NetBSD/common/lib/libc/gen/radixtree.c
2011-11-02 13:49:43 +00:00

1467 lines
38 KiB
C

/* $NetBSD: radixtree.c,v 1.17 2011/11/02 13:49:43 yamt Exp $ */
/*-
* Copyright (c)2011 YAMAMOTO Takashi,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* radixtree.c
*
* this is an implementation of radix tree, whose keys are uint64_t and leafs
* are user provided pointers.
*
* leaf nodes are just void * and this implementation doesn't care about
* what they actually point to. however, this implementation has an assumption
* about their alignment. specifically, this implementation assumes that their
* 2 LSBs are zero and uses them internally.
*
* intermediate nodes are automatically allocated and freed internally and
* basically users don't need to care about them. only radix_tree_insert_node
* function can allocate memory for intermediate nodes and thus can fail for
* ENOMEM.
*
* efficiency:
* it's designed to work efficiently with dense index distribution.
* the memory consumption (number of necessary intermediate nodes)
* heavily depends on index distribution. basically, more dense index
* distribution consumes less nodes per item.
* approximately,
* the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
* the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
*
* gang lookup:
* this implementation provides a way to lookup many nodes quickly via
* radix_tree_gang_lookup_node function and its varients.
*
* tags:
* this implementation provides tagging functionality to allow quick
* scanning of a subset of leaf nodes. leaf nodes are untagged when
* inserted into the tree and can be tagged by radix_tree_set_tag function.
* radix_tree_gang_lookup_tagged_node function and its variants returns
* only leaf nodes with the given tag. to reduce amount of nodes to visit for
* these functions, this implementation keeps tagging information in internal
* intermediate nodes and quickly skips uninterested parts of a tree.
*/
#include <sys/cdefs.h>
#if defined(_KERNEL) || defined(_STANDALONE)
__KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.17 2011/11/02 13:49:43 yamt Exp $");
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/pool.h>
#include <sys/radixtree.h>
#include <lib/libkern/libkern.h>
#if defined(_STANDALONE)
#include <lib/libsa/stand.h>
#endif /* defined(_STANDALONE) */
#else /* defined(_KERNEL) || defined(_STANDALONE) */
__RCSID("$NetBSD: radixtree.c,v 1.17 2011/11/02 13:49:43 yamt Exp $");
#include <assert.h>
#include <errno.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#if 1
#define KASSERT assert
#else
#define KASSERT(a) /* nothing */
#endif
#endif /* defined(_KERNEL) || defined(_STANDALONE) */
#include <sys/radixtree.h>
#define RADIX_TREE_BITS_PER_HEIGHT 4 /* XXX tune */
#define RADIX_TREE_PTR_PER_NODE (1 << RADIX_TREE_BITS_PER_HEIGHT)
#define RADIX_TREE_MAX_HEIGHT (64 / RADIX_TREE_BITS_PER_HEIGHT)
#define RADIX_TREE_INVALID_HEIGHT (RADIX_TREE_MAX_HEIGHT + 1)
__CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
__CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
#define RADIX_TREE_TAG_MASK ((1 << RADIX_TREE_TAG_ID_MAX) - 1)
static inline void *
entry_ptr(void *p)
{
return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
}
static inline unsigned int
entry_tagmask(void *p)
{
return (uintptr_t)p & RADIX_TREE_TAG_MASK;
}
static inline void *
entry_compose(void *p, unsigned int tagmask)
{
return (void *)((uintptr_t)p | tagmask);
}
static inline bool
entry_match_p(void *p, unsigned int tagmask)
{
KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
if (p == NULL) {
return false;
}
if (tagmask == 0) {
return true;
}
return (entry_tagmask(p) & tagmask) != 0;
}
static inline unsigned int
tagid_to_mask(radix_tree_tagid_t id)
{
KASSERT(id >= 0);
KASSERT(id < RADIX_TREE_TAG_ID_MAX);
return 1U << id;
}
/*
* radix_tree_node: an intermediate node
*
* we don't care the type of leaf nodes. they are just void *.
*/
struct radix_tree_node {
void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
unsigned int n_nptrs; /* # of non-NULL pointers in n_ptrs */
};
/*
* any_children_tagmask:
*
* return OR'ed tagmask of the given node's children.
*/
static unsigned int
any_children_tagmask(const struct radix_tree_node *n)
{
unsigned int mask;
int i;
mask = 0;
for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
mask |= (unsigned int)(uintptr_t)n->n_ptrs[i];
}
return mask & RADIX_TREE_TAG_MASK;
}
/*
* p_refs[0].pptr == &t->t_root
* :
* p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
* :
* :
* p_refs[t->t_height].pptr == &leaf_pointer
*/
struct radix_tree_path {
struct radix_tree_node_ref {
void **pptr;
} p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
/*
* p_lastidx is either the index of the last valid element of p_refs[]
* or RADIX_TREE_INVALID_HEIGHT.
* RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
* that the height of the tree is not enough to cover the given index.
*/
unsigned int p_lastidx;
};
static inline void **
path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
unsigned int height)
{
KASSERT(height <= t->t_height);
return p->p_refs[height].pptr;
}
static inline struct radix_tree_node *
path_node(const struct radix_tree * t, const struct radix_tree_path *p,
unsigned int height)
{
KASSERT(height <= t->t_height);
return entry_ptr(*path_pptr(t, p, height));
}
/*
* radix_tree_init_tree:
*
* initialize a tree.
*/
void
radix_tree_init_tree(struct radix_tree *t)
{
t->t_height = 0;
t->t_root = NULL;
}
/*
* radix_tree_init_tree:
*
* clean up a tree.
*/
void
radix_tree_fini_tree(struct radix_tree *t)
{
KASSERT(t->t_root == NULL);
KASSERT(t->t_height == 0);
}
bool
radix_tree_empty_tree_p(struct radix_tree *t)
{
return t->t_root == NULL;
}
bool
radix_tree_empty_tagged_tree_p(struct radix_tree *t, radix_tree_tagid_t tagid)
{
const unsigned int tagmask = tagid_to_mask(tagid);
return (entry_tagmask(t->t_root) & tagmask) == 0;
}
static void
radix_tree_node_init(struct radix_tree_node *n)
{
memset(n, 0, sizeof(*n));
}
#if defined(_KERNEL)
pool_cache_t radix_tree_node_cache __read_mostly;
static int
radix_tree_node_ctor(void *dummy, void *item, int flags)
{
struct radix_tree_node *n = item;
KASSERT(dummy == NULL);
radix_tree_node_init(n);
return 0;
}
/*
* radix_tree_init:
*
* initialize the subsystem.
*/
void
radix_tree_init(void)
{
radix_tree_node_cache = pool_cache_init(sizeof(struct radix_tree_node),
0, 0, 0, "radix_tree_node", NULL, IPL_NONE, radix_tree_node_ctor,
NULL, NULL);
KASSERT(radix_tree_node_cache != NULL);
}
#endif /* defined(_KERNEL) */
static bool __unused
radix_tree_node_clean_p(const struct radix_tree_node *n)
{
unsigned int i;
if (n->n_nptrs != 0) {
return false;
}
for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
if (n->n_ptrs[i] != NULL) {
return false;
}
}
return true;
}
static struct radix_tree_node *
radix_tree_alloc_node(void)
{
struct radix_tree_node *n;
#if defined(_KERNEL)
n = pool_cache_get(radix_tree_node_cache, PR_NOWAIT);
#else /* defined(_KERNEL) */
#if defined(_STANDALONE)
n = alloc(sizeof(*n));
#else /* defined(_STANDALONE) */
n = malloc(sizeof(*n));
#endif /* defined(_STANDALONE) */
if (n != NULL) {
radix_tree_node_init(n);
}
#endif /* defined(_KERNEL) */
KASSERT(n == NULL || radix_tree_node_clean_p(n));
return n;
}
static void
radix_tree_free_node(struct radix_tree_node *n)
{
KASSERT(radix_tree_node_clean_p(n));
#if defined(_KERNEL)
pool_cache_put(radix_tree_node_cache, n);
#elif defined(_STANDALONE)
dealloc(n, sizeof(*n));
#else
free(n);
#endif
}
static int
radix_tree_grow(struct radix_tree *t, unsigned int newheight)
{
const unsigned int tagmask = entry_tagmask(t->t_root);
KASSERT(newheight <= 64 / RADIX_TREE_BITS_PER_HEIGHT);
if (t->t_root == NULL) {
t->t_height = newheight;
return 0;
}
while (t->t_height < newheight) {
struct radix_tree_node *n;
n = radix_tree_alloc_node();
if (n == NULL) {
/*
* don't bother to revert our changes.
* the caller will likely retry.
*/
return ENOMEM;
}
n->n_nptrs = 1;
n->n_ptrs[0] = t->t_root;
t->t_root = entry_compose(n, tagmask);
t->t_height++;
}
return 0;
}
/*
* radix_tree_lookup_ptr:
*
* an internal helper function used for various exported functions.
*
* return the pointer to store the node for the given index.
*
* if alloc is true, try to allocate the storage. (note for _KERNEL:
* in that case, this function can block.) if the allocation failed or
* alloc is false, return NULL.
*
* if path is not NULL, fill it for the caller's investigation.
