ksp->ks_inuse == 0)
|
|
panic("free 1: inuse 0, probable double free");
|
|
#endif
|
|
ksp->ks_inuse--;
|
|
kbp->kb_total -= 1;
|
|
#endif
|
|
mutex_spin_exit(&malloc_lock);
|
|
return;
|
|
}
|
|
freep = (struct freelist *)addr;
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Check for multiple frees. Use a quick check to see if
|
|
* it looks free before laboriously searching the freelist.
|
|
*/
|
|
if (__predict_false(freep->spare0 == WEIRD_ADDR)) {
|
|
for (cp = kbp->kb_next; cp;
|
|
cp = ((struct freelist *)cp)->next) {
|
|
if (addr != cp)
|
|
continue;
|
|
printf("multiply freed item %p\n", addr);
|
|
#ifdef MALLOCLOG
|
|
hitmlog(addr);
|
|
#endif
|
|
panic("free: duplicated free");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy in known text to detect modification after freeing
|
|
* and to make it look free. Also, save the type being freed
|
|
* so we can list likely culprit if modification is detected
|
|
* when the object is reallocated.
|
|
*/
|
|
copysize = size < MAX_COPY ? size : MAX_COPY;
|
|
end = (int32_t *)&((char *)addr)[copysize];
|
|
for (lp = (int32_t *)addr; lp < end; lp++)
|
|
*lp = WEIRD_ADDR;
|
|
freep->type = ksp;
|
|
#endif /* DIAGNOSTIC */
|
|
#ifdef KMEMSTATS
|
|
kup->ku_freecnt++;
|
|
if (kup->ku_freecnt >= kbp->kb_elmpercl) {
|
|
if (kup->ku_freecnt > kbp->kb_elmpercl)
|
|
panic("free: multiple frees");
|
|
else if (kbp->kb_totalfree > kbp->kb_highwat)
|
|
kbp->kb_couldfree++;
|
|
}
|
|
kbp->kb_totalfree++;
|
|
ksp->ks_memuse -= size;
|
|
ksp->ks_active[kup->ku_indx]--;
|
|
if (ksp->ks_memuse + size >= ksp->ks_limit &&
|
|
ksp->ks_memuse < ksp->ks_limit)
|
|
wakeup((void *)ksp);
|
|
#ifdef DIAGNOSTIC
|
|
if (ksp->ks_inuse == 0)
|
|
panic("free 2: inuse 0, probable double free");
|
|
#endif
|
|
ksp->ks_inuse--;
|
|
#endif
|
|
if (kbp->kb_next == NULL)
|
|
kbp->kb_next = addr;
|
|
else
|
|
((struct freelist *)kbp->kb_last)->next = addr;
|
|
freep->next = NULL;
|
|
kbp->kb_last = addr;
|
|
mutex_spin_exit(&malloc_lock);
|
|
}
|
|
|
|
/*
|
|
* Change the size of a block of memory.
|
|
*/
|
|
void *
|
|
kern_realloc(void *curaddr, unsigned long newsize, struct malloc_type *ksp,
|
|
int flags)
|
|
{
|
|
struct kmemusage *kup;
|
|
unsigned long cursize;
|
|
void *newaddr;
|
|
#ifdef DIAGNOSTIC
|
|
long alloc;
|
|
#endif
|
|
|
|
/*
|
|
* realloc() with a NULL pointer is the same as malloc().
|
|
*/
|
|
if (curaddr == NULL)
|
|
return (malloc(newsize, ksp, flags));
|
|
|
|
/*
|
|
* realloc() with zero size is the same as free().
|
|
*/
|
|
if (newsize == 0) {
|
|
free(curaddr, ksp);
|
|
return (NULL);
|
|
}
|
|
|
|
#ifdef LOCKDEBUG
|
|
if ((flags & M_NOWAIT) == 0) {
|
|
ASSERT_SLEEPABLE();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Find out how large the old allocation was (and do some
|
|
* sanity checking).
|
|
*/
|
|
kup = btokup(curaddr);
|
|
cursize = 1 << kup->ku_indx;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Check for returns of data that do not point to the
|
|
* beginning of the allocation.
|
|
*/
|
|
if (cursize > PAGE_SIZE)
|
|
alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
|
|
else
|
|
alloc = addrmask[kup->ku_indx];
|
|
if (((u_long)curaddr & alloc) != 0)
|
|
panic("realloc: "
|
|
"unaligned addr %p, size %ld, type %s, mask %ld\n",
|
|
curaddr, cursize, ksp->ks_shortdesc, alloc);
|
|
#endif /* DIAGNOSTIC */
|
|
|
|
if (cursize > MAXALLOCSAVE)
|
|
cursize = ctob(kup->ku_pagecnt);
|
|
|
|
/*
|
|
* If we already actually have as much as they want, we're done.
