1467 lines
38 KiB
C
1467 lines
38 KiB
C
/* $NetBSD: radixtree.c,v 1.17 2011/11/02 13:49:43 yamt Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c)2011 YAMAMOTO Takashi,
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* radixtree.c
|
|
*
|
|
* this is an implementation of radix tree, whose keys are uint64_t and leafs
|
|
* are user provided pointers.
|
|
*
|
|
* leaf nodes are just void * and this implementation doesn't care about
|
|
* what they actually point to. however, this implementation has an assumption
|
|
* about their alignment. specifically, this implementation assumes that their
|
|
* 2 LSBs are zero and uses them internally.
|
|
*
|
|
* intermediate nodes are automatically allocated and freed internally and
|
|
* basically users don't need to care about them. only radix_tree_insert_node
|
|
* function can allocate memory for intermediate nodes and thus can fail for
|
|
* ENOMEM.
|
|
*
|
|
* efficiency:
|
|
* it's designed to work efficiently with dense index distribution.
|
|
* the memory consumption (number of necessary intermediate nodes)
|
|
* heavily depends on index distribution. basically, more dense index
|
|
* distribution consumes less nodes per item.
|
|
* approximately,
|
|
* the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
|
|
* the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
|
|
*
|
|
* gang lookup:
|
|
* this implementation provides a way to lookup many nodes quickly via
|
|
* radix_tree_gang_lookup_node function and its varients.
|
|
*
|
|
* tags:
|
|
* this implementation provides tagging functionality to allow quick
|
|
* scanning of a subset of leaf nodes. leaf nodes are untagged when
|
|
* inserted into the tree and can be tagged by radix_tree_set_tag function.
|
|
* radix_tree_gang_lookup_tagged_node function and its variants returns
|
|
* only leaf nodes with the given tag. to reduce amount of nodes to visit for
|
|
* these functions, this implementation keeps tagging information in internal
|
|
* intermediate nodes and quickly skips uninterested parts of a tree.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
#if defined(_KERNEL) || defined(_STANDALONE)
|
|
__KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.17 2011/11/02 13:49:43 yamt Exp $");
|
|
#include <sys/param.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/radixtree.h>
|
|
#include <lib/libkern/libkern.h>
|
|
#if defined(_STANDALONE)
|
|
#include <lib/libsa/stand.h>
|
|
#endif /* defined(_STANDALONE) */
|
|
#else /* defined(_KERNEL) || defined(_STANDALONE) */
|
|
__RCSID("$NetBSD: radixtree.c,v 1.17 2011/11/02 13:49:43 yamt Exp $");
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <stdbool.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#if 1
|
|
#define KASSERT assert
|
|
#else
|
|
#define KASSERT(a) /* nothing */
|
|
#endif
|
|
#endif /* defined(_KERNEL) || defined(_STANDALONE) */
|
|
|
|
#include <sys/radixtree.h>
|
|
|
|
#define RADIX_TREE_BITS_PER_HEIGHT 4 /* XXX tune */
|
|
#define RADIX_TREE_PTR_PER_NODE (1 << RADIX_TREE_BITS_PER_HEIGHT)
|
|
#define RADIX_TREE_MAX_HEIGHT (64 / RADIX_TREE_BITS_PER_HEIGHT)
|
|
#define RADIX_TREE_INVALID_HEIGHT (RADIX_TREE_MAX_HEIGHT + 1)
|
|
__CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
|
|
|
|
__CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
|
|
#define RADIX_TREE_TAG_MASK ((1 << RADIX_TREE_TAG_ID_MAX) - 1)
|
|
|
|
static inline void *
|
|
entry_ptr(void *p)
|
|
{
|
|
|
|
return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
|
|
}
|
|
|
|
static inline unsigned int
|
|
entry_tagmask(void *p)
|
|
{
|
|
|
|
return (uintptr_t)p & RADIX_TREE_TAG_MASK;
|
|
}
|
|
|
|
static inline void *
|
|
entry_compose(void *p, unsigned int tagmask)
|
|
{
|
|
|
|
return (void *)((uintptr_t)p | tagmask);
|
|
}
|
|
|
|
static inline bool
|
|
entry_match_p(void *p, unsigned int tagmask)
|
|
{
|
|
|
|
KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
|
|
if (p == NULL) {
|
|
return false;
|
|
}
|
|
if (tagmask == 0) {
|
|
return true;
|
|
}
|
|
return (entry_tagmask(p) & tagmask) != 0;
|
|
}
|
|
|
|
static inline unsigned int
|
|
tagid_to_mask(radix_tree_tagid_t id)
|
|
{
|
|
|
|
KASSERT(id >= 0);
|
|
KASSERT(id < RADIX_TREE_TAG_ID_MAX);
|
|
return 1U << id;
|
|
}
|
|
|
|
/*
|
|
* radix_tree_node: an intermediate node
|
|
*
|
|
* we don't care the type of leaf nodes. they are just void *.
|
|
*/
|
|
|
|
struct radix_tree_node {
|
|
void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
|
|
unsigned int n_nptrs; /* # of non-NULL pointers in n_ptrs */
|
|
};
|
|
|
|
/*
|
|
* any_children_tagmask:
|
|
*
|
|
* return OR'ed tagmask of the given node's children.
|
|
*/
|
|
|
|
static unsigned int
|
|
any_children_tagmask(const struct radix_tree_node *n)
|
|
{
|
|
unsigned int mask;
|
|
int i;
|
|
|
|
mask = 0;
|
|
for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
|
|
mask |= (unsigned int)(uintptr_t)n->n_ptrs[i];
|
|
}
|
|
return mask & RADIX_TREE_TAG_MASK;
|
|
}
|
|
|
|
/*
|
|
* p_refs[0].pptr == &t->t_root
|
|
* :
|
|
* p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
|
|
* :
|
|
* :
|
|
* p_refs[t->t_height].pptr == &leaf_pointer
|
|
*/
|
|
|
|
struct radix_tree_path {
|
|
struct radix_tree_node_ref {
|
|
void **pptr;
|
|
} p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
|
|
/*
|
|
* p_lastidx is either the index of the last valid element of p_refs[]
|
|
* or RADIX_TREE_INVALID_HEIGHT.
|
|
* RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
|
|
* that the height of the tree is not enough to cover the given index.
