NetBSD/sys/dev/tc/stic.c
gehenna 77a6b82b27 Merge the gehenna-devsw branch into the trunk.
This merge changes the device switch tables from static array to
dynamically generated by config(8).

- All device switches is defined as a constant structure in device drivers.

- The new grammer ``device-major'' is introduced to ``files''.

	device-major <prefix> char <num> [block <num>] [<rules>]

- All device major numbers must be listed up in port dependent majors.<arch>
  by using this grammer.

- Added the new naming convention.
  The name of the device switch must be <prefix>_[bc]devsw for auto-generation
  of device switch tables.

- The backward compatibility of loading block/character device
  switch by LKM framework is broken. This is necessary to convert
  from block/character device major to device name in runtime and vice versa.

- The restriction to assign device major by LKM is completely removed.
  We don't need to reserve LKM entries for dynamic loading of device switch.

- In compile time, device major numbers list is packed into the kernel and
  the LKM framework will refer it to assign device major number dynamically.
2002-09-06 13:18:43 +00:00

1523 lines
37 KiB
C

/* $NetBSD: stic.c,v 1.20 2002/09/06 13:18:43 gehenna Exp $ */
/*-
* Copyright (c) 1999, 2000, 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1998, 1999 Tohru Nishimura. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Tohru Nishimura
* for the NetBSD Project.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Driver for the DEC PixelStamp interface chip (STIC).
*
* XXX The bt459 interface shouldn't be replicated here.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: stic.c,v 1.20 2002/09/06 13:18:43 gehenna Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/ioctl.h>
#include <sys/callout.h>
#include <sys/conf.h>
#include <uvm/uvm_extern.h>
#if defined(pmax)
#include <mips/cpuregs.h>
#elif defined(alpha)
#include <alpha/alpha_cpu.h>
#endif
#include <machine/vmparam.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/wscons/wsconsio.h>
#include <dev/wscons/wsdisplayvar.h>
#include <dev/wsfont/wsfont.h>
#include <dev/ic/bt459reg.h>
#include <dev/tc/tcvar.h>
#include <dev/tc/sticreg.h>
#include <dev/tc/sticio.h>
#include <dev/tc/sticvar.h>
#define DUPBYTE0(x) ((((x)&0xff)<<16) | (((x)&0xff)<<8) | ((x)&0xff))
#define DUPBYTE1(x) ((((x)<<8)&0xff0000) | ((x)&0xff00) | (((x)>>8)&0xff))
#define DUPBYTE2(x) (((x)&0xff0000) | (((x)>>8)&0xff00) | (((x)>>16)&0xff))
#define PACK(p, o) ((p)[(o)] | ((p)[(o)+1] << 16))
#if defined(pmax)
#define machine_btop(x) mips_btop(x)
#elif defined(alpha)
#define machine_btop(x) alpha_btop(x)
#endif
/*
* N.B., Bt459 registers are 8bit width. Some of TC framebuffers have
* obscure register layout such as 2nd and 3rd Bt459 registers are
* adjacent each other in a word, i.e.,
* struct bt459triplet {
* struct {
* u_int8_t u0;
* u_int8_t u1;
* u_int8_t u2;
* unsigned :8;
* } bt_lo;
* struct {
*
* Although HX has single Bt459, 32bit R/W can be done w/o any trouble.
* struct bt459reg {
* u_int32_t bt_lo;
* u_int32_t bt_hi;
* u_int32_t bt_reg;
* u_int32_t bt_cmap;
* };
*
*/
/* Bt459 hardware registers */
#define bt_lo 0
#define bt_hi 1
#define bt_reg 2
#define bt_cmap 3
#define REG(base, index) *((u_int32_t *)(base) + (index))
#define SELECT(vdac, regno) do { \
REG(vdac, bt_lo) = DUPBYTE0(regno); \
REG(vdac, bt_hi) = DUPBYTE1(regno); \
tc_wmb(); \
} while (0)
int sticioctl(void *, u_long, caddr_t, int, struct proc *);
int stic_alloc_screen(void *, const struct wsscreen_descr *, void **,
int *, int *, long *);
void stic_free_screen(void *, void *);
int stic_show_screen(void *, void *, int, void (*)(void *, int, int),
void *);
void stic_do_switch(void *);
void stic_setup_backing(struct stic_info *, struct stic_screen *);
void stic_setup_vdac(struct stic_info *);
void stic_clear_screen(struct stic_info *);
int stic_get_cmap(struct stic_info *, struct wsdisplay_cmap *);
int stic_set_cmap(struct stic_info *, struct wsdisplay_cmap *);
int stic_set_cursor(struct stic_info *, struct wsdisplay_cursor *);
int stic_get_cursor(struct stic_info *, struct wsdisplay_cursor *);
void stic_set_curpos(struct stic_info *, struct wsdisplay_curpos *);
void stic_set_hwcurpos(struct stic_info *);
void stic_cursor(void *, int, int, int);
void stic_copycols(void *, int, int, int, int);
void stic_copyrows(void *, int, int, int);
void stic_erasecols(void *, int, int, int, long);
void stic_eraserows(void *, int, int, long);
int stic_mapchar(void *, int, u_int *);
void stic_putchar(void *, int, int, u_int, long);
int stic_allocattr(void *, int, int, int, long *);
dev_type_open(sticopen);
dev_type_close(sticclose);
dev_type_mmap(sticmmap);
const struct cdevsw stic_cdevsw = {
sticopen, sticclose, noread, nowrite, noioctl,
nostop, notty, nopoll, sticmmap,
};
/* Colormap for wscons, matching WSCOL_*. Upper 8 are high-intensity. */
static const u_int8_t stic_cmap[16*3] = {
0x00, 0x00, 0x00, /* black */
0x7f, 0x00, 0x00, /* red */
0x00, 0x7f, 0x00, /* green */
0x7f, 0x7f, 0x00, /* brown */
0x00, 0x00, 0x7f, /* blue */
0x7f, 0x00, 0x7f, /* magenta */
0x00, 0x7f, 0x7f, /* cyan */
0xc7, 0xc7, 0xc7, /* white */
0x7f, 0x7f, 0x7f, /* black */
0xff, 0x00, 0x00, /* red */
0x00, 0xff, 0x00, /* green */
0xff, 0xff, 0x00, /* brown */
0x00, 0x00, 0xff, /* blue */
0xff, 0x00, 0xff, /* magenta */
0x00, 0xff, 0xff, /* cyan */
0xff, 0xff, 0xff, /* white */
};
/*
* Compose 2 bit/pixel cursor image. Bit order will be reversed.
