NetBSD/sys/arch/evbarm/marvell/marvell_machdep.c

1017 lines
29 KiB
C

/* $NetBSD: marvell_machdep.c,v 1.4 2011/02/01 23:23:52 jakllsch Exp $ */
/*
* Copyright (c) 2007, 2008, 2010 KIYOHARA Takashi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: marvell_machdep.c,v 1.4 2011/02/01 23:23:52 jakllsch Exp $");
#include "opt_evbarm_boardtype.h"
#include "opt_ddb.h"
#include "opt_pci.h"
#include "opt_mvsoc.h"
#include "com.h"
#include "gtpci.h"
#include "mvpex.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/reboot.h>
#include <sys/systm.h>
#include <sys/termios.h>
#include <prop/proplib.h>
#include <dev/cons.h>
#include <dev/md.h>
#include <dev/marvell/marvellreg.h>
#include <dev/marvell/marvellvar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/autoconf.h>
#include <machine/bootconfig.h>
#include <machine/pci_machdep.h>
#include <uvm/uvm_extern.h>
#include <arm/db_machdep.h>
#include <arm/undefined.h>
#include <arm/arm32/machdep.h>
#include <arm/marvell/mvsocreg.h>
#include <arm/marvell/mvsocvar.h>
#include <arm/marvell/orionreg.h>
#include <arm/marvell/kirkwoodreg.h>
#include <arm/marvell/mvsocgppvar.h>
#include <evbarm/marvell/marvellreg.h>
#include <evbarm/marvell/marvellvar.h>
#include <ddb/db_extern.h>
#include <ddb/db_sym.h>
#include "ksyms.h"
/* Kernel text starts 2MB in from the bottom of the kernel address space. */
#define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00000000)
#define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
/*
* The range 0xc1000000 - 0xccffffff is available for kernel VM space
* Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
*/
#define KERNEL_VM_SIZE 0x0c000000
/*
* Address to call from cpu_reset() to reset the machine.
* This is machine architecture dependant as it varies depending
* on where the ROM appears when you turn the MMU off.
*/
u_int cpu_reset_address = 0xffff0000;
/* Define various stack sizes in pages */
#define IRQ_STACK_SIZE 1
#define ABT_STACK_SIZE 1
#ifdef IPKDB
#define UND_STACK_SIZE 2
#else
#define UND_STACK_SIZE 1
#endif
BootConfig bootconfig; /* Boot config storage */
static char bootargs[MAX_BOOT_STRING];
char *boot_args = NULL;
vm_offset_t physical_start;
vm_offset_t physical_freestart;
vm_offset_t physical_freeend;
vm_offset_t physical_end;
u_int free_pages;
int physmem = 0;
/* Physical and virtual addresses for some global pages */
pv_addr_t systempage;
pv_addr_t irqstack;
pv_addr_t undstack;
pv_addr_t abtstack;
pv_addr_t kernelstack;
vm_offset_t msgbufphys;
extern u_int data_abort_handler_address;
extern u_int prefetch_abort_handler_address;
extern u_int undefined_handler_address;
extern char _end[];
#define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
#define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
#define KERNEL_PT_KERNEL_NUM 4
#define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
/* Page tables for mapping kernel VM */
#define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
/*
* Macros to translate between physical and virtual for a subset of the
* kernel address space. *Not* for general use.