|
|
*/
|
|
unsigned int p_lastidx;
|
|
};
|
|
|
|
static inline void **
|
|
path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
|
|
unsigned int height)
|
|
{
|
|
|
|
KASSERT(height <= t->t_height);
|
|
return p->p_refs[height].pptr;
|
|
}
|
|
|
|
static inline struct radix_tree_node *
|
|
path_node(const struct radix_tree * t, const struct radix_tree_path *p,
|
|
unsigned int height)
|
|
{
|
|
|
|
KASSERT(height <= t->t_height);
|
|
return entry_ptr(*path_pptr(t, p, height));
|
|
}
|
|
|
|
/*
|
|
* radix_tree_init_tree:
|
|
*
|
|
* initialize a tree.
|
|
*/
|
|
|
|
void
|
|
radix_tree_init_tree(struct radix_tree *t)
|
|
{
|
|
|
|
t->t_height = 0;
|
|
t->t_root = NULL;
|
|
}
|
|
|
|
/*
|
|
* radix_tree_init_tree:
|
|
*
|
|
* clean up a tree.
|
|
*/
|
|
|
|
void
|
|
radix_tree_fini_tree(struct radix_tree *t)
|
|
{
|
|
|
|
KASSERT(t->t_root == NULL);
|
|
KASSERT(t->t_height == 0);
|
|
}
|
|
|
|
bool
|
|
radix_tree_empty_tree_p(struct radix_tree *t)
|
|
{
|
|
|
|
return t->t_root == NULL;
|
|
}
|
|
|
|
bool
|
|
radix_tree_empty_tagged_tree_p(struct radix_tree *t, radix_tree_tagid_t tagid)
|
|
{
|
|
const unsigned int tagmask = tagid_to_mask(tagid);
|
|
|
|
return (entry_tagmask(t->t_root) & tagmask) == 0;
|
|
}
|
|
|
|
static void
|
|
radix_tree_node_init(struct radix_tree_node *n)
|
|
{
|
|
|
|
memset(n, 0, sizeof(*n));
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
pool_cache_t radix_tree_node_cache __read_mostly;
|
|
|
|
static int
|
|
radix_tree_node_ctor(void *dummy, void *item, int flags)
|
|
{
|
|
struct radix_tree_node *n = item;
|
|
|
|
KASSERT(dummy == NULL);
|
|
radix_tree_node_init(n);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* radix_tree_init:
|
|
*
|
|
* initialize the subsystem.
|
|
*/
|
|
|
|
void
|
|
radix_tree_init(void)
|
|
{
|
|
|
|
radix_tree_node_cache = pool_cache_init(sizeof(struct radix_tree_node),
|
|
0, 0, 0, "radix_tree_node", NULL, IPL_NONE, radix_tree_node_ctor,
|
|
NULL, NULL);
|
|
KASSERT(radix_tree_node_cache != NULL);
|
|
}
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
static bool __unused
|
|
radix_tree_node_clean_p(const struct radix_tree_node *n)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (n->n_nptrs != 0) {
|
|
return false;
|
|
}
|
|
for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
|
|
if (n->n_ptrs[i] != NULL) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static struct radix_tree_node *
|
|
radix_tree_alloc_node(void)
|
|
{
|
|
struct radix_tree_node *n;
|
|
|
|
#if defined(_KERNEL)
|
|
n = pool_cache_get(radix_tree_node_cache, PR_NOWAIT);
|
|
#else /* defined(_KERNEL) */
|
|
#if defined(_STANDALONE)
|
|
n = alloc(sizeof(*n));
|
|
#else /* defined(_STANDALONE) */
|
|
n = malloc(sizeof(*n));
|
|
#endif /* defined(_STANDALONE) */
|
|
if (n != NULL) {
|
|
radix_tree_node_init(n);
|
|
}
|
|
#endif /* defined(_KERNEL) */
|
|
KASSERT(n == NULL || radix_tree_node_clean_p(n));
|
|
return n;
|
|
}
|
|
|
|
static void
|
|
radix_tree_free_node(struct radix_tree_node *n)
|
|
{
|
|
|
|
KASSERT(radix_tree_node_clean_p(n));
|
|
#if defined(_KERNEL)
|
|
pool_cache_put(radix_tree_node_cache, n);
|
|
#elif defined(_STANDALONE)
|
|
dealloc(n, sizeof(*n));
|
|
#else
|
|
free(n);
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
radix_tree_grow(struct radix_tree *t, unsigned int newheight)
|
|
{
|
|
const unsigned int tagmask = entry_tagmask(t->t_root);
|
|
|
|
KASSERT(newheight <= 64 / RADIX_TREE_BITS_PER_HEIGHT);
|
|
if (t->t_root == NULL) {
|
|
t->t_height = newheight;
|
|
return 0;
|
|
}
|
|
while (t->t_height < newheight) {
|
|
struct radix_tree_node *n;
|
|
|
|
n = radix_tree_alloc_node();
|
|
if (n == NULL) {
|
|
/*
|
|
* don't bother to revert our changes.
|
|
* the caller will likely retry.
|
|
*/
|
|
return ENOMEM;
|
|
}
|
|
n->n_nptrs = 1;
|
|
n->n_ptrs[0] = t->t_root;
|
|
t->t_root = entry_compose(n, tagmask);
|
|
t->t_height++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* radix_tree_lookup_ptr:
|
|
*
|
|
* an internal helper function used for various exported functions.
|
|
*
|
|
* return the pointer to store the node for the given index.
|
|
*
|
|
* if alloc is true, try to allocate the storage. (note for _KERNEL:
|
|
* in that case, this function can block.) if the allocation failed or
|
|
* alloc is false, return NULL.
|
|
*
|
|
* if path is not NULL, fill it for the caller's investigation.
|
|
*
|
|
* if tagmask is not zero, search only for nodes with the tag set.
|
|
* note that, however, this function doesn't check the tagmask for the leaf
|
|
* pointer. it's a caller's responsibility to investigate the value which
|
|
* is pointed by the returned pointer if necessary.
|
|
*
|
|
* while this function is a bit large, as it's called with some constant
|
|
* arguments, inlining might have benefits. anyway, a compiler will decide.