* M M M M I I I I M I M I M I M I
* [ before ] [ after ]
* 3 2 1 0 3 2 1 0 0 0 1 1 2 2 3 3
* 7 6 5 4 7 6 5 4 4 4 5 5 6 6 7 7
*/
static const u_int8_t shuffle[256] = {
0x00, 0x40, 0x10, 0x50, 0x04, 0x44, 0x14, 0x54,
0x01, 0x41, 0x11, 0x51, 0x05, 0x45, 0x15, 0x55,
0x80, 0xc0, 0x90, 0xd0, 0x84, 0xc4, 0x94, 0xd4,
0x81, 0xc1, 0x91, 0xd1, 0x85, 0xc5, 0x95, 0xd5,
0x20, 0x60, 0x30, 0x70, 0x24, 0x64, 0x34, 0x74,
0x21, 0x61, 0x31, 0x71, 0x25, 0x65, 0x35, 0x75,
0xa0, 0xe0, 0xb0, 0xf0, 0xa4, 0xe4, 0xb4, 0xf4,
0xa1, 0xe1, 0xb1, 0xf1, 0xa5, 0xe5, 0xb5, 0xf5,
0x08, 0x48, 0x18, 0x58, 0x0c, 0x4c, 0x1c, 0x5c,
0x09, 0x49, 0x19, 0x59, 0x0d, 0x4d, 0x1d, 0x5d,
0x88, 0xc8, 0x98, 0xd8, 0x8c, 0xcc, 0x9c, 0xdc,
0x89, 0xc9, 0x99, 0xd9, 0x8d, 0xcd, 0x9d, 0xdd,
0x28, 0x68, 0x38, 0x78, 0x2c, 0x6c, 0x3c, 0x7c,
0x29, 0x69, 0x39, 0x79, 0x2d, 0x6d, 0x3d, 0x7d,
0xa8, 0xe8, 0xb8, 0xf8, 0xac, 0xec, 0xbc, 0xfc,
0xa9, 0xe9, 0xb9, 0xf9, 0xad, 0xed, 0xbd, 0xfd,
0x02, 0x42, 0x12, 0x52, 0x06, 0x46, 0x16, 0x56,
0x03, 0x43, 0x13, 0x53, 0x07, 0x47, 0x17, 0x57,
0x82, 0xc2, 0x92, 0xd2, 0x86, 0xc6, 0x96, 0xd6,
0x83, 0xc3, 0x93, 0xd3, 0x87, 0xc7, 0x97, 0xd7,
0x22, 0x62, 0x32, 0x72, 0x26, 0x66, 0x36, 0x76,
0x23, 0x63, 0x33, 0x73, 0x27, 0x67, 0x37, 0x77,
0xa2, 0xe2, 0xb2, 0xf2, 0xa6, 0xe6, 0xb6, 0xf6,
0xa3, 0xe3, 0xb3, 0xf3, 0xa7, 0xe7, 0xb7, 0xf7,
0x0a, 0x4a, 0x1a, 0x5a, 0x0e, 0x4e, 0x1e, 0x5e,
0x0b, 0x4b, 0x1b, 0x5b, 0x0f, 0x4f, 0x1f, 0x5f,
0x8a, 0xca, 0x9a, 0xda, 0x8e, 0xce, 0x9e, 0xde,
0x8b, 0xcb, 0x9b, 0xdb, 0x8f, 0xcf, 0x9f, 0xdf,
0x2a, 0x6a, 0x3a, 0x7a, 0x2e, 0x6e, 0x3e, 0x7e,
0x2b, 0x6b, 0x3b, 0x7b, 0x2f, 0x6f, 0x3f, 0x7f,
0xaa, 0xea, 0xba, 0xfa, 0xae, 0xee, 0xbe, 0xfe,
0xab, 0xeb, 0xbb, 0xfb, 0xaf, 0xef, 0xbf, 0xff,
};
static const struct wsdisplay_accessops stic_accessops = {
sticioctl,
NULL, /* mmap */
stic_alloc_screen,
stic_free_screen,
stic_show_screen,
NULL, /* load_font */
};
static const struct wsdisplay_emulops stic_emulops = {
stic_cursor,
stic_mapchar,
stic_putchar,
stic_copycols,
stic_erasecols,
stic_copyrows,
stic_eraserows,
stic_allocattr
};
static struct wsscreen_descr stic_stdscreen = {
"std",
0, 0,
&stic_emulops,
0, 0,
WSSCREEN_WSCOLORS | WSSCREEN_HILIT
};
static const struct wsscreen_descr *_stic_scrlist[] = {
&stic_stdscreen,
};
static const struct wsscreen_list stic_screenlist = {
sizeof(_stic_scrlist) / sizeof(struct wsscreen_descr *), _stic_scrlist
};
struct stic_info stic_consinfo;
static struct stic_screen stic_consscr;
static struct stic_info *stic_info[STIC_MAXDV];
static int stic_unit;
void
stic_init(struct stic_info *si)
{
volatile u_int32_t *vdac;
int i, cookie;
/* Reset the STIC & stamp(s). */
stic_reset(si);
vdac = si->si_vdac;
/* Hit it... */
SELECT(vdac, BT459_IREG_COMMAND_0);
REG(vdac, bt_reg) = 0x00c0c0c0; tc_wmb();
/* Now reset the VDAC. */
*si->si_vdac_reset = 0;
tc_wmb();
tc_syncbus();
DELAY(1000);
/* Finish the initialization. */
SELECT(vdac, BT459_IREG_COMMAND_1);
REG(vdac, bt_reg) = 0x00000000; tc_wmb();
REG(vdac, bt_reg) = 0x00c2c2c2; tc_wmb();
REG(vdac, bt_reg) = 0x00ffffff; tc_wmb();
for (i = 0; i < 7; i++) {
REG(vdac, bt_reg) = 0x00000000;
tc_wmb();
}
/* Set cursor colormap. */
SELECT(vdac, BT459_IREG_CCOLOR_1);
REG(vdac, bt_reg) = 0x00ffffff; tc_wmb();
REG(vdac, bt_reg) = 0x00ffffff; tc_wmb();
REG(vdac, bt_reg) = 0x00ffffff; tc_wmb();
REG(vdac, bt_reg) = 0x00000000; tc_wmb();
REG(vdac, bt_reg) = 0x00000000; tc_wmb();
REG(vdac, bt_reg) = 0x00000000; tc_wmb();
REG(vdac, bt_reg) = 0x00ffffff; tc_wmb();
REG(vdac, bt_reg) = 0x00ffffff; tc_wmb();
REG(vdac, bt_reg) = 0x00ffffff; tc_wmb();
/* Get a font and set up screen metrics. */
wsfont_init();
cookie = wsfont_find(NULL, 12, 0, 2, WSDISPLAY_FONTORDER_R2L,
WSDISPLAY_FONTORDER_L2R);
if (cookie <= 0)
cookie = wsfont_find(NULL, 0, 0, 2, WSDISPLAY_FONTORDER_R2L,
WSDISPLAY_FONTORDER_L2R);
if (cookie <= 0)
panic("stic_init: font table is empty\n");
if (wsfont_lock(cookie, &si->si_font))
panic("stic_init: couldn't lock font\n");
si->si_fontw = si->si_font->fontwidth;
si->si_fonth = si->si_font->fontheight;
si->si_consw = (1280 / si->si_fontw) & ~1;