*/
#define KERNEL_BASE_PHYS physical_start
#define KERN_VTOPHYS(va) \
((paddr_t)((vaddr_t)va - KERNEL_BASE + KERNEL_BASE_PHYS))
#define KERN_PHYSTOV(pa) \
((vaddr_t)((paddr_t)pa - KERNEL_BASE_PHYS + KERNEL_BASE))
#include "com.h"
#if NCOM > 0
#include <dev/ic/comreg.h>
#include <dev/ic/comvar.h>
#endif
#ifndef CONSPEED
#define CONSPEED B115200 /* It's a setting of the default of u-boot */
#endif
#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
int comcnspeed = CONSPEED;
int comcnmode = CONMODE;
#endif
#include "opt_kgdb.h"
#ifdef KGDB
#include <sys/kgdb.h>
#endif
static void marvell_device_register(device_t, void *);
#if NGTPCI > 0 || NMVPEX > 0
static void marvell_startend_by_tag(int, uint64_t *, uint64_t *);
#endif
static void
marvell_system_reset(void)
{
/* unmask soft reset */
write_mlmbreg(MVSOC_MLMB_RSTOUTNMASKR,
MVSOC_MLMB_RSTOUTNMASKR_SOFTRSTOUTEN);
/* assert soft reset */
write_mlmbreg(MVSOC_MLMB_SSRR, MVSOC_MLMB_SSRR_SYSTEMSOFTRST);
/* if we're still running, jump to the reset address */
cpu_reset();
/*NOTREACHED*/
}
void
cpu_reboot(int howto, char *bootstr)
{
/*
* If we are still cold then hit the air brakes
* and crash to earth fast
*/
if (cold) {
doshutdownhooks();
printf("The operating system has halted.\r\n");
printf("Please press any key to reboot.\r\n");
cngetc();
printf("rebooting...\r\n");
marvell_system_reset();
}
/*
* If RB_NOSYNC was not specified sync the discs.
* Note: Unless cold is set to 1 here, syslogd will die during the
* unmount. It looks like syslogd is getting woken up only to find
* that it cannot page part of the binary in as the filesystem has
* been unmounted.
*/
if (!(howto & RB_NOSYNC))
bootsync();
/* Say NO to interrupts */
splhigh();
/* Do a dump if requested. */
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
dumpsys();
/* Run any shutdown hooks */
doshutdownhooks();
/* Make sure IRQ's are disabled */
IRQdisable;
if (howto & RB_HALT) {
printf("The operating system has halted.\r\n");
printf("Please press any key to reboot.\r\n");
cngetc();
}
printf("rebooting...\r\n");
marvell_system_reset();
/*NOTREACHED*/
}
static inline
pd_entry_t *
read_ttb(void)
{
long ttb;
__asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
return (pd_entry_t *)(ttb & ~((1<<14)-1));
}
/*
* Static device mappings. These peripheral registers are mapped at
* fixed virtual addresses very early in initarm() so that we can use
* them while booting the kernel, and stay at the same address
* throughout whole kernel's life time.
*
* We use this table twice; once with bootstrap page table, and once
* with kernel's page table which we build up in initarm().
*
* Since we map these registers into the bootstrap page table using
* pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
* registers segment-aligned and segment-rounded in order to avoid
* using the 2nd page tables.
*/
#define _A(a) ((a) & ~L1_S_OFFSET)
#define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
static const struct pmap_devmap marvell_devmap[] = {
{
MARVELL_INTERREGS_VBASE,
_A(MARVELL_INTERREGS_PBASE),
_S(MARVELL_INTERREGS_SIZE),
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{ 0, 0, 0, 0, 0 }
};
#undef _A
#undef _S