|
|
*/
|
|
|
|
static inline void **
|
|
radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
|
|
struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
|
|
{
|
|
struct radix_tree_node *n;
|
|
int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
|
|
int shift;
|
|
void **vpp;
|
|
const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
|
|
struct radix_tree_node_ref *refs = NULL;
|
|
|
|
/*
|
|
* check unsupported combinations
|
|
*/
|
|
KASSERT(tagmask == 0 || !alloc);
|
|
KASSERT(path == NULL || !alloc);
|
|
vpp = &t->t_root;
|
|
if (path != NULL) {
|
|
refs = path->p_refs;
|
|
refs->pptr = vpp;
|
|
}
|
|
n = NULL;
|
|
for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
|
|
struct radix_tree_node *c;
|
|
void *entry;
|
|
const uint64_t i = (idx >> shift) & mask;
|
|
|
|
if (shift >= hshift) {
|
|
unsigned int newheight;
|
|
|
|
KASSERT(vpp == &t->t_root);
|
|
if (i == 0) {
|
|
shift -= RADIX_TREE_BITS_PER_HEIGHT;
|
|
continue;
|
|
}
|
|
if (!alloc) {
|
|
if (path != NULL) {
|
|
KASSERT((refs - path->p_refs) == 0);
|
|
path->p_lastidx =
|
|
RADIX_TREE_INVALID_HEIGHT;
|
|
}
|
|
return NULL;
|
|
}
|
|
newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
|
|
if (radix_tree_grow(t, newheight)) {
|
|
return NULL;
|
|
}
|
|
hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
|
|
}
|
|
entry = *vpp;
|
|
c = entry_ptr(entry);
|
|
if (c == NULL ||
|
|
(tagmask != 0 &&
|
|
(entry_tagmask(entry) & tagmask) == 0)) {
|
|
if (!alloc) {
|
|
if (path != NULL) {
|
|
path->p_lastidx = refs - path->p_refs;
|
|
}
|
|
return NULL;
|
|
}
|
|
c = radix_tree_alloc_node();
|
|
if (c == NULL) {
|
|
return NULL;
|
|
}
|
|
*vpp = c;
|
|
if (n != NULL) {
|
|
KASSERT(n->n_nptrs < RADIX_TREE_PTR_PER_NODE);
|
|
n->n_nptrs++;
|
|
}
|
|
}
|
|
n = c;
|
|
vpp = &n->n_ptrs[i];
|
|
if (path != NULL) {
|
|
refs++;
|
|
refs->pptr = vpp;
|
|
}
|
|
shift -= RADIX_TREE_BITS_PER_HEIGHT;
|
|
}
|
|
if (alloc) {
|
|
KASSERT(*vpp == NULL);
|
|
if (n != NULL) {
|
|
KASSERT(n->n_nptrs < RADIX_TREE_PTR_PER_NODE);
|
|
n->n_nptrs++;
|
|
}
|
|
}
|
|
if (path != NULL) {
|
|
path->p_lastidx = refs - path->p_refs;
|
|
}
|
|
return vpp;
|
|
}
|
|
|
|
/*
|
|
* radix_tree_insert_node:
|
|
*
|
|
* insert the node at idx.
|
|
* it's illegal to insert NULL.
|
|
* it's illegal to insert a non-aligned pointer.
|
|
*
|
|
* this function returns ENOMEM if necessary memory allocation failed.
|
|
* otherwise, this function returns 0.
|
|
*
|
|
* note that inserting a node can involves memory allocation for intermediate
|
|
* nodes. if _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
|
|
*
|
|
* for the newly inserted node, all tags are cleared.
|
|
*/
|
|
|
|
int
|
|
radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
|
|
{
|
|
void **vpp;
|
|
|
|
KASSERT(p != NULL);
|
|
KASSERT(entry_compose(p, 0) == p);
|
|
vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
|
|
if (vpp == NULL) {
|
|
return ENOMEM;
|
|
}
|
|
KASSERT(*vpp == NULL);
|
|
*vpp = p;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* radix_tree_replace_node:
|
|
*
|
|
* replace a node at the given index with the given node.
|
|
* return the old node.
|
|
* it's illegal to try to replace a node which has not been inserted.
|
|
*
|
|
* this function doesn't change tags.
|
|
*/
|
|
|
|
void *
|
|
radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
|
|
{
|
|
void **vpp;
|
|
void *oldp;
|
|
|
|
KASSERT(p != NULL);
|
|
KASSERT(entry_compose(p, 0) == p);
|
|
vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
|
|
KASSERT(vpp != NULL);
|
|
oldp = *vpp;
|
|
KASSERT(oldp != NULL);
|
|
*vpp = entry_compose(p, entry_tagmask(*vpp));
|
|
return entry_ptr(oldp);
|
|
}
|
|
|
|
/*
|
|
* radix_tree_remove_node:
|
|
*
|
|
* remove the node at idx.
|
|
* it's illegal to try to remove a node which has not been inserted.
|
|
*/
|
|
|
|
void *
|
|
radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
|
|
{
|
|
struct radix_tree_path path;
|
|
void **vpp;
|
|
void *oldp;
|
|
int i;
|
|
|
|
vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
|
|
KASSERT(vpp != NULL);
|
|
oldp = *vpp;
|
|
KASSERT(oldp != NULL);
|
|
KASSERT(path.p_lastidx == t->t_height);
|
|
KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
|
|
*vpp = NULL;
|
|
for (i = t->t_height - 1; i >= 0; i--) {
|
|
void *entry;
|
|
struct radix_tree_node ** const pptr =
|
|
(struct radix_tree_node **)path_pptr(t, &path, i);
|
|
struct radix_tree_node *n;
|
|
|
|
KASSERT(pptr != NULL);
|
|
entry = *pptr;
|
|
n = entry_ptr(entry);
|
|
KASSERT(n != NULL);
|
|
KASSERT(n->n_nptrs > 0);
|
|
n->n_nptrs--;
|
|
if (n->n_nptrs > 0) {
|
|
break;
|
|
}
|
|
radix_tree_free_node(n);
|
|
*pptr = NULL;
|
|
}
|
|
/*
|
|
* fix up height
|
|
*/
|
|
if (i < 0) {
|
|
KASSERT(t->t_root == NULL);
|
|
t->t_height = 0;
|
|
}
|
|
/*
|
|
* update tags
|
|
*/
|
|
for (; i >= 0; i--) {
|
|
void *entry;
|
|
struct radix_tree_node ** const pptr =
|
|
(struct radix_tree_node **)path_pptr(t, &path, i);
|
|
struct radix_tree_node *n;
|
|
unsigned int newmask;
|
|
|
|
KASSERT(pptr != NULL);
|
|
entry = *pptr;
|
|
n = entry_ptr(entry);
|
|
KASSERT(n != NULL);
|
|
KASSERT(n->n_nptrs > 0);
|
|
newmask = any_children_tagmask(n);
|
|
if (newmask == entry_tagmask(entry)) {
|
|
break;
|
|
}
|
|
*pptr = entry_compose(n, newmask);
|
|
}
|
|
/*
|
|
* XXX is it worth to try to reduce height?