si->si_consh = 1024 / si->si_fonth;
stic_stdscreen.ncols = si->si_consw;
stic_stdscreen.nrows = si->si_consh;
#ifdef DIAGNOSTIC
if ((u_int)si->si_fonth > 32 || (u_int)si->si_fontw > 16)
panic("stic_init: unusable font");
#endif
stic_setup_vdac(si);
stic_clear_screen(si);
si->si_dispmode = WSDISPLAYIO_MODE_EMUL;
}
void
stic_reset(struct stic_info *si)
{
int modtype, xconfig, yconfig, config;
volatile struct stic_regs *sr;
sr = si->si_stic;
/*
* Initialize the interface chip registers.
*/
sr->sr_sticsr = 0x00000030; /* Get the STIC's attention. */
tc_wmb();
tc_syncbus();
DELAY(2000); /* wait 2ms for STIC to respond. */
sr->sr_sticsr = 0x00000000; /* Hit the STIC's csr again... */
tc_wmb();
sr->sr_buscsr = 0xffffffff; /* and bash its bus-acess csr. */
tc_wmb();
tc_syncbus(); /* Blam! */
DELAY(20000); /* wait until the stic recovers... */
modtype = sr->sr_modcl;
xconfig = (modtype & 0x800) >> 11;
yconfig = (modtype & 0x600) >> 9;
config = (yconfig << 1) | xconfig;
si->si_stampw = (xconfig ? 5 : 4);
si->si_stamph = (1 << yconfig);
si->si_stamphm = si->si_stamph - 1;
#ifdef notyet
si->si_option = (char)((modtype >> 12) & 3);
#endif
/* First PixelStamp */
si->si_stamp[0x000b0] = config;
si->si_stamp[0x000b4] = 0x0;
/* Second PixelStamp */
if (yconfig > 0) {
si->si_stamp[0x100b0] = config | 8;
si->si_stamp[0x100b4] = 0;
}
/*
* Initialize STIC video registers. Enable error and vertical
* retrace interrupts. Set the packet done flag so the Xserver will
* not time-out on the first packet submitted.
*/
sr->sr_vblank = (1024 << 16) | 1063;
sr->sr_vsync = (1027 << 16) | 1030;
sr->sr_hblank = (255 << 16) | 340;
sr->sr_hsync2 = 245;
sr->sr_hsync = (261 << 16) | 293;
sr->sr_ipdvint =
STIC_INT_WE | STIC_INT_P | STIC_INT_E_EN | STIC_INT_V_EN;
sr->sr_sticsr = 8;
tc_wmb();
tc_syncbus();
}
void
stic_attach(struct device *self, struct stic_info *si, int console)
{
struct wsemuldisplaydev_attach_args waa;
if (stic_unit < STIC_MAXDV) {
stic_info[stic_unit] = si;
si->si_unit = stic_unit++;
} else
si->si_unit = -1;
callout_init(&si->si_switch_callout);
/*
* Allocate backing for the console. We could trawl back through
* msgbuf and and fill the backing, but it's not worth the hassle.
* We could also grab backing using pmap_steal_memory() early on,
* but that's a little ugly.
*/
if (console)
stic_setup_backing(si, &stic_consscr);
waa.console = console;
waa.scrdata = &stic_screenlist;
waa.accessops = &stic_accessops;
waa.accesscookie = si;
config_found(self, &waa, wsemuldisplaydevprint);
}
void
stic_cnattach(struct stic_info *si)
{
struct stic_screen *ss;
long defattr;
ss = &stic_consscr;
si->si_curscreen = ss;
ss->ss_flags = SS_ALLOCED | SS_ACTIVE | SS_CURENB;
ss->ss_si = si;
si->si_flags |= SI_CURENB_CHANGED;
stic_flush(si);
stic_allocattr(ss, 0, 0, 0, &defattr);
stic_eraserows(ss, 0, si->si_consh, 0);
wsdisplay_cnattach(&stic_stdscreen, ss, 0, 0, defattr);
}
void
stic_setup_vdac(struct stic_info *si)
{
u_int8_t *ip, *mp;
int r, c, o, b, i, s;
s = spltty();
ip = (u_int8_t *)si->si_cursor.cc_image;
mp = ip + (sizeof(si->si_cursor.cc_image) >> 1);
memset(ip, 0, sizeof(si->si_cursor.cc_image));
for (r = 0; r < si->si_fonth; r++) {
for (c = r & 1; c < si->si_fontw; c += 2) {
o = c >> 3;
b = 1 << (c & 7);
ip[o] |= b;
mp[o] |= b;
}
ip += 8;
mp += 8;
}
si->si_cursor.cc_size.x = 64;
si->si_cursor.cc_size.y = si->si_fonth;
si->si_cursor.cc_hot.x = 0;
si->si_cursor.cc_hot.y = 0;
si->si_cursor.cc_color[0] = 0xff;
si->si_cursor.cc_color[2] = 0xff;
si->si_cursor.cc_color[4] = 0xff;
si->si_cursor.cc_color[1] = 0x00;
si->si_cursor.cc_color[3] = 0x00;
si->si_cursor.cc_color[5] = 0x00;
memset(&si->si_cmap, 0, sizeof(si->si_cmap));
for (i = 0; i < 16; i++) {
si->si_cmap.r[i] = stic_cmap[i*3 + 0];
si->si_cmap.g[i] = stic_cmap[i*3 + 1];
si->si_cmap.b[i] = stic_cmap[i*3 + 2];
}
si->si_flags |= SI_CMAP_CHANGED | SI_CURSHAPE_CHANGED |
SI_CURCMAP_CHANGED;
splx(s);
}
void
stic_clear_screen(struct stic_info *si)
{
u_int32_t *pb;
int i;
/*
* Do this twice, since the first packet after a reset may be
* silently ignored.