*
* if tagmask is not zero, search only for nodes with the tag set.
* note that, however, this function doesn't check the tagmask for the leaf
* pointer. it's a caller's responsibility to investigate the value which
* is pointed by the returned pointer if necessary.
*
* while this function is a bit large, as it's called with some constant
* arguments, inlining might have benefits. anyway, a compiler will decide.
*/
static inline void **
radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
{
struct radix_tree_node *n;
int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
int shift;
void **vpp;
const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
struct radix_tree_node_ref *refs = NULL;
/*
* check unsupported combinations
*/
KASSERT(tagmask == 0 || !alloc);
KASSERT(path == NULL || !alloc);
vpp = &t->t_root;
if (path != NULL) {
refs = path->p_refs;
refs->pptr = vpp;
}
n = NULL;
for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
struct radix_tree_node *c;
void *entry;
const uint64_t i = (idx >> shift) & mask;
if (shift >= hshift) {
unsigned int newheight;
KASSERT(vpp == &t->t_root);
if (i == 0) {
shift -= RADIX_TREE_BITS_PER_HEIGHT;
continue;
}
if (!alloc) {
if (path != NULL) {
KASSERT((refs - path->p_refs) == 0);
path->p_lastidx =
RADIX_TREE_INVALID_HEIGHT;
}
return NULL;
}
newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
if (radix_tree_grow(t, newheight)) {
return NULL;
}
hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
}
entry = *vpp;
c = entry_ptr(entry);
if (c == NULL ||
(tagmask != 0 &&
(entry_tagmask(entry) & tagmask) == 0)) {
if (!alloc) {
if (path != NULL) {
path->p_lastidx = refs - path->p_refs;
}
return NULL;
}
c = radix_tree_alloc_node();
if (c == NULL) {
return NULL;
}
*vpp = c;
if (n != NULL) {
KASSERT(n->n_nptrs < RADIX_TREE_PTR_PER_NODE);
n->n_nptrs++;
}
}
n = c;
vpp = &n->n_ptrs[i];
if (path != NULL) {
refs++;
refs->pptr = vpp;
}
shift -= RADIX_TREE_BITS_PER_HEIGHT;
}
if (alloc) {
KASSERT(*vpp == NULL);
if (n != NULL) {
KASSERT(n->n_nptrs < RADIX_TREE_PTR_PER_NODE);
n->n_nptrs++;
}
}
if (path != NULL) {
path->p_lastidx = refs - path->p_refs;
}
return vpp;
}
/*
* radix_tree_insert_node:
*
* insert the node at idx.
* it's illegal to insert NULL.
* it's illegal to insert a non-aligned pointer.
*
* this function returns ENOMEM if necessary memory allocation failed.
* otherwise, this function returns 0.
*
* note that inserting a node can involves memory allocation for intermediate
* nodes. if _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
*
* for the newly inserted node, all tags are cleared.
*/
int
radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
{
void **vpp;
KASSERT(p != NULL);
KASSERT(entry_compose(p, 0) == p);
vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
if (vpp == NULL) {
return ENOMEM;
}
KASSERT(*vpp == NULL);
*vpp = p;
return 0;
}
/*
* radix_tree_replace_node:
*
* replace a node at the given index with the given node.
* return the old node.
* it's illegal to try to replace a node which has not been inserted.
*
* this function doesn't change tags.
*/
void *
radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
{
void **vpp;
void *oldp;
KASSERT(p != NULL);
KASSERT(entry_compose(p, 0) == p);
vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
KASSERT(vpp != NULL);
oldp = *vpp;
KASSERT(oldp != NULL);
*vpp = entry_compose(p, entry_tagmask(*vpp));
return entry_ptr(oldp);
}
/*
* radix_tree_remove_node:
*
* remove the node at idx.
* it's illegal to try to remove a node which has not been inserted.
*/
void *
radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
{
struct radix_tree_path path;
void **vpp;
void *oldp;
int i;
vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
KASSERT(vpp != NULL);
oldp = *vpp;
KASSERT(oldp != NULL);
KASSERT(path.p_lastidx == t->t_height);
KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
*vpp = NULL;
for (i = t->t_height - 1; i >= 0; i--) {
void *entry;
struct radix_tree_node ** const pptr =
(struct radix_tree_node **)path_pptr(t, &path, i);
struct radix_tree_node *n;
KASSERT(pptr != NULL);
entry = *pptr;
n = entry_ptr(entry);
KASSERT(n != NULL);
KASSERT(n->n_nptrs > 0);
n->n_nptrs--;
if (n->n_nptrs > 0) {
break;
}
radix_tree_free_node(n);
*pptr = NULL;
}
/*
* fix up height
*/
if (i < 0) {
KASSERT(t->t_root == NULL);
t->t_height = 0;
}
/*
* update tags
*/
for (; i >= 0; i--) {
void *entry;
struct radix_tree_node ** const pptr =
(struct radix_tree_node **)path_pptr(t, &path, i);
struct radix_tree_node *n;
unsigned int newmask;
KASSERT(pptr != NULL);
entry = *pptr;
n = entry_ptr(entry);
KASSERT(n != NULL);
KASSERT(n->n_nptrs > 0);
newmask = any_children_tagmask(n);
if (newmask == entry_tagmask(entry)) {
break;
}
*pptr = entry_compose(n, newmask);
}
/*
* XXX is it worth to try to reduce height?
