NetBSD/sys/dev/ic/adv.c

983 lines
24 KiB
C

/* $NetBSD: adv.c,v 1.14 1999/09/30 23:04:40 thorpej Exp $ */
/*
* Generic driver for the Advanced Systems Inc. Narrow SCSI controllers
*
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* Author: Baldassare Dante Profeta <dante@mclink.it>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/ic/advlib.h>
#include <dev/ic/adv.h>
#ifndef DDB
#define Debugger() panic("should call debugger here (adv.c)")
#endif /* ! DDB */
/* #define ASC_DEBUG */
/******************************************************************************/
static int adv_alloc_control_data __P((ASC_SOFTC *));
static int adv_create_ccbs __P((ASC_SOFTC *, ADV_CCB *, int));
static void adv_free_ccb __P((ASC_SOFTC *, ADV_CCB *));
static void adv_reset_ccb __P((ADV_CCB *));
static int adv_init_ccb __P((ASC_SOFTC *, ADV_CCB *));
static ADV_CCB *adv_get_ccb __P((ASC_SOFTC *, int));
static void adv_queue_ccb __P((ASC_SOFTC *, ADV_CCB *));
static void adv_start_ccbs __P((ASC_SOFTC *));
static int adv_scsi_cmd __P((struct scsipi_xfer *));
static void advminphys __P((struct buf *));
static void adv_narrow_isr_callback __P((ASC_SOFTC *, ASC_QDONE_INFO *));
static int adv_poll __P((ASC_SOFTC *, struct scsipi_xfer *, int));
static void adv_timeout __P((void *));
static void adv_watchdog __P((void *));
/******************************************************************************/
/* the below structure is so we have a default dev struct for out link struct */
struct scsipi_device adv_dev =
{
NULL, /* Use default error handler */
NULL, /* have a queue, served by this */
NULL, /* have no async handler */
NULL, /* Use default 'done' routine */
};
#define ADV_ABORT_TIMEOUT 2000 /* time to wait for abort (mSec) */
#define ADV_WATCH_TIMEOUT 1000 /* time to wait for watchdog (mSec) */
/******************************************************************************/
/* Control Blocks routines */
/******************************************************************************/
static int
adv_alloc_control_data(sc)
ASC_SOFTC *sc;
{
bus_dma_segment_t seg;
int error, rseg;
/*
* Allocate the control blocks.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct adv_control),
NBPG, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
printf("%s: unable to allocate control structures,"
" error = %d\n", sc->sc_dev.dv_xname, error);
return (error);
}
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
sizeof(struct adv_control), (caddr_t *) & sc->sc_control,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
printf("%s: unable to map control structures, error = %d\n",
sc->sc_dev.dv_xname, error);
return (error);
}
/*
* Create and load the DMA map used for the control blocks.
*/
if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct adv_control),
1, sizeof(struct adv_control), 0, BUS_DMA_NOWAIT,
&sc->sc_dmamap_control)) != 0) {
printf("%s: unable to create control DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
return (error);
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap_control,
sc->sc_control, sizeof(struct adv_control), NULL,
BUS_DMA_NOWAIT)) != 0) {
printf("%s: unable to load control DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
return (error);
}
/*
* Initialize the overrun_buf address.
*/
sc->overrun_buf = sc->sc_dmamap_control->dm_segs[0].ds_addr +
offsetof(struct adv_control, overrun_buf);
return (0);
}
/*
* Create a set of ccbs and add them to the free list. Called once
* by adv_init(). We return the number of CCBs successfully created.
*/
static int
adv_create_ccbs(sc, ccbstore, count)
ASC_SOFTC *sc;
ADV_CCB *ccbstore;
int count;
{
ADV_CCB *ccb;
int i, error;
bzero(ccbstore, sizeof(ADV_CCB) * count);
for (i = 0; i < count; i++) {
ccb = &ccbstore[i];
if ((error = adv_init_ccb(sc, ccb)) != 0) {
printf("%s: unable to initialize ccb, error = %d\n",
sc->sc_dev.dv_xname, error);
return (i);
}
TAILQ_INSERT_TAIL(&sc->sc_free_ccb, ccb, chain);
}
return (i);
}
/*
* A ccb is put onto the free list.
*/
static void
adv_free_ccb(sc, ccb)
ASC_SOFTC *sc;
ADV_CCB *ccb;
{
int s;
s = splbio();
adv_reset_ccb(ccb);
TAILQ_INSERT_HEAD(&sc->sc_free_ccb, ccb, chain);
/*
* If there were none, wake anybody waiting for one to come free,
* starting with queued entries.