*/
for (i = 0; i < 2; i++) {
pb = (*si->si_pbuf_get)(si);
pb[0] = STAMP_CMD_LINES | STAMP_RGB_CONST | STAMP_LW_PERPACKET;
pb[1] = 0x01ffffff;
pb[2] = 0;
pb[3] = STAMP_UPDATE_ENABLE | STAMP_METHOD_COPY;
pb[4] = (1024 << 2) - 1;
pb[5] = 0;
pb[6] = 0;
pb[7] = (1280 << 19) | ((1024 << 3) + pb[4]);
(*si->si_pbuf_post)(si, pb);
}
}
int
sticioctl(void *v, u_long cmd, caddr_t data, int flag, struct proc *p)
{
struct stic_info *si;
si = v;
switch (cmd) {
case WSDISPLAYIO_GTYPE:
*(u_int *)data = si->si_disptype;
return (0);
case WSDISPLAYIO_GINFO:
#define wsd_fbip ((struct wsdisplay_fbinfo *)data)
wsd_fbip->height = 1024;
wsd_fbip->width = 1280;
wsd_fbip->depth = si->si_depth == 8 ? 8 : 32;
wsd_fbip->cmsize = CMAP_SIZE;
#undef fbt
return (0);
case WSDISPLAYIO_GETCMAP:
return (stic_get_cmap(si, (struct wsdisplay_cmap *)data));
case WSDISPLAYIO_PUTCMAP:
return (stic_set_cmap(si, (struct wsdisplay_cmap *)data));
case WSDISPLAYIO_SVIDEO:
#if 0 /* XXX later */
turnoff = *(int *)data == WSDISPLAYIO_VIDEO_OFF;
if ((si->si_blanked == 0) ^ turnoff)
si->si_blanked = turnoff;
#endif
return (0);
case WSDISPLAYIO_GVIDEO:
#if 0 /* XXX later */
*(u_int *)data = si->si_blanked ?
WSDISPLAYIO_VIDEO_OFF : WSDISPLAYIO_VIDEO_ON;
#endif
return (0);
case WSDISPLAYIO_GCURPOS:
*(struct wsdisplay_curpos *)data = si->si_cursor.cc_pos;
return (0);
case WSDISPLAYIO_SCURPOS:
stic_set_curpos(si, (struct wsdisplay_curpos *)data);
return (0);
case WSDISPLAYIO_GCURMAX:
((struct wsdisplay_curpos *)data)->x =
((struct wsdisplay_curpos *)data)->y = CURSOR_MAX_SIZE;
return (0);
case WSDISPLAYIO_GCURSOR:
return (stic_get_cursor(si, (struct wsdisplay_cursor *)data));
case WSDISPLAYIO_SCURSOR:
return (stic_set_cursor(si, (struct wsdisplay_cursor *)data));
case WSDISPLAYIO_SMODE:
si->si_dispmode = *(int *)data;
if (si->si_dispmode == WSDISPLAYIO_MODE_EMUL) {
(*si->si_ioctl)(si, STICIO_STOPQ, NULL, flag, p);
stic_setup_vdac(si);
stic_flush(si);
stic_clear_screen(si);
stic_do_switch(si->si_curscreen);
}
return (0);
case STICIO_RESET:
stic_reset(si);
return (0);
}
if (si->si_ioctl != NULL)
return ((*si->si_ioctl)(si, cmd, data, flag, p));
return (EPASSTHROUGH);
}
void
stic_setup_backing(struct stic_info *si, struct stic_screen *ss)
{
int size;
size = si->si_consw * si->si_consh * sizeof(*ss->ss_backing);
ss->ss_backing = malloc(size, M_DEVBUF, M_NOWAIT|M_ZERO);
}
int
stic_alloc_screen(void *v, const struct wsscreen_descr *type, void **cookiep,
int *curxp, int *curyp, long *attrp)
{
struct stic_info *si;
struct stic_screen *ss;
si = (struct stic_info *)v;
if ((stic_consscr.ss_flags & SS_ALLOCED) == 0)
ss = &stic_consscr;
else {
ss = malloc(sizeof(*ss), M_DEVBUF, M_WAITOK|M_ZERO);
}
stic_setup_backing(si, ss);
ss->ss_si = si;
ss->ss_flags = SS_ALLOCED | SS_CURENB;
*cookiep = ss;
*curxp = 0;
*curyp = 0;
stic_allocattr(ss, 0, 0, 0, attrp);
return (0);
}
void
stic_free_screen(void *v, void *cookie)
{
struct stic_screen *ss;
ss = cookie;
#ifdef DIAGNOSTIC
if (ss == &stic_consscr)
panic("stic_free_screen: console");
if (ss == ((struct stic_info *)v)->si_curscreen)
panic("stic_free_screen: freeing current screen");
#endif
free(ss->ss_backing, M_DEVBUF);
free(ss, M_DEVBUF);
}
int
stic_show_screen(void *v, void *cookie, int waitok,
void (*cb)(void *, int, int), void *cbarg)
{
struct stic_info *si;
si = (struct stic_info *)v;
if (si->si_switchcbarg != NULL)
return (EAGAIN);
si->si_switchcb = cb;
si->si_switchcbarg = cbarg;
if (cb != NULL) {
callout_reset(&si->si_switch_callout, 0, stic_do_switch,
cookie);
return (EAGAIN);
}
stic_do_switch(cookie);
return (0);
}
void
stic_do_switch(void *cookie)
{
struct stic_screen *ss;
struct stic_info *si;
u_int r, c, nr, nc;
u_int16_t *p, *sp;
ss = cookie;
si = ss->ss_si;
#ifdef DIAGNOSTIC
if (ss->ss_backing == NULL)
panic("stic_do_switch: screen not backed");
#endif
/* Swap in the new screen, and temporarily disable its backing. */
if (si->si_curscreen != NULL)
si->si_curscreen->ss_flags ^= SS_ACTIVE;
si->si_curscreen = ss;
ss->ss_flags |= SS_ACTIVE;
sp = ss->ss_backing;
ss->ss_backing = NULL;
/*
* We assume that most of the screen is blank and blast it with
* eraserows(), because eraserows() is cheap.