* if we do that, make radix_tree_grow rollback its change as well.
*/
return entry_ptr(oldp);
}
/*
* radix_tree_lookup_node:
*
* returns the node at idx.
* returns NULL if nothing is found at idx.
*/
void *
radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
{
void **vpp;
vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
if (vpp == NULL) {
return NULL;
}
return entry_ptr(*vpp);
}
static inline void
gang_lookup_init(struct radix_tree *t, uint64_t idx,
struct radix_tree_path *path, const unsigned int tagmask)
{
void **vpp;
vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
KASSERT(vpp == NULL ||
vpp == path_pptr(t, path, path->p_lastidx));
KASSERT(&t->t_root == path_pptr(t, path, 0));
KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
path->p_lastidx == t->t_height ||
!entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
}
/*
* gang_lookup_scan:
*
* a helper routine for radix_tree_gang_lookup_node and its variants.
*/
static inline unsigned int
__attribute__((__always_inline__))
gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
void **results, unsigned int maxresults, const unsigned int tagmask,
bool reverse)
{
/*
* we keep the path updated only for lastidx-1.
* vpp is what path_pptr(t, path, lastidx) would be.
*/
void **vpp;
unsigned int nfound;
unsigned int lastidx;
/*
* set up scan direction dependant constants so that we can iterate
* n_ptrs as the following.
*
* for (i = first; i != guard; i += step)
* visit n->n_ptrs[i];
*/
const int step = reverse ? -1 : 1;
const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
const unsigned int guard = last + step;
KASSERT(maxresults > 0);
KASSERT(&t->t_root == path_pptr(t, path, 0));
lastidx = path->p_lastidx;
KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
lastidx == t->t_height ||
!entry_match_p(*path_pptr(t, path, lastidx), tagmask));
nfound = 0;
if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
if (reverse) {
lastidx = 0;
vpp = path_pptr(t, path, lastidx);
goto descend;
}
return 0;
}
vpp = path_pptr(t, path, lastidx);
while (/*CONSTCOND*/true) {
struct radix_tree_node *n;
unsigned int i;
if (entry_match_p(*vpp, tagmask)) {
KASSERT(lastidx == t->t_height);
/*
* record the matching non-NULL leaf.
*/
results[nfound] = entry_ptr(*vpp);
nfound++;
if (nfound == maxresults) {
return nfound;
}
}
scan_siblings:
/*
* try to find the next matching non-NULL sibling.
*/
if (lastidx == 0) {
/*
* the root has no siblings.
* we've done.
*/
KASSERT(vpp == &t->t_root);
break;
}
n = path_node(t, path, lastidx - 1);
if (*vpp != NULL && n->n_nptrs == 1) {
/*
* optimization; if the node has only a single pointer
* and we've already visited it, there's no point to
* keep scanning in this node.
*/
goto no_siblings;
}
for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
KASSERT(i < RADIX_TREE_PTR_PER_NODE);
if (entry_match_p(n->n_ptrs[i], tagmask)) {
vpp = &n->n_ptrs[i];
break;
}
}
if (i == guard) {
no_siblings:
/*
* not found. go to parent.
*/
lastidx--;
vpp = path_pptr(t, path, lastidx);
goto scan_siblings;
}
descend:
/*
* following the left-most (or right-most in the case of
* reverse scan) child node, decend until reaching the leaf or
* an non-matching entry.
*/
while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
/*
* save vpp in the path so that we can come back to this
* node after finishing visiting children.
*/
path->p_refs[lastidx].pptr = vpp;
n = entry_ptr(*vpp);
vpp = &n->n_ptrs[first];
lastidx++;
}
}
return nfound;
}
/*
* radix_tree_gang_lookup_node:
*
* search nodes starting from idx in the ascending order.
* results should be an array large enough to hold maxresults pointers.
* returns the number of nodes found, up to maxresults.
* returning less than maxresults means there are no more nodes.
*
* the result of this function is semantically equivalent to what could be
* obtained by repeated calls of radix_tree_lookup_node with increasing index.