extern uint32_t *u_boot_args[];
/*
* u_int initarm(...)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
* Taking a copy of the boot configuration structure.
* Initialising the physical console so characters can be printed.
* Setting up page tables for the kernel
* Relocating the kernel to the bottom of physical memory
*/
u_int
initarm(void *arg)
{
uint32_t target, attr, base, size;
u_int l1pagetable;
int loop, pt_index, cs, memtag = 0, iotag = 0, window;
/* map some peripheral registers */
pmap_devmap_bootstrap((vaddr_t)read_ttb(), marvell_devmap);
mvsoc_bootstrap(MARVELL_INTERREGS_VBASE);
/* Get ready for splfoo() */
switch (mvsoc_model()) {
#ifdef ORION
case MARVELL_ORION_1_88F1181:
case MARVELL_ORION_1_88F5082:
case MARVELL_ORION_1_88F5180N:
case MARVELL_ORION_1_88F5181:
case MARVELL_ORION_1_88F5182:
case MARVELL_ORION_1_88F6082:
case MARVELL_ORION_1_88F6183:
case MARVELL_ORION_1_88W8660:
case MARVELL_ORION_2_88F1281:
case MARVELL_ORION_2_88F5281:
orion_intr_bootstrap();
memtag = ORION_TAG_PEX0_MEM;
iotag = ORION_TAG_PEX0_IO;
nwindow = ORION_MLMB_NWINDOW;
nremap = ORION_MLMB_NREMAP;
orion_getclks(MARVELL_INTERREGS_VBASE);
if (mvTclk == 166666667) /* 166MHz */
mvTclk = 166664740; /* ???? */
break;
#endif /* ORION */
#ifdef KIRKWOOD
case MARVELL_KIRKWOOD_88F6180:
case MARVELL_KIRKWOOD_88F6192:
case MARVELL_KIRKWOOD_88F6281:
kirkwood_intr_bootstrap();
memtag = KIRKWOOD_TAG_PEX_MEM;
iotag = KIRKWOOD_TAG_PEX_IO;
nwindow = KIRKWOOD_MLMB_NWINDOW;
nremap = KIRKWOOD_MLMB_NREMAP;
kirkwood_getclks(MARVELL_INTERREGS_VBASE);
break;
#endif /* KIRKWOOD */
#ifdef MV78XX0
case MARVELL_MV78XX0_MV78100:
case MARVELL_MV78XX0_MV78200:
mv78xx0_intr_bootstrap();
memtag = MV78XX0_TAG_PEX_MEM;
iotag = MV78XX0_TAG_PEX_IO;
nwindow = MV78XX0_MLMB_NWINDOW;
nremap = MV78XX0_MLMB_NREMAP;
mv78xx0_getclks(MARVELL_INTERREGS_VBASE);
break;
#endif /* MV78XX0 */
default:
/* We can't output console here yet... */
panic("unknown model...\n");
/* NOTREACHED */
}
/* Reset PCI-Express space to window register. */
window = mvsoc_target(memtag, &target, &attr, NULL, NULL);
write_mlmbreg(MVSOC_MLMB_WCR(window),
MVSOC_MLMB_WCR_WINEN |
MVSOC_MLMB_WCR_TARGET(target) |
MVSOC_MLMB_WCR_ATTR(attr) |
MVSOC_MLMB_WCR_SIZE(MARVELL_PEXMEM_SIZE));
write_mlmbreg(MVSOC_MLMB_WBR(window),
MARVELL_PEXMEM_PBASE & MVSOC_MLMB_WBR_BASE_MASK);
#ifdef PCI_NETBSD_CONFIGURE
if (window < nremap) {
write_mlmbreg(MVSOC_MLMB_WRLR(window),
MARVELL_PEXMEM_PBASE & MVSOC_MLMB_WRLR_REMAP_MASK);
write_mlmbreg(MVSOC_MLMB_WRHR(window), 0);
}
#endif
window = mvsoc_target(iotag, &target, &attr, NULL, NULL);
write_mlmbreg(MVSOC_MLMB_WCR(window),
MVSOC_MLMB_WCR_WINEN |
MVSOC_MLMB_WCR_TARGET(target) |
MVSOC_MLMB_WCR_ATTR(attr) |
MVSOC_MLMB_WCR_SIZE(MARVELL_PEXIO_SIZE));
write_mlmbreg(MVSOC_MLMB_WBR(window),
MARVELL_PEXIO_PBASE & MVSOC_MLMB_WBR_BASE_MASK);
#ifdef PCI_NETBSD_CONFIGURE
if (window < nremap) {
write_mlmbreg(MVSOC_MLMB_WRLR(window),
MARVELL_PEXIO_PBASE & MVSOC_MLMB_WRLR_REMAP_MASK);
write_mlmbreg(MVSOC_MLMB_WRHR(window), 0);
}
#endif
/*
* Heads up ... Setup the CPU / MMU / TLB functions
*/
if (set_cpufuncs())
panic("cpu not recognized!");
/*
* U-Boot doesn't use the virtual memory.