*/
if (ccb->chain.tqe_next == 0)
wakeup(&sc->sc_free_ccb);
splx(s);
}
static void
adv_reset_ccb(ccb)
ADV_CCB *ccb;
{
ccb->flags = 0;
}
static int
adv_init_ccb(sc, ccb)
ASC_SOFTC *sc;
ADV_CCB *ccb;
{
int hashnum, error;
/*
* Create the DMA map for this CCB.
*/
error = bus_dmamap_create(sc->sc_dmat,
(ASC_MAX_SG_LIST - 1) * PAGE_SIZE,
ASC_MAX_SG_LIST, (ASC_MAX_SG_LIST - 1) * PAGE_SIZE,
0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->dmamap_xfer);
if (error) {
printf("%s: unable to create DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
return (error);
}
/*
* put in the phystokv hash table
* Never gets taken out.
*/
ccb->hashkey = sc->sc_dmamap_control->dm_segs[0].ds_addr +
ADV_CCB_OFF(ccb);
hashnum = CCB_HASH(ccb->hashkey);
ccb->nexthash = sc->sc_ccbhash[hashnum];
sc->sc_ccbhash[hashnum] = ccb;
adv_reset_ccb(ccb);
return (0);
}
/*
* Get a free ccb
*
* If there are none, see if we can allocate a new one
*/
static ADV_CCB *
adv_get_ccb(sc, flags)
ASC_SOFTC *sc;
int flags;
{
ADV_CCB *ccb = 0;
int s;
s = splbio();
/*
* If we can and have to, sleep waiting for one to come free
* but only if we can't allocate a new one.
*/
for (;;) {
ccb = sc->sc_free_ccb.tqh_first;
if (ccb) {
TAILQ_REMOVE(&sc->sc_free_ccb, ccb, chain);
break;
}
if ((flags & XS_CTL_NOSLEEP) != 0)
goto out;
tsleep(&sc->sc_free_ccb, PRIBIO, "advccb", 0);
}
ccb->flags |= CCB_ALLOC;
out:
splx(s);
return (ccb);
}
/*
* Given a physical address, find the ccb that it corresponds to.
*/
ADV_CCB *
adv_ccb_phys_kv(sc, ccb_phys)
ASC_SOFTC *sc;
u_long ccb_phys;
{
int hashnum = CCB_HASH(ccb_phys);
ADV_CCB *ccb = sc->sc_ccbhash[hashnum];
while (ccb) {
if (ccb->hashkey == ccb_phys)
break;
ccb = ccb->nexthash;
}
return (ccb);
}
/*
* Queue a CCB to be sent to the controller, and send it if possible.
*/
static void
adv_queue_ccb(sc, ccb)
ASC_SOFTC *sc;
ADV_CCB *ccb;
{
TAILQ_INSERT_TAIL(&sc->sc_waiting_ccb, ccb, chain);
adv_start_ccbs(sc);
}
static void
adv_start_ccbs(sc)
ASC_SOFTC *sc;
{
ADV_CCB *ccb;
while ((ccb = sc->sc_waiting_ccb.tqh_first) != NULL) {
if (ccb->flags & CCB_WATCHDOG)
untimeout(adv_watchdog, ccb);
if (AscExeScsiQueue(sc, &ccb->scsiq) == ASC_BUSY) {
ccb->flags |= CCB_WATCHDOG;
timeout(adv_watchdog, ccb,
(ADV_WATCH_TIMEOUT * hz) / 1000);
break;
}
TAILQ_REMOVE(&sc->sc_waiting_ccb, ccb, chain);
if ((ccb->xs->xs_control & XS_CTL_POLL) == 0)
timeout(adv_timeout, ccb, (ccb->timeout * hz) / 1000);
}
}
/******************************************************************************/
/* SCSI layer interfacing routines */
/******************************************************************************/
int
adv_init(sc)
ASC_SOFTC *sc;
{
int warn;
if (!AscFindSignature(sc->sc_iot, sc->sc_ioh)) {
printf("adv_init: failed to find signature\n");
return (1);
}
/*
* Read the board configuration
*/
AscInitASC_SOFTC(sc);
warn = AscInitFromEEP(sc);
if (warn) {
printf("%s -get: ", sc->sc_dev.dv_xname);
switch (warn) {
case -1:
printf("Chip is not halted\n");
break;
case -2:
printf("Couldn't get MicroCode Start"
" address\n");
break;
case ASC_WARN_IO_PORT_ROTATE:
printf("I/O port address modified\n");
break;
case ASC_WARN_AUTO_CONFIG:
printf("I/O port increment switch enabled\n");
break;
case ASC_WARN_EEPROM_CHKSUM:
printf("EEPROM checksum error\n");
break;
case ASC_WARN_IRQ_MODIFIED:
printf("IRQ modified\n");
break;
case ASC_WARN_CMD_QNG_CONFLICT:
printf("tag queuing enabled w/o disconnects\n");
break;
default:
printf("unknown warning %d\n", warn);
}
}
if (sc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
sc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
/*
* Modify the board configuration
*/
warn = AscInitFromASC_SOFTC(sc);
if (warn) {
printf("%s -set: ", sc->sc_dev.dv_xname);
switch (warn) {
case ASC_WARN_CMD_QNG_CONFLICT:
printf("tag queuing enabled w/o disconnects\n");
break;
case ASC_WARN_AUTO_CONFIG:
printf("I/O port increment switch enabled\n");
break;
default:
printf("unknown warning %d\n", warn);
}
}
sc->isr_callback = (ASC_CALLBACK) adv_narrow_isr_callback;
return (0);
}
void
adv_attach(sc)
ASC_SOFTC *sc;
{
int i, error;
/*
* Initialize board RISC chip and enable interrupts.
*/
switch (AscInitDriver(sc)) {
case 0:
/* AllOK */
break;
case 1:
panic("%s: bad signature", sc->sc_dev.dv_xname);
break;
case 2:
panic("%s: unable to load MicroCode",
sc->sc_dev.dv_xname);
break;
case 3:
panic("%s: unable to initialize MicroCode",
sc->sc_dev.dv_xname);
break;
default:
panic("%s: unable to initialize board RISC chip",
sc->sc_dev.dv_xname);
}
/*
* Fill in the adapter.
*/
sc->sc_adapter.scsipi_cmd = adv_scsi_cmd;
sc->sc_adapter.scsipi_minphys = advminphys;
/*
* fill in the prototype scsipi_link.
*/
sc->sc_link.scsipi_scsi.channel = SCSI_CHANNEL_ONLY_ONE;
sc->sc_link.adapter_softc = sc;
sc->sc_link.scsipi_scsi.adapter_target = sc->chip_scsi_id;
sc->sc_link.adapter = &sc->sc_adapter;
sc->sc_link.device = &adv_dev;
sc->sc_link.openings = 4;
sc->sc_link.scsipi_scsi.max_target = 7;
sc->sc_link.scsipi_scsi.max_lun = 7;
sc->sc_link.type = BUS_SCSI;
TAILQ_INIT(&sc->sc_free_ccb);
TAILQ_INIT(&sc->sc_waiting_ccb);
TAILQ_INIT(&sc->sc_queue);
/*
* Allocate the Control Blocks and the overrun buffer.
*/
error = adv_alloc_control_data(sc);
if (error)
return; /* (error) */
/*
* Create and initialize the Control Blocks.
*/
i = adv_create_ccbs(sc, sc->sc_control->ccbs, ADV_MAX_CCB);
if (i == 0) {
printf("%s: unable to create control blocks\n",
sc->sc_dev.dv_xname);
return; /* (ENOMEM) */ ;
} else if (i != ADV_MAX_CCB) {
printf("%s: WARNING: only %d of %d control blocks created\n",
sc->sc_dev.dv_xname, i, ADV_MAX_CCB);
}
config_found(&sc->sc_dev, &sc->sc_link, scsiprint);
}
static void
advminphys(bp)
struct buf *bp;
{
if (bp->b_bcount > ((ASC_MAX_SG_LIST - 1) * PAGE_SIZE))
bp->b_bcount = ((ASC_MAX_SG_LIST - 1) * PAGE_SIZE);
minphys(bp);
}
/*
* start a scsi operation given the command and the data address. Also needs
* the unit, target and lu.
*/
static int
adv_scsi_cmd(xs)
struct scsipi_xfer *xs;
{
struct scsipi_link *sc_link = xs->sc_link;
ASC_SOFTC *sc = sc_link->adapter_softc;
bus_dma_tag_t dmat = sc->sc_dmat;
ADV_CCB *ccb;
int s, flags, error, nsegs;
int fromqueue = 1, dontqueue = 0;
s = splbio(); /* protect the queue */
/*
* If we're running the queue from adv_done(), we've been
* called with the first queue entry as our argument.