* but this function is much faster when node indexes are distributed sparsely.
*
* note that this function doesn't return exact values of node indexes of
* found nodes. if they are important for a caller, it's the caller's
* responsibility to check them, typically by examinining the returned nodes
* using some caller-specific knowledge about them.
*/
unsigned int
radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
void **results, unsigned int maxresults)
{
struct radix_tree_path path;
gang_lookup_init(t, idx, &path, 0);
return gang_lookup_scan(t, &path, results, maxresults, 0, false);
}
/*
* radix_tree_gang_lookup_node_reverse:
*
* same as radix_tree_gang_lookup_node except that this one scans the
* tree in the reverse order. ie. descending index values.
*/
unsigned int
radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
void **results, unsigned int maxresults)
{
struct radix_tree_path path;
gang_lookup_init(t, idx, &path, 0);
return gang_lookup_scan(t, &path, results, maxresults, 0, true);
}
/*
* radix_tree_gang_lookup_tagged_node:
*
* same as radix_tree_gang_lookup_node except that this one only returns
* nodes tagged with tagid.
*/
unsigned int
radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
void **results, unsigned int maxresults, radix_tree_tagid_t tagid)
{
struct radix_tree_path path;
const unsigned int tagmask = tagid_to_mask(tagid);
gang_lookup_init(t, idx, &path, tagmask);
return gang_lookup_scan(t, &path, results, maxresults, tagmask, false);
}
/*
* radix_tree_gang_lookup_tagged_node_reverse:
*
* same as radix_tree_gang_lookup_tagged_node except that this one scans the
* tree in the reverse order. ie. descending index values.
*/
unsigned int
radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
void **results, unsigned int maxresults, radix_tree_tagid_t tagid)
{
struct radix_tree_path path;
const unsigned int tagmask = tagid_to_mask(tagid);
gang_lookup_init(t, idx, &path, tagmask);
return gang_lookup_scan(t, &path, results, maxresults, tagmask, true);
}
/*
* radix_tree_get_tag:
*
* return if the tag is set for the node at the given index. (true if set)
* it's illegal to call this function for a node which has not been inserted.
*/
bool
radix_tree_get_tag(struct radix_tree *t, uint64_t idx,
radix_tree_tagid_t tagid)
{
#if 1
const unsigned int tagmask = tagid_to_mask(tagid);
void **vpp;
vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
if (vpp == NULL) {
return false;
}
KASSERT(*vpp != NULL);
return (entry_tagmask(*vpp) & tagmask) != 0;
#else
const unsigned int tagmask = tagid_to_mask(tagid);
void **vpp;
vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
KASSERT(vpp != NULL);
return (entry_tagmask(*vpp) & tagmask) != 0;
#endif
}
/*
* radix_tree_set_tag:
*
* set the tag for the node at the given index.
* it's illegal to call this function for a node which has not been inserted.
*/
void
radix_tree_set_tag(struct radix_tree *t, uint64_t idx,
radix_tree_tagid_t tagid)
{
struct radix_tree_path path;
const unsigned int tagmask = tagid_to_mask(tagid);
void **vpp;
int i;
vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
KASSERT(vpp != NULL);
KASSERT(*vpp != NULL);
KASSERT(path.p_lastidx == t->t_height);
KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
for (i = t->t_height; i >= 0; i--) {
void ** const pptr = (void **)path_pptr(t, &path, i);
void *entry;
KASSERT(pptr != NULL);
entry = *pptr;
if ((entry_tagmask(entry) & tagmask) != 0) {
break;
}
*pptr = (void *)((uintptr_t)entry | tagmask);
}
}
/*
* radix_tree_clear_tag:
*
* clear the tag for the node at the given index.
* it's illegal to call this function for a node which has not been inserted.
*/
void
radix_tree_clear_tag(struct radix_tree *t, uint64_t idx,
radix_tree_tagid_t tagid)
{
struct radix_tree_path path;
const unsigned int tagmask = tagid_to_mask(tagid);
void **vpp;
int i;
vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
KASSERT(vpp != NULL);
KASSERT(*vpp != NULL);
KASSERT(path.p_lastidx == t->t_height);
KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
/*
* if already cleared, nothing to do
*/
if ((entry_tagmask(*vpp) & tagmask) == 0) {
return;
}
/*
* clear the tag only if no children have the tag.
*/
for (i = t->t_height; i >= 0; i--) {
void ** const pptr = (void **)path_pptr(t, &path, i);
void *entry;
KASSERT(pptr != NULL);
entry = *pptr;
KASSERT((entry_tagmask(entry) & tagmask) != 0);
*pptr = entry_compose(entry_ptr(entry),
entry_tagmask(entry) & ~tagmask);
/*
* check if we should proceed to process the next level.