|
|
*/
|
|
if (newsize <= cursize)
|
|
return (curaddr);
|
|
|
|
/*
|
|
* Can't satisfy the allocation with the existing block.
|
|
* Allocate a new one and copy the data.
|
|
*/
|
|
newaddr = malloc(newsize, ksp, flags);
|
|
if (__predict_false(newaddr == NULL)) {
|
|
/*
|
|
* malloc() failed, because flags included M_NOWAIT.
|
|
* Return NULL to indicate that failure. The old
|
|
* pointer is still valid.
|
|
*/
|
|
return (NULL);
|
|
}
|
|
memcpy(newaddr, curaddr, cursize);
|
|
|
|
/*
|
|
* We were successful: free the old allocation and return
|
|
* the new one.
|
|
*/
|
|
free(curaddr, ksp);
|
|
return (newaddr);
|
|
}
|
|
|
|
/*
|
|
* Roundup size to the actual allocation size.
|
|
*/
|
|
unsigned long
|
|
malloc_roundup(unsigned long size)
|
|
{
|
|
|
|
if (size > MAXALLOCSAVE)
|
|
return (roundup(size, PAGE_SIZE));
|
|
else
|
|
return (1 << BUCKETINDX(size));
|
|
}
|
|
|
|
/*
|
|
* Add a malloc type to the system.
|
|
*/
|
|
void
|
|
malloc_type_attach(struct malloc_type *type)
|
|
{
|
|
|
|
if (nkmempages == 0)
|
|
panic("malloc_type_attach: nkmempages == 0");
|
|
|
|
if (type->ks_magic != M_MAGIC)
|
|
panic("malloc_type_attach: bad magic");
|
|
|
|
#ifdef DIAGNOSTIC
|
|
{
|
|
struct malloc_type *ksp;
|
|
for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
|
|
if (ksp == type)
|
|
panic("malloc_type_attach: already on list");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef KMEMSTATS
|
|
if (type->ks_limit == 0)
|
|
type->ks_limit = ((u_long)nkmempages << PAGE_SHIFT) * 6U / 10U;
|
|
#else
|
|
type->ks_limit = 0;
|
|
#endif
|
|
|
|
type->ks_next = kmemstatistics;
|
|
kmemstatistics = type;
|
|
}
|
|
|
|
/*
|
|
* Remove a malloc type from the system..
|
|
*/
|
|
void
|
|
malloc_type_detach(struct malloc_type *type)
|
|
{
|
|
struct malloc_type *ksp;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (type->ks_magic != M_MAGIC)
|
|
panic("malloc_type_detach: bad magic");
|
|
#endif
|
|
|
|
if (type == kmemstatistics)
|
|
kmemstatistics = type->ks_next;
|
|
else {
|
|
for (ksp = kmemstatistics; ksp->ks_next != NULL;
|
|
ksp = ksp->ks_next) {
|
|
if (ksp->ks_next == type) {
|
|
ksp->ks_next = type->ks_next;
|
|
break;
|
|
}
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
if (ksp->ks_next == NULL)
|
|
panic("malloc_type_detach: not on list");
|
|
#endif
|
|
}
|
|
type->ks_next = NULL;
|
|
}
|
|
|
|
/*
|
|
* Set the limit on a malloc type.
|
|
*/
|
|
void
|
|
malloc_type_setlimit(struct malloc_type *type, u_long limit)
|
|
{
|
|
#ifdef KMEMSTATS
|
|
mutex_spin_enter(&malloc_lock);
|
|
type->ks_limit = limit;
|
|
mutex_spin_exit(&malloc_lock);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Compute the number of pages that kmem_map will map, that is,
|
|
* the size of the kernel malloc arena.
|
|
*/
|
|
void
|
|
kmeminit_nkmempages(void)
|
|
{
|
|
int npages;
|
|
|
|
if (nkmempages != 0) {
|
|
/*
|
|
* It's already been set (by us being here before, or
|
|
* by patching or kernel config options), bail out now.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
npages = physmem;
|
|
|
|
if (npages > NKMEMPAGES_MAX)
|
|
npages = NKMEMPAGES_MAX;
|
|
|
|
if (npages < NKMEMPAGES_MIN)
|
|
npages = NKMEMPAGES_MIN;
|
|
|
|
nkmempages = npages;
|
|
}
|
|
|
|
/*
|
|
* Initialize the kernel memory allocator
|
|
*/
|
|
void
|
|
kmeminit(void)
|
|
{
|
|
__link_set_decl(malloc_types, struct malloc_type);
|
|
struct malloc_type * const *ksp;
|
|
vaddr_t kmb, kml;
|
|
#ifdef KMEMSTATS
|
|
long indx;
|
|
#endif
|
|
|
|
#if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
|
|
ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
|
|
#endif
|
|
#if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
|
|
ERROR!_kmeminit:_MAXALLOCSAVE_too_big
|
|
#endif
|
|
#if (MAXALLOCSAVE < NBPG)
|
|
ERROR!_kmeminit:_MAXALLOCSAVE_too_small
|
|
#endif
|
|
|
|
if (sizeof(struct freelist) > (1 << MINBUCKET))
|
|
panic("minbucket too small/struct freelist too big");
|
|
|
|
mutex_init(&malloc_lock, MUTEX_DEFAULT, IPL_VM);
|
|
|
|
/*
|
|
* Compute the number of kmem_map pages, if we have not
|
|
* done so already.