|
|
* if we do that, make radix_tree_grow rollback its change as well.
|
|
*/
|
|
return entry_ptr(oldp);
|
|
}
|
|
|
|
/*
|
|
* radix_tree_lookup_node:
|
|
*
|
|
* returns the node at idx.
|
|
* returns NULL if nothing is found at idx.
|
|
*/
|
|
|
|
void *
|
|
radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
|
|
{
|
|
void **vpp;
|
|
|
|
vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
|
|
if (vpp == NULL) {
|
|
return NULL;
|
|
}
|
|
return entry_ptr(*vpp);
|
|
}
|
|
|
|
static inline void
|
|
gang_lookup_init(struct radix_tree *t, uint64_t idx,
|
|
struct radix_tree_path *path, const unsigned int tagmask)
|
|
{
|
|
void **vpp;
|
|
|
|
vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
|
|
KASSERT(vpp == NULL ||
|
|
vpp == path_pptr(t, path, path->p_lastidx));
|
|
KASSERT(&t->t_root == path_pptr(t, path, 0));
|
|
KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
|
|
path->p_lastidx == t->t_height ||
|
|
!entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
|
|
}
|
|
|
|
/*
|
|
* gang_lookup_scan:
|
|
*
|
|
* a helper routine for radix_tree_gang_lookup_node and its variants.
|
|
*/
|
|
|
|
static inline unsigned int
|
|
__attribute__((__always_inline__))
|
|
gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
|
|
void **results, unsigned int maxresults, const unsigned int tagmask,
|
|
bool reverse)
|
|
{
|
|
|
|
/*
|
|
* we keep the path updated only for lastidx-1.
|
|
* vpp is what path_pptr(t, path, lastidx) would be.
|
|
*/
|
|
void **vpp;
|
|
unsigned int nfound;
|
|
unsigned int lastidx;
|
|
/*
|
|
* set up scan direction dependant constants so that we can iterate
|
|
* n_ptrs as the following.
|
|
*
|
|
* for (i = first; i != guard; i += step)
|
|
* visit n->n_ptrs[i];
|
|
*/
|
|
const int step = reverse ? -1 : 1;
|
|
const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
|
|
const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
|
|
const unsigned int guard = last + step;
|
|
|
|
KASSERT(maxresults > 0);
|
|
KASSERT(&t->t_root == path_pptr(t, path, 0));
|
|
lastidx = path->p_lastidx;
|
|
KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
|
|
lastidx == t->t_height ||
|
|
!entry_match_p(*path_pptr(t, path, lastidx), tagmask));
|
|
nfound = 0;
|
|
if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
|
|
if (reverse) {
|
|
lastidx = 0;
|
|
vpp = path_pptr(t, path, lastidx);
|
|
goto descend;
|
|
}
|
|
return 0;
|
|
}
|
|
vpp = path_pptr(t, path, lastidx);
|
|
while (/*CONSTCOND*/true) {
|
|
struct radix_tree_node *n;
|
|
unsigned int i;
|
|
|
|
if (entry_match_p(*vpp, tagmask)) {
|
|
KASSERT(lastidx == t->t_height);
|
|
/*
|
|
* record the matching non-NULL leaf.
|
|
*/
|
|
results[nfound] = entry_ptr(*vpp);
|
|
nfound++;
|
|
if (nfound == maxresults) {
|
|
return nfound;
|
|
}
|
|
}
|
|
scan_siblings:
|
|
/*
|
|
* try to find the next matching non-NULL sibling.
|
|
*/
|
|
if (lastidx == 0) {
|
|
/*
|
|
* the root has no siblings.
|
|
* we've done.
|
|
*/
|
|
KASSERT(vpp == &t->t_root);
|
|
break;
|
|
}
|
|
n = path_node(t, path, lastidx - 1);
|
|
if (*vpp != NULL && n->n_nptrs == 1) {
|
|
/*
|
|
* optimization; if the node has only a single pointer
|
|
* and we've already visited it, there's no point to
|
|
* keep scanning in this node.
|
|
*/
|
|
goto no_siblings;
|
|
}
|
|
for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
|
|
KASSERT(i < RADIX_TREE_PTR_PER_NODE);
|
|
if (entry_match_p(n->n_ptrs[i], tagmask)) {
|
|
vpp = &n->n_ptrs[i];
|
|
break;
|
|
}
|
|
}
|
|
if (i == guard) {
|
|
no_siblings:
|
|
/*
|
|
* not found. go to parent.
|
|
*/
|
|
lastidx--;
|
|
vpp = path_pptr(t, path, lastidx);
|
|
goto scan_siblings;
|
|
}
|
|
descend:
|
|
/*
|
|
* following the left-most (or right-most in the case of
|
|
* reverse scan) child node, decend until reaching the leaf or
|
|
* an non-matching entry.
|
|
*/
|
|
while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
|
|
/*
|
|
* save vpp in the path so that we can come back to this
|
|
* node after finishing visiting children.
|
|
*/
|
|
path->p_refs[lastidx].pptr = vpp;
|
|
n = entry_ptr(*vpp);
|
|
vpp = &n->n_ptrs[first];
|
|
lastidx++;
|
|
}
|
|
}
|
|
return nfound;
|
|
}
|
|
|
|
/*
|
|
* radix_tree_gang_lookup_node:
|
|
*
|
|
* search nodes starting from idx in the ascending order.
|
|
* results should be an array large enough to hold maxresults pointers.
|
|
* returns the number of nodes found, up to maxresults.
|
|
* returning less than maxresults means there are no more nodes.
|
|
*
|
|
* the result of this function is semantically equivalent to what could be
|
|
* obtained by repeated calls of radix_tree_lookup_node with increasing index.