*/
if (xs == TAILQ_FIRST(&sc->sc_queue)) {
TAILQ_REMOVE(&sc->sc_queue, xs, adapter_q);
fromqueue = 1;
} else {
/* Polled requests can't be queued for later. */
dontqueue = xs->xs_control & XS_CTL_POLL;
/*
* If there are jobs in the queue, run them first.
*/
if (TAILQ_FIRST(&sc->sc_queue) != NULL) {
/*
* If we can't queue, we have to abort, since
* we have to preserve order.
*/
if (dontqueue) {
splx(s);
xs->error = XS_DRIVER_STUFFUP;
return (TRY_AGAIN_LATER);
}
/*
* Swap with the first queue entry.
*/
TAILQ_INSERT_TAIL(&sc->sc_queue, xs, adapter_q);
xs = TAILQ_FIRST(&sc->sc_queue);
TAILQ_REMOVE(&sc->sc_queue, xs, adapter_q);
fromqueue = 1;
}
}
/*
* get a ccb to use. If the transfer
* is from a buf (possibly from interrupt time)
* then we can't allow it to sleep
*/
flags = xs->xs_control;
if ((ccb = adv_get_ccb(sc, flags)) == NULL) {
/*
* If we can't queue, we lose.
*/
if (dontqueue) {
splx(s);
xs->error = XS_DRIVER_STUFFUP;
return (TRY_AGAIN_LATER);
}
/*
* Stuff ourselves into the queue, in front
* if we came off in the first place.
*/
if (fromqueue)
TAILQ_INSERT_HEAD(&sc->sc_queue, xs, adapter_q);
else
TAILQ_INSERT_TAIL(&sc->sc_queue, xs, adapter_q);
splx(s);
return (SUCCESSFULLY_QUEUED);
}
splx(s); /* done playing with the queue */
ccb->xs = xs;
ccb->timeout = xs->timeout;
/*
* Build up the request
*/
memset(&ccb->scsiq, 0, sizeof(ASC_SCSI_Q));
ccb->scsiq.q2.ccb_ptr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
ADV_CCB_OFF(ccb);
ccb->scsiq.cdbptr = &xs->cmd->opcode;
ccb->scsiq.q2.cdb_len = xs->cmdlen;
ccb->scsiq.q1.target_id = ASC_TID_TO_TARGET_ID(sc_link->scsipi_scsi.target);
ccb->scsiq.q1.target_lun = sc_link->scsipi_scsi.lun;
ccb->scsiq.q2.target_ix = ASC_TIDLUN_TO_IX(sc_link->scsipi_scsi.target,
sc_link->scsipi_scsi.lun);
ccb->scsiq.q1.sense_addr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
ADV_CCB_OFF(ccb) + offsetof(struct adv_ccb, scsi_sense);
ccb->scsiq.q1.sense_len = sizeof(struct scsipi_sense_data);
/*
* If there are any outstanding requests for the current target,
* then every 255th request send an ORDERED request. This heuristic
* tries to retain the benefit of request sorting while preventing
* request starvation. 255 is the max number of tags or pending commands
* a device may have outstanding.
*/
sc->reqcnt[sc_link->scsipi_scsi.target]++;
if ((sc->reqcnt[sc_link->scsipi_scsi.target] > 0) &&
(sc->reqcnt[sc_link->scsipi_scsi.target] % 255) == 0) {
ccb->scsiq.q2.tag_code = M2_QTAG_MSG_ORDERED;
} else {
ccb->scsiq.q2.tag_code = M2_QTAG_MSG_SIMPLE;
}
if (xs->datalen) {
/*
* Map the DMA transfer.