*
* Physical Address Range Description
* ----------------------- ----------------------------------
* 0x00000000 - 0x0fffffff SDRAM Bank 0 (max 256MB)
* 0x10000000 - 0x1fffffff SDRAM Bank 1 (max 256MB)
* 0x20000000 - 0x2fffffff SDRAM Bank 2 (max 256MB)
* 0x30000000 - 0x3fffffff SDRAM Bank 3 (max 256MB)
* 0xf1000000 - 0xf10fffff SoC Internal Registers
*/
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
consinit();
/* Talk to the user */
#define BDSTR(s) _BDSTR(s)
#define _BDSTR(s) #s
printf("\nNetBSD/evbarm (" BDSTR(EVBARM_BOARDTYPE) ") booting ...\n");
/* copy command line U-Boot gave us */
strncpy(bootargs, (char *)u_boot_args[3], sizeof(bootargs));
#ifdef VERBOSE_INIT_ARM
printf("initarm: Configuring system ...\n");
#endif
bootconfig.dramblocks = 0;
physical_end = physmem = 0;
for (cs = MARVELL_TAG_SDRAM_CS0; cs <= MARVELL_TAG_SDRAM_CS3; cs++) {
mvsoc_target(cs, &target, &attr, &base, &size);
if (size == 0)
continue;
bootconfig.dram[bootconfig.dramblocks].address = base;
bootconfig.dram[bootconfig.dramblocks].pages = size / PAGE_SIZE;
if (base != physical_end)
panic("memory hole not support");
physical_end += size;
physmem += size / PAGE_SIZE;
bootconfig.dramblocks++;
}
/*
* Set up the variables that define the availablilty of
* physical memory. For now, we're going to set
* physical_freestart to 0xa0008000 (where the kernel
* was loaded), and allocate the memory we need downwards.
* If we get too close to the L1 table that we set up, we
* will panic. We will update physical_freestart and
* physical_freeend later to reflect what pmap_bootstrap()
* wants to see.
*
* XXX pmap_bootstrap() needs an enema.
*/
physical_start = bootconfig.dram[0].address;
/*
* Our kernel is at the beginning of memory, so set our free space to
* all the memory after the kernel.
*/
physical_freestart = KERN_VTOPHYS(round_page((vaddr_t)_end));
physical_freeend = physical_end;
#ifdef VERBOSE_INIT_ARM
/* Tell the user about the memory */
printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
physical_start, physical_end - 1);
#endif
/*
* Okay, the kernel starts 8kB in from the bottom of physical
* memory. We are going to allocate our bootstrap pages upwards
* from physical_freestart.
*
* We need to allocate some fixed page tables to get the kernel
* going. We allocate one page directory and a number of page
* tables and store the physical addresses in the kernel_pt_table
* array.
*
* The kernel page directory must be on a 16K boundary. The page
* tables must be on 4K bounaries. What we do is allocate the
* page directory on the first 16K boundary that we encounter, and
* the page tables on 4K boundaries otherwise. Since we allocate
* at least 3 L2 page tables, we are guaranteed to encounter at
* least one 16K aligned region.
*/
#ifdef VERBOSE_INIT_ARM
printf("Allocating page tables\n");
#endif
free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
physical_freestart, free_pages, free_pages);
#endif
/*
* Define a macro to simplify memory allocation. As we allocate the
* memory, make sure that we don't walk over our temporary first level
* translation table.
*/
#define valloc_pages(var, np) \
(var).pv_pa = physical_freestart; \
physical_freestart += ((np) * PAGE_SIZE); \
if (physical_freestart > (physical_freeend - L1_TABLE_SIZE)) \
panic("initarm: out of memory"); \
free_pages -= (np); \
(var).pv_va = KERN_PHYSTOV((var).pv_pa); \
memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));
pt_index = 0;
kernel_l1pt.pv_pa = 0;
kernel_l1pt.pv_va = 0;
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
/* Are we 16KB aligned for an L1 ? */
if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0 &&
kernel_l1pt.pv_pa == 0) {
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
} else {
valloc_pages(kernel_pt_table[pt_index],
L2_TABLE_SIZE / PAGE_SIZE);
++pt_index;
}
}
/* This should never be able to happen but better confirm that. */
if (!kernel_l1pt.pv_pa ||
(kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
panic("initarm: Failed to align the kernel page directory");
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
valloc_pages(systempage, 1);
systempage.pv_va = 0x00000000;
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, UPAGES);
#ifdef VERBOSE_INIT_ARM
printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
irqstack.pv_va);
printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
abtstack.pv_va);
printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
undstack.pv_va);
printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
kernelstack.pv_va);
#endif
/* Allocate the message buffer. */
{
pv_addr_t msgbuf;
valloc_pages(msgbuf, round_page(MSGBUFSIZE) / PAGE_SIZE);
msgbufphys = msgbuf.pv_pa;
}
/*
* Ok we have allocated physical pages for the primary kernel
* page tables
*/
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_va;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pagetable, 0x00000000,
&kernel_pt_table[KERNEL_PT_SYS]);
for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_KERNEL + loop]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_VMDATA + loop]);
/* update the top of the kernel VM */
pmap_curmaxkvaddr =
KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
#ifdef VERBOSE_INIT_ARM
printf("Mapping kernel\n");
#endif
/* Now we fill in the L2 pagetable for the kernel static code/data */
{
extern char etext[], _end[];
size_t textsize = (uintptr_t)etext - KERNEL_TEXT_BASE;
size_t totalsize = (uintptr_t)_end - KERNEL_TEXT_BASE;
u_int logical;
textsize = (textsize + PGOFSET) & ~PGOFSET;
totalsize = (totalsize + PGOFSET) & ~PGOFSET;
logical = 0x00000000; /* offset of kernel in RAM */
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, textsize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, totalsize - textsize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
}
#ifdef VERBOSE_INIT_ARM
printf("Constructing L2 page tables\n");
#endif
/* Map the stack pages */
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop)
pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
/* Map the vector page. */
pmap_map_entry(l1pagetable, ARM_VECTORS_LOW, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/*
* Map integrated peripherals at same address in first level page
* table so that we can continue to use console.