|
|
* but this function is much faster when node indexes are distributed sparsely.
|
|
*
|
|
* note that this function doesn't return exact values of node indexes of
|
|
* found nodes. if they are important for a caller, it's the caller's
|
|
* responsibility to check them, typically by examinining the returned nodes
|
|
* using some caller-specific knowledge about them.
|
|
*/
|
|
|
|
unsigned int
|
|
radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
|
|
void **results, unsigned int maxresults)
|
|
{
|
|
struct radix_tree_path path;
|
|
|
|
gang_lookup_init(t, idx, &path, 0);
|
|
return gang_lookup_scan(t, &path, results, maxresults, 0, false);
|
|
}
|
|
|
|
/*
|
|
* radix_tree_gang_lookup_node_reverse:
|
|
*
|
|
* same as radix_tree_gang_lookup_node except that this one scans the
|
|
* tree in the reverse order. ie. descending index values.
|
|
*/
|
|
|
|
unsigned int
|
|
radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
|
|
void **results, unsigned int maxresults)
|
|
{
|
|
struct radix_tree_path path;
|
|
|
|
gang_lookup_init(t, idx, &path, 0);
|
|
return gang_lookup_scan(t, &path, results, maxresults, 0, true);
|
|
}
|
|
|
|
/*
|
|
* radix_tree_gang_lookup_tagged_node:
|
|
*
|
|
* same as radix_tree_gang_lookup_node except that this one only returns
|
|
* nodes tagged with tagid.
|
|
*/
|
|
|
|
unsigned int
|
|
radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
|
|
void **results, unsigned int maxresults, radix_tree_tagid_t tagid)
|
|
{
|
|
struct radix_tree_path path;
|
|
const unsigned int tagmask = tagid_to_mask(tagid);
|
|
|
|
gang_lookup_init(t, idx, &path, tagmask);
|
|
return gang_lookup_scan(t, &path, results, maxresults, tagmask, false);
|
|
}
|
|
|
|
/*
|
|
* radix_tree_gang_lookup_tagged_node_reverse:
|
|
*
|
|
* same as radix_tree_gang_lookup_tagged_node except that this one scans the
|
|
* tree in the reverse order. ie. descending index values.
|
|
*/
|
|
|
|
unsigned int
|
|
radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
|
|
void **results, unsigned int maxresults, radix_tree_tagid_t tagid)
|
|
{
|
|
struct radix_tree_path path;
|
|
const unsigned int tagmask = tagid_to_mask(tagid);
|
|
|
|
gang_lookup_init(t, idx, &path, tagmask);
|
|
return gang_lookup_scan(t, &path, results, maxresults, tagmask, true);
|
|
}
|
|
|
|
/*
|
|
* radix_tree_get_tag:
|
|
*
|
|
* return if the tag is set for the node at the given index. (true if set)
|
|
* it's illegal to call this function for a node which has not been inserted.
|
|
*/
|
|
|
|
bool
|
|
radix_tree_get_tag(struct radix_tree *t, uint64_t idx,
|
|
radix_tree_tagid_t tagid)
|
|
{
|
|
#if 1
|
|
const unsigned int tagmask = tagid_to_mask(tagid);
|
|
void **vpp;
|
|
|
|
vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
|
|
if (vpp == NULL) {
|
|
return false;
|
|
}
|
|
KASSERT(*vpp != NULL);
|
|
return (entry_tagmask(*vpp) & tagmask) != 0;
|
|
#else
|
|
const unsigned int tagmask = tagid_to_mask(tagid);
|
|
void **vpp;
|
|
|
|
vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
|
|
KASSERT(vpp != NULL);
|
|
return (entry_tagmask(*vpp) & tagmask) != 0;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* radix_tree_set_tag:
|
|
*
|
|
* set the tag for the node at the given index.
|
|
* it's illegal to call this function for a node which has not been inserted.
|
|
*/
|
|
|
|
void
|
|
radix_tree_set_tag(struct radix_tree *t, uint64_t idx,
|
|
radix_tree_tagid_t tagid)
|
|
{
|
|
struct radix_tree_path path;
|
|
const unsigned int tagmask = tagid_to_mask(tagid);
|
|
void **vpp;
|
|
int i;
|
|
|
|
vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
|
|
KASSERT(vpp != NULL);
|
|
KASSERT(*vpp != NULL);
|
|
KASSERT(path.p_lastidx == t->t_height);
|
|
KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
|
|
for (i = t->t_height; i >= 0; i--) {
|
|
void ** const pptr = (void **)path_pptr(t, &path, i);
|
|
void *entry;
|
|
|
|
KASSERT(pptr != NULL);
|
|
entry = *pptr;
|
|
if ((entry_tagmask(entry) & tagmask) != 0) {
|
|
break;
|
|
}
|
|
*pptr = (void *)((uintptr_t)entry | tagmask);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* radix_tree_clear_tag:
|
|
*
|
|
* clear the tag for the node at the given index.
|
|
* it's illegal to call this function for a node which has not been inserted.
|
|
*/
|
|
|
|
void
|
|
radix_tree_clear_tag(struct radix_tree *t, uint64_t idx,
|
|
radix_tree_tagid_t tagid)
|
|
{
|
|
struct radix_tree_path path;
|
|
const unsigned int tagmask = tagid_to_mask(tagid);
|
|
void **vpp;
|
|
int i;
|
|
|
|
vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
|
|
KASSERT(vpp != NULL);
|
|
KASSERT(*vpp != NULL);
|
|
KASSERT(path.p_lastidx == t->t_height);
|
|
KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
|
|
/*
|
|
* if already cleared, nothing to do
|
|
*/
|
|
if ((entry_tagmask(*vpp) & tagmask) == 0) {
|
|
return;
|
|
}
|
|
/*
|
|
* clear the tag only if no children have the tag.
|
|
*/
|
|
for (i = t->t_height; i >= 0; i--) {
|
|
void ** const pptr = (void **)path_pptr(t, &path, i);
|
|
void *entry;
|
|
|
|
KASSERT(pptr != NULL);
|
|
entry = *pptr;
|
|
KASSERT((entry_tagmask(entry) & tagmask) != 0);
|
|
*pptr = entry_compose(entry_ptr(entry),
|
|
entry_tagmask(entry) & ~tagmask);
|
|
/*
|
|
* check if we should proceed to process the next level.