*/
nr = si->si_consh;
stic_eraserows(ss, 0, nr, 0);
nc = si->si_consw;
p = sp;
for (r = 0; r < nr; r++)
for (c = 0; c < nc; c += 2, p += 2) {
if ((p[0] & 0xfff0) != 0)
stic_putchar(ss, r, c, p[0] >> 8,
p[0] & 0x00ff);
if ((p[1] & 0xfff0) != 0)
stic_putchar(ss, r, c + 1, p[1] >> 8,
p[1] & 0x00ff);
}
/*
* Re-enable the screen's backing, and move the cursor to the
* correct spot.
*/
ss->ss_backing = sp;
si->si_cursor.cc_pos.x = ss->ss_curx;
si->si_cursor.cc_pos.y = ss->ss_cury;
stic_set_hwcurpos(si);
si->si_flags |= SI_CURENB_CHANGED;
/*
* XXX Since we don't yet receive vblank interrupts from the
* PXG, we must flush immediatley.
*/
if (si->si_disptype == WSDISPLAY_TYPE_PXG)
stic_flush(si);
/* Tell wscons that we're done. */
if (si->si_switchcbarg != NULL) {
cookie = si->si_switchcbarg;
si->si_switchcbarg = NULL;
(*si->si_switchcb)(cookie, 0, 0);
}
}
int
stic_allocattr(void *cookie, int fg, int bg, int flags, long *attr)
{
long tmp;
if ((flags & (WSATTR_BLINK | WSATTR_UNDERLINE)) != 0)
return (EINVAL);
if ((flags & WSATTR_WSCOLORS) == 0) {
fg = 7;
bg = 0;
}
if ((flags & WSATTR_HILIT) != 0)
fg += 8;
tmp = fg | (bg << 4);
*attr = tmp | (tmp << 16);
return (0);
}
void
stic_erasecols(void *cookie, int row, int col, int num, long attr)
{
struct stic_info *si;
struct stic_screen *ss;
u_int32_t *pb;
u_int i, linewidth;
u_int16_t *p;
ss = cookie;
si = ss->ss_si;
if (ss->ss_backing != NULL) {
p = ss->ss_backing + row * si->si_consw + col;
for (i = num; i != 0; i--)
*p++ = (u_int16_t)attr;
}
if ((ss->ss_flags & SS_ACTIVE) == 0)
return;
col = (col * si->si_fontw) << 19;
num = (num * si->si_fontw) << 19;
row = row * si->si_fonth;
attr = (attr & 0xf0) >> 4;
linewidth = (si->si_fonth << 2) - 1;
row = (row << 3) + linewidth;
pb = (*si->si_pbuf_get)(si);
pb[0] = STAMP_CMD_LINES | STAMP_RGB_CONST | STAMP_LW_PERPACKET;
pb[1] = 0x01ffffff;
pb[2] = 0;
pb[3] = STAMP_UPDATE_ENABLE | STAMP_METHOD_COPY;
pb[4] = linewidth;
pb[5] = DUPBYTE0(attr);
pb[6] = col | row;
pb[7] = (col + num) | row;
(*si->si_pbuf_post)(si, pb);
}
void
stic_eraserows(void *cookie, int row, int num, long attr)
{
struct stic_info *si;
struct stic_screen *ss;
u_int linewidth, i;
u_int32_t *pb;
ss = cookie;
si = ss->ss_si;
if (ss->ss_backing != NULL) {
pb = (u_int32_t *)(ss->ss_backing + row * si->si_consw);
for (i = si->si_consw * num; i > 0; i -= 2)
*pb++ = (u_int32_t)attr;
}
if ((ss->ss_flags & SS_ACTIVE) == 0)
return;
row *= si->si_fonth;
num *= si->si_fonth;
attr = (attr & 0xf0) >> 4;
linewidth = (num << 2) - 1;
row = (row << 3) + linewidth;
pb = (*si->si_pbuf_get)(si);
pb[0] = STAMP_CMD_LINES | STAMP_RGB_CONST | STAMP_LW_PERPACKET;
pb[1] = 0x01ffffff;
pb[2] = 0;
pb[3] = STAMP_UPDATE_ENABLE | STAMP_METHOD_COPY;
pb[4] = linewidth;
pb[5] = DUPBYTE0(attr);
pb[6] = row;
pb[7] = (1280 << 19) | row;
(*si->si_pbuf_post)(si, pb);
}
void
stic_copyrows(void *cookie, int src, int dst, int height)
{
struct stic_info *si;
struct stic_screen *ss;
u_int32_t *pb, *pbs;
u_int num, inc, adj;
ss = cookie;
si = ss->ss_si;
if (ss->ss_backing != NULL)
bcopy(ss->ss_backing + src * si->si_consw,
ss->ss_backing + dst * si->si_consw,
si->si_consw * sizeof(*ss->ss_backing) * height);
if ((ss->ss_flags & SS_ACTIVE) == 0)
return;
/*
* We need to do this in reverse if the destination row is below
* the source.