*/
#ifdef TFS
if (flags & SCSI_DATA_UIO) {
error = bus_dmamap_load_uio(dmat,
ccb->dmamap_xfer, (struct uio *) xs->data,
(flags & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK);
} else
#endif /* TFS */
{
error = bus_dmamap_load(dmat,
ccb->dmamap_xfer, xs->data, xs->datalen, NULL,
(flags & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK);
}
if (error) {
if (error == EFBIG) {
printf("%s: adv_scsi_cmd, more than %d dma"
" segments\n",
sc->sc_dev.dv_xname, ASC_MAX_SG_LIST);
} else {
printf("%s: adv_scsi_cmd, error %d loading"
" dma map\n",
sc->sc_dev.dv_xname, error);
}
xs->error = XS_DRIVER_STUFFUP;
adv_free_ccb(sc, ccb);
return (COMPLETE);
}
bus_dmamap_sync(dmat, ccb->dmamap_xfer, 0,
ccb->dmamap_xfer->dm_mapsize,
(flags & XS_CTL_DATA_IN) ? BUS_DMASYNC_PREREAD :
BUS_DMASYNC_PREWRITE);
memset(&ccb->sghead, 0, sizeof(ASC_SG_HEAD));
for (nsegs = 0; nsegs < ccb->dmamap_xfer->dm_nsegs; nsegs++) {
ccb->sghead.sg_list[nsegs].addr =
ccb->dmamap_xfer->dm_segs[nsegs].ds_addr;
ccb->sghead.sg_list[nsegs].bytes =
ccb->dmamap_xfer->dm_segs[nsegs].ds_len;
}
ccb->sghead.entry_cnt = ccb->scsiq.q1.sg_queue_cnt =
ccb->dmamap_xfer->dm_nsegs;
ccb->scsiq.q1.cntl |= ASC_QC_SG_HEAD;
ccb->scsiq.sg_head = &ccb->sghead;
ccb->scsiq.q1.data_addr = 0;
ccb->scsiq.q1.data_cnt = 0;
} else {
/*
* No data xfer, use non S/G values.
*/
ccb->scsiq.q1.data_addr = 0;
ccb->scsiq.q1.data_cnt = 0;
}
#ifdef ASC_DEBUG
printf("id = %d, lun = %d, cmd = %d, ccb = 0x%lX \n",
sc_link->scsipi_scsi.target,
sc_link->scsipi_scsi.lun, xs->cmd->opcode,
(unsigned long)ccb);
#endif
s = splbio();
adv_queue_ccb(sc, ccb);
splx(s);
/*
* Usually return SUCCESSFULLY QUEUED
*/
if ((flags & XS_CTL_POLL) == 0)
return (SUCCESSFULLY_QUEUED);
/*
* If we can't use interrupts, poll on completion
*/
if (adv_poll(sc, xs, ccb->timeout)) {
adv_timeout(ccb);
if (adv_poll(sc, xs, ccb->timeout))
adv_timeout(ccb);
}
return (COMPLETE);
}
int
adv_intr(arg)
void *arg;
{
ASC_SOFTC *sc = arg;
struct scsipi_xfer *xs;
#ifdef ASC_DEBUG
int int_pend = FALSE;
if(ASC_IS_INT_PENDING(sc->sc_iot, sc->sc_ioh))
{
int_pend = TRUE;
printf("ISR - ");
}
#endif
AscISR(sc);
#ifdef ASC_DEBUG
if(int_pend)
printf("\n");
#endif
/*
* If there are queue entries in the software queue, try to
* run the first one. We should be more or less guaranteed
* to succeed, since we just freed a CCB.
*
* NOTE: adv_scsi_cmd() relies on our calling it with
* the first entry in the queue.
*/
if ((xs = TAILQ_FIRST(&sc->sc_queue)) != NULL)
(void) adv_scsi_cmd(xs);
return (1);
}
/*
* Poll a particular unit, looking for a particular xs
*/
static int
adv_poll(sc, xs, count)
ASC_SOFTC *sc;
struct scsipi_xfer *xs;
int count;
{
/* timeouts are in msec, so we loop in 1000 usec cycles */
while (count) {
adv_intr(sc);
if (xs->xs_status & XS_STS_DONE)
return (0);
delay(1000); /* only happens in boot so ok */
count--;
}
return (1);
}
static void
adv_timeout(arg)
void *arg;
{
ADV_CCB *ccb = arg;
struct scsipi_xfer *xs = ccb->xs;
struct scsipi_link *sc_link = xs->sc_link;
ASC_SOFTC *sc = sc_link->adapter_softc;
int s;
scsi_print_addr(sc_link);
printf("timed out");
s = splbio();
/*
* If it has been through before, then a previous abort has failed,
* don't try abort again, reset the bus instead.