|
|
*/
|
|
if (0 < i) {
|
|
struct radix_tree_node *n = path_node(t, &path, i - 1);
|
|
|
|
if ((any_children_tagmask(n) & tagmask) != 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(UNITTEST)
|
|
|
|
#include <inttypes.h>
|
|
#include <stdio.h>
|
|
|
|
static void
|
|
radix_tree_dump_node(const struct radix_tree *t, void *vp,
|
|
uint64_t offset, unsigned int height)
|
|
{
|
|
struct radix_tree_node *n;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < t->t_height - height; i++) {
|
|
printf(" ");
|
|
}
|
|
if (entry_tagmask(vp) == 0) {
|
|
printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
|
|
} else {
|
|
printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
|
|
entry_tagmask(vp));
|
|
}
|
|
if (height == 0) {
|
|
printf(" (leaf)\n");
|
|
return;
|
|
}
|
|
n = entry_ptr(vp);
|
|
assert(any_children_tagmask(n) == entry_tagmask(vp));
|
|
printf(" (%u children)\n", n->n_nptrs);
|
|
for (i = 0; i < __arraycount(n->n_ptrs); i++) {
|
|
void *c;
|
|
|
|
c = n->n_ptrs[i];
|
|
if (c == NULL) {
|
|
continue;
|
|
}
|
|
radix_tree_dump_node(t, c,
|
|
offset + i * (UINT64_C(1) <<
|
|
(RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
|
|
}
|
|
}
|
|
|
|
void radix_tree_dump(const struct radix_tree *);
|
|
|
|
void
|
|
radix_tree_dump(const struct radix_tree *t)
|
|
{
|
|
|
|
printf("tree %p height=%u\n", t, t->t_height);
|
|
radix_tree_dump_node(t, t->t_root, 0, t->t_height);
|
|
}
|
|
|
|
static void
|
|
test1(void)
|
|
{
|
|
struct radix_tree s;
|
|
struct radix_tree *t = &s;
|
|
void *results[3];
|
|
|
|
radix_tree_init_tree(t);
|
|
radix_tree_dump(t);
|
|
assert(radix_tree_lookup_node(t, 0) == NULL);
|
|
assert(radix_tree_lookup_node(t, 1000) == NULL);
|
|
assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 0);
|
|
assert(radix_tree_gang_lookup_node(t, 1000, results, 3) == 0);
|
|
assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3) == 0);
|
|
assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3) == 0);
|
|
assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, 0) == 0);
|
|
assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, 0) == 0);
|
|
assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3, 0)
|
|
== 0);
|
|
assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
|
|
0) == 0);
|
|
assert(radix_tree_empty_tree_p(t));
|
|
assert(radix_tree_empty_tagged_tree_p(t, 0));
|
|
assert(radix_tree_empty_tagged_tree_p(t, 1));
|
|
assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
|
|
assert(!radix_tree_empty_tree_p(t));
|
|
assert(radix_tree_empty_tagged_tree_p(t, 0));
|
|
assert(radix_tree_empty_tagged_tree_p(t, 1));
|
|
assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
|
|
assert(radix_tree_lookup_node(t, 1000) == NULL);
|
|
memset(results, 0, sizeof(results));
|
|
assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 1);
|
|
assert(results[0] == (void *)0xdeadbea0);
|
|
assert(radix_tree_gang_lookup_node(t, 1000, results, 3) == 0);
|
|
memset(results, 0, sizeof(results));
|
|
assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3) == 1);
|
|
assert(results[0] == (void *)0xdeadbea0);
|
|
memset(results, 0, sizeof(results));
|
|
assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3) == 1);
|
|
assert(results[0] == (void *)0xdeadbea0);
|
|
assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, 0)
|
|
== 0);
|
|
assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3, 0)
|
|
== 0);
|
|
assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
|
|
assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
|
|
assert(!radix_tree_empty_tree_p(t));
|
|
radix_tree_dump(t);
|
|
assert(radix_tree_lookup_node(t, 0) == NULL);
|
|
assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
|
|
memset(results, 0, sizeof(results));
|
|
assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 1);
|
|
assert(results[0] == (void *)0xdeadbea0);
|
|
memset(results, 0, sizeof(results));
|
|
assert(radix_tree_gang_lookup_node(t, 1000, results, 3) == 1);
|
|
assert(results[0] == (void *)0xdeadbea0);
|
|
assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3) == 0);
|
|
memset(results, 0, sizeof(results));
|
|
assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3) == 1);
|
|
assert(results[0] == (void *)0xdeadbea0);
|
|
assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, 0)
|
|
== 0);
|
|
assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3, 0)
|
|
== 0);
|
|
assert(!radix_tree_get_tag(t, 1000, 0));
|
|
assert(!radix_tree_get_tag(t, 1000, 1));
|
|
assert(radix_tree_empty_tagged_tree_p(t, 0));
|
|
assert(radix_tree_empty_tagged_tree_p(t, 1));
|
|
radix_tree_set_tag(t, 1000, 1);
|
|
assert(!radix_tree_get_tag(t, 1000, 0));
|
|
assert(radix_tree_get_tag(t, 1000, 1));
|
|
assert(radix_tree_empty_tagged_tree_p(t, 0));
|
|
assert(!radix_tree_empty_tagged_tree_p(t, 1));
|
|
radix_tree_dump(t);
|
|
assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
|
|
assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
|
|
radix_tree_dump(t);
|
|
assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
|
|
assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
|
|
assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
|
|
== 0);
|
|
radix_tree_dump(t);
|
|
assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
|
|
assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
|
|
assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
|
|
(void *)0xdea0);
|
|
radix_tree_dump(t);
|
|
assert(!radix_tree_get_tag(t, 0, 1));
|
|
assert(radix_tree_get_tag(t, 1000, 1));
|
|
assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
|
|
radix_tree_set_tag(t, 0, 1);;
|
|
radix_tree_set_tag(t, UINT64_C(10000000000), 1);
|
|
radix_tree_dump(t);
|
|
assert(radix_tree_get_tag(t, 0, 1));
|
|
assert(radix_tree_get_tag(t, 1000, 1));
|
|
assert(radix_tree_get_tag(t, UINT64_C(10000000000), 1));
|
|
radix_tree_clear_tag(t, 0, 1);;
|
|
radix_tree_clear_tag(t, UINT64_C(10000000000), 1);
|
|
radix_tree_dump(t);
|
|
assert(!radix_tree_get_tag(t, 0, 1));
|
|
assert(radix_tree_get_tag(t, 1000, 1));
|
|
assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
|
|
radix_tree_dump(t);
|
|
assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
|
|
(void *)0xdeadbea0);
|
|
assert(!radix_tree_get_tag(t, 1000, 0));
|
|
assert(radix_tree_get_tag(t, 1000, 1));
|
|
assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 3);
|
|
assert(results[0] == (void *)0xbea0);
|
|
assert(results[1] == (void *)0x12345678);
|
|
assert(results[2] == (void *)0xdea0);
|
|
assert(radix_tree_gang_lookup_node(t, 1, results, 3) == 2);
|
|
assert(results[0] == (void *)0x12345678);
|
|
assert(results[1] == (void *)0xdea0);
|
|
assert(radix_tree_gang_lookup_node(t, 1001, results, 3) == 1);
|
|
assert(results[0] == (void *)0xdea0);
|
|
assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3)
|
|
== 0);
|
|
assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
|
|
3) == 0);
|
|
assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, 1) == 1);
|
|
assert(results[0] == (void *)0x12345678);
|
|
assert(entry_tagmask(t->t_root) != 0);
|
|
assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
|
|
assert(entry_tagmask(t->t_root) == 0);
|
|
radix_tree_dump(t);
|
|
assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
|
|
(void *)0xdea0);
|
|
radix_tree_dump(t);
|
|
assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
|
|
radix_tree_dump(t);
|
|
radix_tree_fini_tree(t);
|
|
}
|
|
|
|
#include <sys/time.h>
|
|
|
|
struct testnode {
|
|
uint64_t idx;
|
|
bool tagged[RADIX_TREE_TAG_ID_MAX];
|
|
};
|
|
|
|
static void
|
|
printops(const char *title, const char *name, int tag, unsigned int n,
|
|
const struct timeval *stv, const struct timeval *etv)
|
|
{
|
|
uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
|
|
uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
|
|
|
|
printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
|
|
(double)n / (e - s) * 1000000);
|
|
}
|
|
|
|
#define TEST2_GANG_LOOKUP_NODES 16
|
|
|
|
static bool
|
|
test2_should_tag(unsigned int i, radix_tree_tagid_t tagid)
|
|
{
|
|
|
|
if (tagid == 0) {
|
|
return (i & 0x3) == 0; /* 25% */
|
|
} else {
|
|
return (i % 7) == 0; /* 14% */
|
|
}
|
|
}
|
|
|
|
static void
|
|
test2(const char *title, bool dense)
|
|
{
|
|
struct radix_tree s;
|
|
struct radix_tree *t = &s;
|
|
struct testnode *n;
|
|
unsigned int i;
|
|
unsigned int nnodes = 100000;
|
|
unsigned int removed;
|
|
radix_tree_tagid_t tag;
|
|
unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
|
|
struct testnode *nodes;
|
|
struct timeval stv;
|
|
struct timeval etv;
|
|
|
|
nodes = malloc(nnodes * sizeof(*nodes));
|
|
for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
|
|
ntagged[tag] = 0;
|
|
}
|
|
radix_tree_init_tree(t);
|
|
for (i = 0; i < nnodes; i++) {
|
|
n = &nodes[i];
|
|
n->idx = random();
|
|
if (sizeof(long) == 4) {
|
|
n->idx <<= 32;
|
|
n->idx |= (uint32_t)random();
|
|
}
|
|
if (dense) {
|
|
n->idx %= nnodes * 2;
|
|
}
|
|
while (radix_tree_lookup_node(t, n->idx) != NULL) {
|
|
n->idx++;
|
|
}
|
|
radix_tree_insert_node(t, n->idx, n);
|
|
for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
|
|
n->tagged[tag] = test2_should_tag(i, tag);
|
|
if (n->tagged[tag]) {
|
|
radix_tree_set_tag(t, n->idx, tag);
|
|
ntagged[tag]++;
|
|
}
|
|
assert(n->tagged[tag] ==
|
|
radix_tree_get_tag(t, n->idx, tag));
|
|
}
|
|
}
|
|
|
|
gettimeofday(&stv, NULL);
|
|
for (i = 0; i < nnodes; i++) {
|
|
n = &nodes[i];
|
|
assert(radix_tree_lookup_node(t, n->idx) == n);
|
|
}
|
|
gettimeofday(&etv, NULL);
|
|
printops(title, "lookup", 0, nnodes, &stv, &etv);
|
|
|
|
for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
|
|
unsigned int count = 0;
|
|
|
|
gettimeofday(&stv, NULL);
|
|
for (i = 0; i < nnodes; i++) {
|
|
bool tagged;
|
|
|
|
n = &nodes[i];
|
|
tagged = radix_tree_get_tag(t, n->idx, tag);
|
|
assert(n->tagged[tag] == tagged);
|
|
if (tagged) {
|
|
count++;
|
|
}
|
|
}
|
|
gettimeofday(&etv, NULL);
|
|
assert(ntagged[tag] == count);
|
|
printops(title, "get_tag", tag, nnodes, &stv, &etv);
|
|
}
|
|
|
|
gettimeofday(&stv, NULL);
|
|
for (i = 0; i < nnodes; i++) {
|
|