*/
pmap_devmap_bootstrap(l1pagetable, marvell_devmap);
/*
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page
* tables.
*/
/* Switch tables */
#ifdef VERBOSE_INIT_ARM
printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
#endif
cpu_setttb(kernel_l1pt.pv_pa);
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
/*
* Moved from cpu_startup() as data_abort_handler() references
* this during uvm init.
*/
uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
#ifdef VERBOSE_INIT_ARM
printf("bootstrap done.\n");
#endif
arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
#ifdef VERBOSE_INIT_ARM
printf("init subsystems: stacks ");
#endif
set_stackptr(PSR_IRQ32_MODE,
irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_ABT32_MODE,
abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_UND32_MODE,
undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper
* handler.
* Until then we will use a handler that just panics but tells us
* why.
* Initialisation of the vectors will just panic on a data abort.
* This just fills in a slightly better one.
*/
#ifdef VERBOSE_INIT_ARM
printf("vectors ");
#endif
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
printf("undefined ");
#endif
undefined_init();
/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
printf("page ");
#endif
uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
atop(physical_freestart), atop(physical_freeend),
VM_FREELIST_DEFAULT);
/* Boot strap pmap telling it where the kernel page table is */
#ifdef VERBOSE_INIT_ARM
printf("pmap ");
#endif
pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
#ifdef VERBOSE_INIT_ARM
printf("done.\n");
#endif
#ifdef __HAVE_MEMORY_DISK__
md_root_setconf(memory_disk, sizeof memory_disk);
#endif
boot_args = bootargs;
parse_mi_bootargs(boot_args);
#ifdef BOOTHOWTO
boothowto |= BOOTHOWTO;
#endif
#ifdef KGDB
if (boothowto & RB_KDB) {
kgdb_debug_init = 1;
kgdb_connect(1);
}
#endif
#ifdef DDB
db_machine_init();
if (boothowto & RB_KDB)
Debugger();
#endif
/* we've a specific device_register routine */
evbarm_device_register = marvell_device_register;
/* We return the new stack pointer address */
return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}
void
consinit(void)
{
static int consinit_called = 0;
if (consinit_called != 0)
return;
consinit_called = 1;
#if NCOM > 0
{
extern int mvuart_cnattach(bus_space_tag_t, bus_addr_t, int,
uint32_t, int);
if (mvuart_cnattach(&mvsoc_bs_tag,
MARVELL_INTERREGS_VBASE + MVSOC_COM0_BASE,
comcnspeed, mvTclk, comcnmode))
panic("can't init serial console");
}
#else
panic("serial console not configured");
#endif
}
static void
marvell_device_register(device_t dev, void *aux)
{
prop_dictionary_t dict = device_properties(dev);
#if NCOM > 0
if (device_is_a(dev, "com") &&
device_is_a(device_parent(dev), "mvsoc"))
prop_dictionary_set_uint32(dict, "frequency", mvTclk);
#endif
if (device_is_a(dev, "gtidmac")) {