*/
if (0 < i) {
struct radix_tree_node *n = path_node(t, &path, i - 1);
if ((any_children_tagmask(n) & tagmask) != 0) {
break;
}
}
}
}
#if defined(UNITTEST)
#include <inttypes.h>
#include <stdio.h>
static void
radix_tree_dump_node(const struct radix_tree *t, void *vp,
uint64_t offset, unsigned int height)
{
struct radix_tree_node *n;
unsigned int i;
for (i = 0; i < t->t_height - height; i++) {
printf(" ");
}
if (entry_tagmask(vp) == 0) {
printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
} else {
printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
entry_tagmask(vp));
}
if (height == 0) {
printf(" (leaf)\n");
return;
}
n = entry_ptr(vp);
assert(any_children_tagmask(n) == entry_tagmask(vp));
printf(" (%u children)\n", n->n_nptrs);
for (i = 0; i < __arraycount(n->n_ptrs); i++) {
void *c;
c = n->n_ptrs[i];
if (c == NULL) {
continue;
}
radix_tree_dump_node(t, c,
offset + i * (UINT64_C(1) <<
(RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
}
}
void radix_tree_dump(const struct radix_tree *);
void
radix_tree_dump(const struct radix_tree *t)
{
printf("tree %p height=%u\n", t, t->t_height);
radix_tree_dump_node(t, t->t_root, 0, t->t_height);
}
static void
test1(void)
{
struct radix_tree s;
struct radix_tree *t = &s;
void *results[3];
radix_tree_init_tree(t);
radix_tree_dump(t);
assert(radix_tree_lookup_node(t, 0) == NULL);
assert(radix_tree_lookup_node(t, 1000) == NULL);
assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 0);
assert(radix_tree_gang_lookup_node(t, 1000, results, 3) == 0);
assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3) == 0);
assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3) == 0);
assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, 0) == 0);
assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, 0) == 0);
assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3, 0)
== 0);
assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
0) == 0);
assert(radix_tree_empty_tree_p(t));
assert(radix_tree_empty_tagged_tree_p(t, 0));
assert(radix_tree_empty_tagged_tree_p(t, 1));
assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
assert(!radix_tree_empty_tree_p(t));
assert(radix_tree_empty_tagged_tree_p(t, 0));
assert(radix_tree_empty_tagged_tree_p(t, 1));
assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
assert(radix_tree_lookup_node(t, 1000) == NULL);
memset(results, 0, sizeof(results));
assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 1);
assert(results[0] == (void *)0xdeadbea0);
assert(radix_tree_gang_lookup_node(t, 1000, results, 3) == 0);
memset(results, 0, sizeof(results));
assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3) == 1);
assert(results[0] == (void *)0xdeadbea0);
memset(results, 0, sizeof(results));
assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3) == 1);
assert(results[0] == (void *)0xdeadbea0);
assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, 0)
== 0);
assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3, 0)
== 0);
assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
assert(!radix_tree_empty_tree_p(t));
radix_tree_dump(t);
assert(radix_tree_lookup_node(t, 0) == NULL);
assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
memset(results, 0, sizeof(results));
assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 1);
assert(results[0] == (void *)0xdeadbea0);
memset(results, 0, sizeof(results));
assert(radix_tree_gang_lookup_node(t, 1000, results, 3) == 1);
assert(results[0] == (void *)0xdeadbea0);
assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3) == 0);
memset(results, 0, sizeof(results));
assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3) == 1);
assert(results[0] == (void *)0xdeadbea0);
assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, 0)
== 0);
assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3, 0)
== 0);
assert(!radix_tree_get_tag(t, 1000, 0));
assert(!radix_tree_get_tag(t, 1000, 1));
assert(radix_tree_empty_tagged_tree_p(t, 0));
assert(radix_tree_empty_tagged_tree_p(t, 1));
radix_tree_set_tag(t, 1000, 1);
assert(!radix_tree_get_tag(t, 1000, 0));
assert(radix_tree_get_tag(t, 1000, 1));
assert(radix_tree_empty_tagged_tree_p(t, 0));
assert(!radix_tree_empty_tagged_tree_p(t, 1));