n = &nodes[i];
|
|
radix_tree_remove_node(t, n->idx);
|
|
}
|
|
gettimeofday(&etv, NULL);
|
|
printops(title, "remove", 0, nnodes, &stv, &etv);
|
|
|
|
gettimeofday(&stv, NULL);
|
|
for (i = 0; i < nnodes; i++) {
|
|
n = &nodes[i];
|
|
radix_tree_insert_node(t, n->idx, n);
|
|
}
|
|
gettimeofday(&etv, NULL);
|
|
printops(title, "insert", 0, nnodes, &stv, &etv);
|
|
|
|
for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
|
|
ntagged[tag] = 0;
|
|
gettimeofday(&stv, NULL);
|
|
for (i = 0; i < nnodes; i++) {
|
|
n = &nodes[i];
|
|
if (n->tagged[tag]) {
|
|
radix_tree_set_tag(t, n->idx, tag);
|
|
ntagged[tag]++;
|
|
}
|
|
}
|
|
gettimeofday(&etv, NULL);
|
|
printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
|
|
}
|
|
|
|
gettimeofday(&stv, NULL);
|
|
{
|
|
struct testnode *results[TEST2_GANG_LOOKUP_NODES];
|
|
uint64_t nextidx;
|
|
unsigned int nfound;
|
|
unsigned int total;
|
|
|
|
nextidx = 0;
|
|
total = 0;
|
|
while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
|
|
(void *)results, __arraycount(results))) > 0) {
|
|
nextidx = results[nfound - 1]->idx + 1;
|
|
total += nfound;
|
|
if (nextidx == 0) {
|
|
break;
|
|
}
|
|
}
|
|
assert(total == nnodes);
|
|
}
|
|
gettimeofday(&etv, NULL);
|
|
printops(title, "ganglookup", 0, nnodes, &stv, &etv);
|
|
|
|
gettimeofday(&stv, NULL);
|
|
{
|
|
struct testnode *results[TEST2_GANG_LOOKUP_NODES];
|
|
uint64_t nextidx;
|
|
unsigned int nfound;
|
|
unsigned int total;
|
|
|
|
nextidx = UINT64_MAX;
|
|
total = 0;
|
|
while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
|
|
(void *)results, __arraycount(results))) > 0) {
|
|
nextidx = results[nfound - 1]->idx - 1;
|
|
total += nfound;
|
|
if (nextidx == UINT64_MAX) {
|
|
break;
|
|
}
|
|
}
|
|
assert(total == nnodes);
|
|
}
|
|
gettimeofday(&etv, NULL);
|
|
printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
|
|
|
|
for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
|
|
gettimeofday(&stv, NULL);
|
|
{
|
|
struct testnode *results[TEST2_GANG_LOOKUP_NODES];
|
|
uint64_t nextidx;
|
|
unsigned int nfound;
|
|
unsigned int total;
|
|
|
|
nextidx = 0;
|
|
total = 0;
|
|
while ((nfound = radix_tree_gang_lookup_tagged_node(t,
|
|
nextidx, (void *)results, __arraycount(results),
|
|
tag)) > 0) {
|
|
nextidx = results[nfound - 1]->idx + 1;
|
|
total += nfound;
|
|
}
|
|
assert(total == ntagged[tag]);
|
|
}
|
|
gettimeofday(&etv, NULL);
|
|
printops(title, "ganglookup_tag", tag, ntagged[tag], &stv,
|
|
&etv);
|
|
}
|
|
|
|
for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
|
|
gettimeofday(&stv, NULL);
|
|
{
|
|
struct testnode *results[TEST2_GANG_LOOKUP_NODES];
|
|
uint64_t nextidx;
|
|
unsigned int nfound;
|
|
unsigned int total;
|
|
|
|
nextidx = UINT64_MAX;
|
|
total = 0;
|
|
while ((nfound =
|
|
radix_tree_gang_lookup_tagged_node_reverse(t,
|
|
nextidx, (void *)results, __arraycount(results),
|
|
tag)) > 0) {
|
|
nextidx = results[nfound - 1]->idx - 1;
|
|
total += nfound;
|
|
if (nextidx == UINT64_MAX) {
|
|
break;
|
|
}
|
|
}
|
|
assert(total == ntagged[tag]);
|
|
}
|
|
gettimeofday(&etv, NULL);
|
|
printops(title, "ganglookup_tag_reverse", tag, ntagged[tag],
|
|
&stv, &etv);
|
|
}
|
|
|
|
removed = 0;
|
|
for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
|
|
unsigned int total;
|
|
|
|
total = 0;
|
|
gettimeofday(&stv, NULL);
|
|
{
|
|
struct testnode *results[TEST2_GANG_LOOKUP_NODES];
|
|
uint64_t nextidx;
|
|
unsigned int nfound;
|
|
|
|
nextidx = 0;
|
|
while ((nfound = radix_tree_gang_lookup_tagged_node(t,
|
|
nextidx, (void *)results, __arraycount(results),
|
|
tag)) > 0) {
|
|
for (i = 0; i < nfound; i++) {
|
|
radix_tree_remove_node(t,
|
|
results[i]->idx);
|
|
}
|
|
nextidx = results[nfound - 1]->idx + 1;
|
|
total += nfound;
|
|
if (nextidx == 0) {
|
|
break;
|
|
}
|
|
}
|
|
assert(tag != 0 || total == ntagged[tag]);
|
|
assert(total <= ntagged[tag]);
|
|
}
|
|
gettimeofday(&etv, NULL);
|
|
printops(title, "ganglookup_tag+remove", tag, total, &stv,
|
|
&etv);
|
|
removed += total;
|
|
}
|
|
|
|
gettimeofday(&stv, NULL);
|
|
{
|
|
struct testnode *results[TEST2_GANG_LOOKUP_NODES];
|
|
uint64_t nextidx;
|
|
unsigned int nfound;
|
|
unsigned int total;
|
|
|
|
nextidx = 0;
|
|
total = 0;
|
|
while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
|
|
(void *)results, __arraycount(results))) > 0) {
|
|
for (i = 0; i < nfound; i++) {
|
|
assert(results[i] == radix_tree_remove_node(t,
|
|
results[i]->idx));
|
|
}
|
|
nextidx = results[nfound - 1]->idx + 1;
|
|
total += nfound;
|
|
if (nextidx == 0) {
|
|
break;
|
|
}
|
|
}
|
|
assert(total == nnodes - removed);
|
|
}
|
|
gettimeofday(&etv, NULL);
|
|
printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
|
|
|
|
assert(radix_tree_empty_tree_p(t));
|
|
assert(radix_tree_empty_tagged_tree_p(t, 0));
|
|
assert(radix_tree_empty_tagged_tree_p(t, 1));
|
|
radix_tree_fini_tree(t);
|
|
free(nodes);
|
|
}
|
|
|
|
int
|
|
main(int argc, char *argv[])
|
|
{
|
|
|
|
test1();
|
|
test2("dense", true);
|
|
test2("sparse", false);
|
|
return 0;
|
|
}
|
|
|
|
#endif /* defined(UNITTEST) */
|