*/
if (ccb->flags & CCB_ABORT) {
/* abort timed out */
printf(" AGAIN. Resetting Bus\n");
/* Lets try resetting the bus! */
if (AscResetBus(sc) == ASC_ERROR) {
ccb->timeout = sc->scsi_reset_wait;
adv_queue_ccb(sc, ccb);
}
} else {
/* abort the operation that has timed out */
printf("\n");
AscAbortCCB(sc, ccb);
ccb->xs->error = XS_TIMEOUT;
ccb->timeout = ADV_ABORT_TIMEOUT;
ccb->flags |= CCB_ABORT;
adv_queue_ccb(sc, ccb);
}
splx(s);
}
static void
adv_watchdog(arg)
void *arg;
{
ADV_CCB *ccb = arg;
struct scsipi_xfer *xs = ccb->xs;
struct scsipi_link *sc_link = xs->sc_link;
ASC_SOFTC *sc = sc_link->adapter_softc;
int s;
s = splbio();
ccb->flags &= ~CCB_WATCHDOG;
adv_start_ccbs(sc);
splx(s);
}
/******************************************************************************/
/* NARROW boards Interrupt callbacks */
/******************************************************************************/
/*
* adv_narrow_isr_callback() - Second Level Interrupt Handler called by AscISR()
*
* Interrupt callback function for the Narrow SCSI Asc Library.
*/
static void
adv_narrow_isr_callback(sc, qdonep)
ASC_SOFTC *sc;
ASC_QDONE_INFO *qdonep;
{
bus_dma_tag_t dmat = sc->sc_dmat;
ADV_CCB *ccb;
struct scsipi_xfer *xs;
struct scsipi_sense_data *s1, *s2;
ccb = adv_ccb_phys_kv(sc, qdonep->d2.ccb_ptr);
xs = ccb->xs;
#ifdef ASC_DEBUG
printf(" - ccb=0x%lx, id=%d, lun=%d, cmd=%d, ",
(unsigned long)ccb,
xs->sc_link->scsipi_scsi.target,
xs->sc_link->scsipi_scsi.lun, xs->cmd->opcode);
#endif
untimeout(adv_timeout, ccb);
/*
* If we were a data transfer, unload the map that described
* the data buffer.
*/
if (xs->datalen) {
bus_dmamap_sync(dmat, ccb->dmamap_xfer, 0,
ccb->dmamap_xfer->dm_mapsize,
(xs->xs_control & XS_CTL_DATA_IN) ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dmat, ccb->dmamap_xfer);
}
if ((ccb->flags & CCB_ALLOC) == 0) {
printf("%s: exiting ccb not allocated!\n", sc->sc_dev.dv_xname);
Debugger();
return;
}
/*
* 'qdonep' contains the command's ending status.
*/
#ifdef ASC_DEBUG
printf("d_s=%d, h_s=%d", qdonep->d3.done_stat, qdonep->d3.host_stat);
#endif
switch (qdonep->d3.done_stat) {
case ASC_QD_NO_ERROR:
switch (qdonep->d3.host_stat) {
case ASC_QHSTA_NO_ERROR:
xs->error = XS_NOERROR;
xs->resid = 0;
break;
default:
/* QHSTA error occurred */
xs->error = XS_DRIVER_STUFFUP;
break;
}
/*
* If an INQUIRY command completed successfully, then call
* the AscInquiryHandling() function to patch bugged boards.
*/
if ((xs->cmd->opcode == SCSICMD_Inquiry) &&
(xs->sc_link->scsipi_scsi.lun == 0) &&
(xs->datalen - qdonep->remain_bytes) >= 8) {
AscInquiryHandling(sc,
xs->sc_link->scsipi_scsi.target & 0x7,
(ASC_SCSI_INQUIRY *) xs->data);
}
break;
case ASC_QD_WITH_ERROR:
switch (qdonep->d3.host_stat) {
case ASC_QHSTA_NO_ERROR:
if (qdonep->d3.scsi_stat == SS_CHK_CONDITION) {
s1 = &ccb->scsi_sense;
s2 = &xs->sense.scsi_sense;
*s2 = *s1;
xs->error = XS_SENSE;
} else {
xs->error = XS_DRIVER_STUFFUP;
}
break;
default:
/* QHSTA error occurred */
xs->error = XS_DRIVER_STUFFUP;
break;
}
break;
case ASC_QD_ABORTED_BY_HOST:
default:
xs->error = XS_DRIVER_STUFFUP;
break;
}
adv_free_ccb(sc, ccb);
xs->xs_status |= XS_STS_DONE;
scsipi_done(xs);
}