|
|
*/
|
|
kmeminit_nkmempages();
|
|
|
|
kmemusage = (struct kmemusage *) uvm_km_alloc(kernel_map,
|
|
(vsize_t)(nkmempages * sizeof(struct kmemusage)), 0,
|
|
UVM_KMF_WIRED|UVM_KMF_ZERO);
|
|
kmb = 0;
|
|
kmem_map = uvm_km_suballoc(kernel_map, &kmb,
|
|
&kml, ((vsize_t)nkmempages << PAGE_SHIFT),
|
|
VM_MAP_INTRSAFE, false, &kmem_map_store);
|
|
uvm_km_vacache_init(kmem_map, "kvakmem", 0);
|
|
kmembase = (char *)kmb;
|
|
kmemlimit = (char *)kml;
|
|
#ifdef KMEMSTATS
|
|
for (indx = 0; indx < MINBUCKET + 16; indx++) {
|
|
if (1 << indx >= PAGE_SIZE)
|
|
kmembuckets[indx].kb_elmpercl = 1;
|
|
else
|
|
kmembuckets[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
|
|
kmembuckets[indx].kb_highwat =
|
|
5 * kmembuckets[indx].kb_elmpercl;
|
|
}
|
|
#endif
|
|
|
|
/* Attach all of the statically-linked malloc types. */
|
|
__link_set_foreach(ksp, malloc_types)
|
|
malloc_type_attach(*ksp);
|
|
|
|
#ifdef MALLOC_DEBUG
|
|
debug_malloc_init();
|
|
#endif
|
|
}
|
|
|
|
#ifdef DDB
|
|
#include <ddb/db_output.h>
|
|
|
|
/*
|
|
* Dump kmem statistics from ddb.
|
|
*
|
|
* usage: call dump_kmemstats
|
|
*/
|
|
void dump_kmemstats(void);
|
|
|
|
void
|
|
dump_kmemstats(void)
|
|
{
|
|
#ifdef KMEMSTATS
|
|
struct malloc_type *ksp;
|
|
|
|
for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
|
|
if (ksp->ks_memuse == 0)
|
|
continue;
|
|
db_printf("%s%.*s %ld\n", ksp->ks_shortdesc,
|
|
(int)(20 - strlen(ksp->ks_shortdesc)),
|
|
" ",
|
|
ksp->ks_memuse);
|
|
}
|
|
#else
|
|
db_printf("Kmem stats are not being collected.\n");
|
|
#endif /* KMEMSTATS */
|
|
}
|
|
#endif /* DDB */
|
|
|
|
|
|
#if 0
|
|
/*
|
|
* Diagnostic messages about "Data modified on
|
|
* freelist" indicate a memory corruption, but
|
|
* they do not help tracking it down.
|
|
* This function can be called at various places
|
|
* to sanity check malloc's freelist and discover
|
|
* where does the corruption take place.
|
|
*/
|
|
int
|
|
freelist_sanitycheck(void) {
|
|
int i,j;
|
|
struct kmembuckets *kbp;
|
|
struct freelist *freep;
|
|
int rv = 0;
|
|
|
|
for (i = MINBUCKET; i <= MINBUCKET + 15; i++) {
|
|
kbp = &kmembuckets[i];
|
|
freep = (struct freelist *)kbp->kb_next;
|
|
j = 0;
|
|
while(freep) {
|
|
vm_map_lock(kmem_map);
|
|
rv = uvm_map_checkprot(kmem_map, (vaddr_t)freep,
|
|
(vaddr_t)freep + sizeof(struct freelist),
|
|
VM_PROT_WRITE);
|
|
vm_map_unlock(kmem_map);
|
|
|
|
if ((rv == 0) || (*(int *)freep != WEIRD_ADDR)) {
|
|
printf("bucket %i, chunck %d at %p modified\n",
|
|
i, j, freep);
|
|
return 1;
|
|
}
|
|
freep = (struct freelist *)freep->next;
|
|
j++;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|