*/
if (dst > src) {
src += height;
dst += height;
inc = -8;
adj = -1;
} else {
inc = 8;
adj = 0;
}
src = (src * si->si_fonth + adj) << 3;
dst = (dst * si->si_fonth + adj) << 3;
height *= si->si_fonth;
while (height > 0) {
num = (height < 255 ? height : 255);
height -= num;
pbs = (*si->si_pbuf_get)(si);
pb = pbs;
pb[0] = STAMP_CMD_COPYSPANS | STAMP_LW_PERPACKET;
pb[1] = (num << 24) | 0xffffff;
pb[2] = 0x0;
pb[3] = STAMP_UPDATE_ENABLE | STAMP_METHOD_COPY | STAMP_SPAN |
STAMP_COPYSPAN_ALIGNED;
pb[4] = 1; /* linewidth */
for (; num != 0; num--, src += inc, dst += inc, pb += 3) {
pb[5] = 1280 << 3;
pb[6] = src;
pb[7] = dst;
}
(*si->si_pbuf_post)(si, pbs);
}
}
void
stic_copycols(void *cookie, int row, int src, int dst, int num)
{
struct stic_info *si;
struct stic_screen *ss;
u_int height, updword;
u_int32_t *pb, *pbs;
ss = cookie;
si = ss->ss_si;
if (ss->ss_backing != NULL)
bcopy(ss->ss_backing + row * si->si_consw + src,
ss->ss_backing + row * si->si_consw + dst,
num * sizeof(*ss->ss_backing));
if ((ss->ss_flags & SS_ACTIVE) == 0)
return;
/*
* The stamp reads and writes left -> right only, so we need to
* buffer the span if the source and destination regions overlap
* and the source is left of the destination.
*/
updword = STAMP_UPDATE_ENABLE | STAMP_METHOD_COPY | STAMP_SPAN;
if (src < dst && src + num > dst)
updword |= STAMP_HALF_BUFF;
row = (row * si->si_fonth) << 3;
num = (num * si->si_fontw) << 3;
src = row | ((src * si->si_fontw) << 19);
dst = row | ((dst * si->si_fontw) << 19);
height = si->si_fonth;
pbs = (*si->si_pbuf_get)(si);
pb = pbs;
pb[0] = STAMP_CMD_COPYSPANS | STAMP_LW_PERPACKET;
pb[1] = (height << 24) | 0xffffff;
pb[2] = 0x0;
pb[3] = updword;
pb[4] = 1; /* linewidth */
for ( ; height != 0; height--, src += 8, dst += 8, pb += 3) {
pb[5] = num;
pb[6] = src;
pb[7] = dst;
}
(*si->si_pbuf_post)(si, pbs);
}
void
stic_putchar(void *cookie, int r, int c, u_int uc, long attr)
{
struct wsdisplay_font *font;
struct stic_screen *ss;
struct stic_info *si;
u_int i, bgcolor, fgcolor;
u_int *pb, v1, v2, xya;
u_short *fr;
ss = cookie;
si = ss->ss_si;
/* It's cheaper to use erasecols() to blit blanks. */
if (uc == 0) {
stic_erasecols(cookie, r, c, 1, attr);
return;
}
if (ss->ss_backing != NULL)
ss->ss_backing[r * si->si_consw + c] =
(u_short)((attr & 0xff) | (uc << 8));
if ((ss->ss_flags & SS_ACTIVE) == 0)
return;
font = si->si_font;
pb = (*si->si_pbuf_get)(si);
/*
* Create a mask from the glyph. Squeeze the foreground color
* through the mask, and then squeeze the background color through
* the inverted mask. We may well read outside the glyph when
* creating the mask, but it's bounded by the hardware so it
* shouldn't matter a great deal...
*/
pb[0] = STAMP_CMD_LINES | STAMP_RGB_FLAT | STAMP_XY_PERPRIMATIVE |
STAMP_LW_PERPRIMATIVE;
pb[1] = font->fontheight > 16 ? 0x04ffffff : 0x02ffffff;
pb[2] = 0x0;
pb[3] = STAMP_UPDATE_ENABLE | STAMP_WE_XYMASK | STAMP_METHOD_COPY;
r *= font->fontheight;
c *= font->fontwidth;
uc = (uc - font->firstchar) * font->stride * font->fontheight;
fr = (u_short *)((caddr_t)font->data + uc);
bgcolor = DUPBYTE0((attr & 0xf0) >> 4);
fgcolor = DUPBYTE0(attr & 0x0f);
i = ((font->fontheight > 16 ? 16 : font->fontheight) << 2) - 1;
v1 = (c << 19) | ((r << 3) + i);
v2 = ((c + font->fontwidth) << 19) | (v1 & 0xffff);
xya = XYMASKADDR(si->si_stampw, si->si_stamphm, c, r, 0, 0);
pb[4] = PACK(fr, 0);
pb[5] = PACK(fr, 2);
pb[6] = PACK(fr, 4);
pb[7] = PACK(fr, 6);
pb[8] = PACK(fr, 8);
pb[9] = PACK(fr, 10);
pb[10] = PACK(fr, 12);
pb[11] = PACK(fr, 14);
pb[12] = xya;
pb[13] = v1;
pb[14] = v2;
pb[15] = i;
pb[16] = fgcolor;
pb[17] = ~pb[4];
pb[18] = ~pb[5];
pb[19] = ~pb[6];
pb[20] = ~pb[7];
pb[21] = ~pb[8];
pb[22] = ~pb[9];
pb[23] = ~pb[10];
pb[24] = ~pb[11];
pb[25] = xya;
pb[26] = v1;
pb[27] = v2;
pb[28] = i;
pb[29] = bgcolor;
/* Two more squeezes for the lower part of the character. */
if (font->fontheight > 16) {
i = ((font->fontheight - 16) << 2) - 1;
r += 16;
v1 = (c << 19) | ((r << 3) + i);
v2 = ((c + font->fontwidth) << 19) | (v1 & 0xffff);
pb[30] = PACK(fr, 16);
pb[31] = PACK(fr, 18);
pb[32] = PACK(fr, 20);
pb[33] = PACK(fr, 22);
pb[34] = PACK(fr, 24);
pb[35] = PACK(fr, 26);
pb[36] = PACK(fr, 28);
pb[37] = PACK(fr, 30);
pb[38] = xya;
pb[39] = v1;
pb[40] = v2;
pb[41] = i;
pb[42] = fgcolor;
pb[43] = ~pb[30];
pb[44] = ~pb[31];
pb[45] = ~pb[32];
pb[46] = ~pb[33];
pb[47] = ~pb[34];
pb[48] = ~pb[35];
pb[49] = ~pb[36];
pb[50] = ~pb[37];
pb[51] = xya;
pb[52] = v1;
pb[53] = v2;
pb[54] = i;
pb[55] = bgcolor;
}
(*si->si_pbuf_post)(si, pb);
}
int
stic_mapchar(void *cookie, int c, u_int *cp)
{
struct stic_info *si;
si = ((struct stic_screen *)cookie)->ss_si;
if (c < si->si_font->firstchar || c == ' ') {
*cp = 0;
return (0);
}
if (c - si->si_font->firstchar >= si->si_font->numchars) {
*cp = 0;
return (0);
}
*cp = c;
return (5);
}
void
stic_cursor(void *cookie, int on, int row, int col)
{
struct stic_screen *ss;
struct stic_info *si;
int s;
ss = cookie;
si = ss->ss_si;
ss->ss_curx = col * si->si_fontw;
ss->ss_cury = row * si->si_fonth;
s = spltty();
if (on)
ss->ss_flags |= SS_CURENB;
else
ss->ss_flags &= ~SS_CURENB;
if ((ss->ss_flags & SS_ACTIVE) != 0) {
si->si_cursor.cc_pos.x = ss->ss_curx;
si->si_cursor.cc_pos.y = ss->ss_cury;
si->si_flags |= SI_CURENB_CHANGED;
stic_set_hwcurpos(si);
/*
* XXX Since we don't yet receive vblank interrupts from the
* PXG, we must flush immediatley.