radix_tree_dump(t);
assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
radix_tree_dump(t);
assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
== 0);
radix_tree_dump(t);
assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
(void *)0xdea0);
radix_tree_dump(t);
assert(!radix_tree_get_tag(t, 0, 1));
assert(radix_tree_get_tag(t, 1000, 1));
assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
radix_tree_set_tag(t, 0, 1);;
radix_tree_set_tag(t, UINT64_C(10000000000), 1);
radix_tree_dump(t);
assert(radix_tree_get_tag(t, 0, 1));
assert(radix_tree_get_tag(t, 1000, 1));
assert(radix_tree_get_tag(t, UINT64_C(10000000000), 1));
radix_tree_clear_tag(t, 0, 1);;
radix_tree_clear_tag(t, UINT64_C(10000000000), 1);
radix_tree_dump(t);
assert(!radix_tree_get_tag(t, 0, 1));
assert(radix_tree_get_tag(t, 1000, 1));
assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
radix_tree_dump(t);
assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
(void *)0xdeadbea0);
assert(!radix_tree_get_tag(t, 1000, 0));
assert(radix_tree_get_tag(t, 1000, 1));
assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 3);
assert(results[0] == (void *)0xbea0);
assert(results[1] == (void *)0x12345678);
assert(results[2] == (void *)0xdea0);
assert(radix_tree_gang_lookup_node(t, 1, results, 3) == 2);
assert(results[0] == (void *)0x12345678);
assert(results[1] == (void *)0xdea0);
assert(radix_tree_gang_lookup_node(t, 1001, results, 3) == 1);
assert(results[0] == (void *)0xdea0);
assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3)
== 0);
assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
3) == 0);
assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, 1) == 1);
assert(results[0] == (void *)0x12345678);
assert(entry_tagmask(t->t_root) != 0);
assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
assert(entry_tagmask(t->t_root) == 0);
radix_tree_dump(t);
assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
(void *)0xdea0);
radix_tree_dump(t);
assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
radix_tree_dump(t);
radix_tree_fini_tree(t);
}
#include <sys/time.h>
struct testnode {
uint64_t idx;
bool tagged[RADIX_TREE_TAG_ID_MAX];
};
static void
printops(const char *title, const char *name, int tag, unsigned int n,
const struct timeval *stv, const struct timeval *etv)
{
uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
(double)n / (e - s) * 1000000);
}
#define TEST2_GANG_LOOKUP_NODES 16
static bool
test2_should_tag(unsigned int i, radix_tree_tagid_t tagid)
{
if (tagid == 0) {
return (i & 0x3) == 0; /* 25% */
} else {
return (i % 7) == 0; /* 14% */
}
}
static void
test2(const char *title, bool dense)
{
struct radix_tree s;
struct radix_tree *t = &s;
struct testnode *n;
unsigned int i;
unsigned int nnodes = 100000;
unsigned int removed;
radix_tree_tagid_t tag;
unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
struct testnode *nodes;
struct timeval stv;
struct timeval etv;
nodes = malloc(nnodes * sizeof(*nodes));
for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
ntagged[tag] = 0;
}
radix_tree_init_tree(t);
for (i = 0; i < nnodes; i++) {
n = &nodes[i];
n->idx = random();
if (sizeof(long) == 4) {
n->idx <<= 32;
n->idx |= (uint32_t)random();
}
if (dense) {
n->idx %= nnodes * 2;
}
while (radix_tree_lookup_node(t, n->idx) != NULL) {
n->idx++;
}
radix_tree_insert_node(t, n->idx, n);
for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
n->tagged[tag] = test2_should_tag(i, tag);
if (n->tagged[tag]) {
radix_tree_set_tag(t, n->idx, tag);
ntagged[tag]++;
}
assert(n->tagged[tag] ==
radix_tree_get_tag(t, n->idx, tag));
}
}
gettimeofday(&stv, NULL);
for (i = 0; i < nnodes; i++) {
n = &nodes[i];
assert(radix_tree_lookup_node(t, n->idx) == n);
}
gettimeofday(&etv, NULL);
printops(title, "lookup", 0, nnodes, &stv, &etv);
for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
unsigned int count = 0;
gettimeofday(&stv, NULL);
for (i = 0; i < nnodes; i++) {
bool tagged;
n = &nodes[i];
tagged = radix_tree_get_tag(t, n->idx, tag);
assert(n->tagged[tag] == tagged);
if (tagged) {
count++;
}
}
gettimeofday(&etv, NULL);
assert(ntagged[tag] == count);
printops(title, "get_tag", tag, nnodes, &stv, &etv);
}
gettimeofday(&stv, NULL);
for (i = 0; i < nnodes; i++) {