*/
if (si->si_disptype == WSDISPLAY_TYPE_PXG)
stic_flush(si);
}
splx(s);
}
void
stic_flush(struct stic_info *si)
{
volatile u_int32_t *vdac;
int v;
if ((si->si_flags & SI_ALL_CHANGED) == 0)
return;
vdac = si->si_vdac;
v = si->si_flags;
si->si_flags &= ~SI_ALL_CHANGED;
if ((v & SI_CURENB_CHANGED) != 0) {
SELECT(vdac, BT459_IREG_CCR);
if ((si->si_curscreen->ss_flags & SS_CURENB) != 0)
REG(vdac, bt_reg) = 0x00c0c0c0;
else
REG(vdac, bt_reg) = 0x00000000;
tc_wmb();
}
if ((v & SI_CURCMAP_CHANGED) != 0) {
u_int8_t *cp;
cp = si->si_cursor.cc_color;
SELECT(vdac, BT459_IREG_CCOLOR_2);
REG(vdac, bt_reg) = DUPBYTE0(cp[1]); tc_wmb();
REG(vdac, bt_reg) = DUPBYTE0(cp[3]); tc_wmb();
REG(vdac, bt_reg) = DUPBYTE0(cp[5]); tc_wmb();
REG(vdac, bt_reg) = DUPBYTE0(cp[0]); tc_wmb();
REG(vdac, bt_reg) = DUPBYTE0(cp[2]); tc_wmb();
REG(vdac, bt_reg) = DUPBYTE0(cp[4]); tc_wmb();
}
if ((v & SI_CURSHAPE_CHANGED) != 0) {
u_int8_t *ip, *mp, img, msk;
u_int8_t u;
int bcnt;
ip = (u_int8_t *)si->si_cursor.cc_image;
mp = (u_int8_t *)(si->si_cursor.cc_image + CURSOR_MAX_SIZE);
bcnt = 0;
SELECT(vdac, BT459_IREG_CRAM_BASE);
/* 64 pixel scan line is consisted with 16 byte cursor ram */
while (bcnt < CURSOR_MAX_SIZE * 16) {
img = *ip++;
msk = *mp++;
img &= msk; /* cookie off image */
u = (msk & 0x0f) << 4 | (img & 0x0f);
REG(vdac, bt_reg) = DUPBYTE0(shuffle[u]);
tc_wmb();
u = (msk & 0xf0) | (img & 0xf0) >> 4;
REG(vdac, bt_reg) = DUPBYTE0(shuffle[u]);
tc_wmb();
bcnt += 2;
}
}
if ((v & SI_CMAP_CHANGED) != 0) {
struct stic_hwcmap256 *cm;
int index;
cm = &si->si_cmap;
SELECT(vdac, 0);
SELECT(vdac, 0);
for (index = 0; index < CMAP_SIZE; index++) {
REG(vdac, bt_cmap) = DUPBYTE0(cm->r[index]);
tc_wmb();
REG(vdac, bt_cmap) = DUPBYTE0(cm->g[index]);
tc_wmb();
REG(vdac, bt_cmap) = DUPBYTE0(cm->b[index]);
tc_wmb();
}
}
}
int
stic_get_cmap(struct stic_info *si, struct wsdisplay_cmap *p)
{
u_int index, count;
index = p->index;
count = p->count;
if (index >= CMAP_SIZE || count > CMAP_SIZE - index)
return (EINVAL);
if (!uvm_useracc(p->red, count, B_WRITE) ||
!uvm_useracc(p->green, count, B_WRITE) ||
!uvm_useracc(p->blue, count, B_WRITE))
return (EFAULT);
copyout(&si->si_cmap.r[index], p->red, count);
copyout(&si->si_cmap.g[index], p->green, count);
copyout(&si->si_cmap.b[index], p->blue, count);
return (0);
}
int
stic_set_cmap(struct stic_info *si, struct wsdisplay_cmap *p)
{
u_int index, count;
int s;
index = p->index;
count = p->count;
if (index >= CMAP_SIZE || count > CMAP_SIZE - index)
return (EINVAL);
if (!uvm_useracc(p->red, count, B_READ) ||
!uvm_useracc(p->green, count, B_READ) ||
!uvm_useracc(p->blue, count, B_READ))
return (EFAULT);
s = spltty();
copyin(p->red, &si->si_cmap.r[index], count);
copyin(p->green, &si->si_cmap.g[index], count);
copyin(p->blue, &si->si_cmap.b[index], count);
si->si_flags |= SI_CMAP_CHANGED;
splx(s);
/*
* XXX Since we don't yet receive vblank interrupts from the PXG, we
* must flush immediatley.
*/
if (si->si_disptype == WSDISPLAY_TYPE_PXG)
stic_flush(si);
return (0);
}
int
stic_set_cursor(struct stic_info *si, struct wsdisplay_cursor *p)
{
#define cc (&si->si_cursor)
u_int v, index, count, icount;
struct stic_screen *ss;
int s;
v = p->which;
ss = si->si_curscreen;
if ((v & WSDISPLAY_CURSOR_DOCMAP) != 0) {
index = p->cmap.index;
count = p->cmap.count;
if (index >= 2 || (index + count) > 2)
return (EINVAL);
if (!uvm_useracc(p->cmap.red, count, B_READ) ||
!uvm_useracc(p->cmap.green, count, B_READ) ||
!uvm_useracc(p->cmap.blue, count, B_READ))
return (EFAULT);
}
if ((v & WSDISPLAY_CURSOR_DOSHAPE) != 0) {
if (p->size.x > CURSOR_MAX_SIZE || p->size.y > CURSOR_MAX_SIZE)
return (EINVAL);
icount = ((p->size.x < 33) ? 4 : 8) * p->size.y;
if (!uvm_useracc(p->image, icount, B_READ) ||
!uvm_useracc(p->mask, icount, B_READ))
return (EFAULT);
}
if ((v & (WSDISPLAY_CURSOR_DOPOS | WSDISPLAY_CURSOR_DOCUR)) != 0) {
if (v & WSDISPLAY_CURSOR_DOCUR)
cc->cc_hot = p->hot;
if (v & WSDISPLAY_CURSOR_DOPOS)
stic_set_curpos(si, &p->pos);
}
s = spltty();
if ((v & WSDISPLAY_CURSOR_DOCUR) != 0) {
if (p->enable)
ss->ss_flags |= SS_CURENB;
else
ss->ss_flags &= ~SS_CURENB;
si->si_flags |= SI_CURENB_CHANGED;
}
if ((v & WSDISPLAY_CURSOR_DOCMAP) != 0) {
copyin(p->cmap.red, &cc->cc_color[index], count);
copyin(p->cmap.green, &cc->cc_color[index + 2], count);
copyin(p->cmap.blue, &cc->cc_color[index + 4], count);
si->si_flags |= SI_CURCMAP_CHANGED;
}
if ((v & WSDISPLAY_CURSOR_DOSHAPE) != 0) {
memset(cc->cc_image, 0, sizeof(cc->cc_image));
copyin(p->image, cc->cc_image, icount);
copyin(p->mask, cc->cc_image + CURSOR_MAX_SIZE, icount);
si->si_flags |= SI_CURSHAPE_CHANGED;
}
splx(s);
/*
* XXX Since we don't yet receive vblank interrupts from the PXG, we
* must flush immediatley.
*/
if (si->si_disptype == WSDISPLAY_TYPE_PXG)
stic_flush(si);
return (0);
#undef cc
}
int
stic_get_cursor(struct stic_info *si, struct wsdisplay_cursor *p)
{
/* XXX */
return (EPASSTHROUGH);
}
void
stic_set_curpos(struct stic_info *si, struct wsdisplay_curpos *curpos)
{
int x, y;
x = curpos->x;
y = curpos->y;
if (y < 0)
y = 0;
else if (y > 1023)
y = 1023;
if (x < 0)
x = 0;
else if (x > 1279)
x = 1279;
si->si_cursor.cc_pos.x = x;
si->si_cursor.cc_pos.y = y;
stic_set_hwcurpos(si);
}
void
stic_set_hwcurpos(struct stic_info *si)
{
volatile u_int32_t *vdac;
int x, y, s;
vdac = si->si_vdac;
x = si->si_cursor.cc_pos.x - si->si_cursor.cc_hot.x;
y = si->si_cursor.cc_pos.y - si->si_cursor.cc_hot.y;
x += STIC_MAGIC_X;
y += STIC_MAGIC_Y;
s = spltty();
SELECT(vdac, BT459_IREG_CURSOR_X_LOW);
REG(vdac, bt_reg) = DUPBYTE0(x); tc_wmb();
REG(vdac, bt_reg) = DUPBYTE1(x); tc_wmb();
REG(vdac, bt_reg) = DUPBYTE0(y); tc_wmb();
REG(vdac, bt_reg) = DUPBYTE1(y); tc_wmb();
splx(s);
}
/*
* STIC control inteface. We have a separate device for mapping the board,
* because access to the DMA engine means that it's possible to circumvent
* the securelevel mechanism. Given the way devices work in the BSD kernel,
* and given the unfortunate design of the mmap() call it's near impossible
* to protect against this using a shared device (i.e. wsdisplay).
*
* This is a gross hack... Hopefully not too many other devices will need
* it.
*/
int
sticopen(dev_t dev, int flag, int mode, struct proc *p)
{
struct stic_info *si;
int s;
if (securelevel > 0)
return (EPERM);
if (minor(dev) >= STIC_MAXDV)
return (ENXIO);
if ((si = stic_info[minor(dev)]) == NULL)
return (ENXIO);
s = spltty();
if ((si->si_flags & SI_DVOPEN) != 0) {
splx(s);
return (EBUSY);
}
si->si_flags |= SI_DVOPEN;
splx(s);
return (0);
}
int
sticclose(dev_t dev, int flag, int mode, struct proc *p)
{
struct stic_info *si;
int s;
si = stic_info[minor(dev)];
s = spltty();
si->si_flags &= ~SI_DVOPEN;
splx(s);
return (0);
}
paddr_t
sticmmap(dev_t dev, off_t offset, int prot)
{
struct stic_info *si;
struct stic_xmap *sxm;
paddr_t pa;
si = stic_info[minor(dev)];
sxm = NULL;
if (securelevel > 0)
return (-1L);
if (si->si_dispmode != WSDISPLAYIO_MODE_MAPPED)
return (-1L);
if (offset < 0)
return ((paddr_t)-1L);
if (offset < sizeof(sxm->sxm_stic)) {
pa = STIC_KSEG_TO_PHYS(si->si_stic);
return (machine_btop(pa + offset));
}
offset -= sizeof(sxm->sxm_stic);
if (offset < sizeof(sxm->sxm_poll)) {
pa = STIC_KSEG_TO_PHYS(si->si_slotbase);
return (machine_btop(pa + offset));
}
offset -= sizeof(sxm->sxm_poll);
if (offset < si->si_buf_size)
return (machine_btop(si->si_buf_phys + offset));
return ((paddr_t)-1L);
}