n = &nodes[i];
radix_tree_remove_node(t, n->idx);
}
gettimeofday(&etv, NULL);
printops(title, "remove", 0, nnodes, &stv, &etv);
gettimeofday(&stv, NULL);
for (i = 0; i < nnodes; i++) {
n = &nodes[i];
radix_tree_insert_node(t, n->idx, n);
}
gettimeofday(&etv, NULL);
printops(title, "insert", 0, nnodes, &stv, &etv);
for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
ntagged[tag] = 0;
gettimeofday(&stv, NULL);
for (i = 0; i < nnodes; i++) {
n = &nodes[i];
if (n->tagged[tag]) {
radix_tree_set_tag(t, n->idx, tag);
ntagged[tag]++;
}
}
gettimeofday(&etv, NULL);
printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
}
gettimeofday(&stv, NULL);
{
struct testnode *results[TEST2_GANG_LOOKUP_NODES];
uint64_t nextidx;
unsigned int nfound;
unsigned int total;
nextidx = 0;
total = 0;
while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
(void *)results, __arraycount(results))) > 0) {
nextidx = results[nfound - 1]->idx + 1;
total += nfound;
if (nextidx == 0) {
break;
}
}
assert(total == nnodes);
}
gettimeofday(&etv, NULL);
printops(title, "ganglookup", 0, nnodes, &stv, &etv);
gettimeofday(&stv, NULL);
{
struct testnode *results[TEST2_GANG_LOOKUP_NODES];
uint64_t nextidx;
unsigned int nfound;
unsigned int total;
nextidx = UINT64_MAX;
total = 0;
while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
(void *)results, __arraycount(results))) > 0) {
nextidx = results[nfound - 1]->idx - 1;
total += nfound;
if (nextidx == UINT64_MAX) {
break;
}
}
assert(total == nnodes);
}
gettimeofday(&etv, NULL);
printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
gettimeofday(&stv, NULL);
{
struct testnode *results[TEST2_GANG_LOOKUP_NODES];
uint64_t nextidx;
unsigned int nfound;
unsigned int total;
nextidx = 0;
total = 0;
while ((nfound = radix_tree_gang_lookup_tagged_node(t,
nextidx, (void *)results, __arraycount(results),
tag)) > 0) {
nextidx = results[nfound - 1]->idx + 1;
total += nfound;
}
assert(total == ntagged[tag]);
}
gettimeofday(&etv, NULL);
printops(title, "ganglookup_tag", tag, ntagged[tag], &stv,
&etv);
}
for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
gettimeofday(&stv, NULL);
{
struct testnode *results[TEST2_GANG_LOOKUP_NODES];
uint64_t nextidx;
unsigned int nfound;
unsigned int total;
nextidx = UINT64_MAX;
total = 0;
while ((nfound =
radix_tree_gang_lookup_tagged_node_reverse(t,
nextidx, (void *)results, __arraycount(results),
tag)) > 0) {
nextidx = results[nfound - 1]->idx - 1;
total += nfound;
if (nextidx == UINT64_MAX) {
break;
}
}
assert(total == ntagged[tag]);
}
gettimeofday(&etv, NULL);
printops(title, "ganglookup_tag_reverse", tag, ntagged[tag],
&stv, &etv);
}
removed = 0;
for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
unsigned int total;
total = 0;
gettimeofday(&stv, NULL);
{
struct testnode *results[TEST2_GANG_LOOKUP_NODES];
uint64_t nextidx;
unsigned int nfound;
nextidx = 0;
while ((nfound = radix_tree_gang_lookup_tagged_node(t,
nextidx, (void *)results, __arraycount(results),
tag)) > 0) {
for (i = 0; i < nfound; i++) {
radix_tree_remove_node(t,
results[i]->idx);
}
nextidx = results[nfound - 1]->idx + 1;
total += nfound;
if (nextidx == 0) {
break;
}
}
assert(tag != 0 || total == ntagged[tag]);
assert(total <= ntagged[tag]);
}
gettimeofday(&etv, NULL);
printops(title, "ganglookup_tag+remove", tag, total, &stv,
&etv);
removed += total;
}
gettimeofday(&stv, NULL);
{
struct testnode *results[TEST2_GANG_LOOKUP_NODES];
uint64_t nextidx;
unsigned int nfound;
unsigned int total;
nextidx = 0;
total = 0;
while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
(void *)results, __arraycount(results))) > 0) {
for (i = 0; i < nfound; i++) {
assert(results[i] == radix_tree_remove_node(t,
results[i]->idx));
}
nextidx = results[nfound - 1]->idx + 1;
total += nfound;
if (nextidx == 0) {
break;
}
}
assert(total == nnodes - removed);
}
gettimeofday(&etv, NULL);
printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
assert(radix_tree_empty_tree_p(t));
assert(radix_tree_empty_tagged_tree_p(t, 0));
assert(radix_tree_empty_tagged_tree_p(t, 1));
radix_tree_fini_tree(t);
free(nodes);
}
int
main(int argc, char *argv[])
{
test1();
test2("dense", true);
test2("sparse", false);
return 0;
}
#endif /* defined(UNITTEST) */