prop_dictionary_set_uint32(dict,
"dmb_speed", mvTclk * sizeof(uint32_t)); /* XXXXXX */
prop_dictionary_set_uint32(dict,
"xore-irq-begin", ORION_IRQ_XOR0);
}
#if NGTPCI > 0 && defined(ORION)
if (device_is_a(dev, "gtpci")) {
extern struct bus_space
orion_pci_io_bs_tag, orion_pci_mem_bs_tag;
extern struct arm32_pci_chipset arm32_gtpci_chipset;
prop_data_t io_bs_tag, mem_bs_tag, pc;
prop_array_t int2gpp;
prop_number_t gpp;
uint64_t start, end;
int i, j;
static struct {
const char *boardtype;
int pin[PCI_INTERRUPT_PIN_MAX];
} hints[] = {
{ "kuronas_x4",
{ 11, PCI_INTERRUPT_PIN_NONE } },
{ NULL,
{ PCI_INTERRUPT_PIN_NONE } },
};
arm32_gtpci_chipset.pc_conf_v = device_private(dev);
arm32_gtpci_chipset.pc_intr_v = device_private(dev);
io_bs_tag = prop_data_create_data_nocopy(
&orion_pci_io_bs_tag, sizeof(struct bus_space));
KASSERT(io_bs_tag != NULL);
prop_dictionary_set(dict, "io-bus-tag", io_bs_tag);
prop_object_release(io_bs_tag);
mem_bs_tag = prop_data_create_data_nocopy(
&orion_pci_mem_bs_tag, sizeof(struct bus_space));
KASSERT(mem_bs_tag != NULL);
prop_dictionary_set(dict, "mem-bus-tag", mem_bs_tag);
prop_object_release(mem_bs_tag);
pc = prop_data_create_data_nocopy(&arm32_gtpci_chipset,
sizeof(struct arm32_pci_chipset));
KASSERT(pc != NULL);
prop_dictionary_set(dict, "pci-chipset", pc);
prop_object_release(pc);
marvell_startend_by_tag(ORION_TAG_PCI_IO, &start, &end);
prop_dictionary_set_uint64(dict, "iostart", start);
prop_dictionary_set_uint64(dict, "ioend", end);
marvell_startend_by_tag(ORION_TAG_PCI_MEM, &start, &end);
prop_dictionary_set_uint64(dict, "memstart", start);
prop_dictionary_set_uint64(dict, "memend", end);
prop_dictionary_set_uint32(dict,
"cache-line-size", arm_dcache_align);
/* Setup the hint for interrupt-pin. */
#define BDSTR(s) _BDSTR(s)
#define _BDSTR(s) #s
#define THIS_BOARD(str) (strcmp(str, BDSTR(EVBARM_BOARDTYPE)) == 0)
for (i = 0; hints[i].boardtype != NULL; i++)
if (THIS_BOARD(hints[i].boardtype))
break;
if (hints[i].boardtype == NULL)
return;
int2gpp =
prop_array_create_with_capacity(PCI_INTERRUPT_PIN_MAX + 1);
/* first set dummy */
gpp = prop_number_create_integer(0);
prop_array_add(int2gpp, gpp);
prop_object_release(gpp);
for (j = 0; hints[i].pin[j] != PCI_INTERRUPT_PIN_NONE; j++) {
gpp = prop_number_create_integer(hints[i].pin[j]);
prop_array_add(int2gpp, gpp);
prop_object_release(gpp);
}
prop_dictionary_set(dict, "int2gpp", int2gpp);
}
#endif /* NGTPCI > 0 && defined(ORION) */
#if NMVPEX > 0
if (device_is_a(dev, "mvpex")) {
#ifdef ORION
extern struct bus_space
orion_pex0_io_bs_tag, orion_pex0_mem_bs_tag,
orion_pex1_io_bs_tag, orion_pex1_mem_bs_tag;
#endif
#ifdef KIRKWOOD
extern struct bus_space
kirkwood_pex_io_bs_tag, kirkwood_pex_mem_bs_tag;
#endif
extern struct arm32_pci_chipset
arm32_mvpex0_chipset, arm32_mvpex1_chipset;
struct marvell_attach_args *mva = aux;
struct bus_space *mvpex_io_bs_tag, *mvpex_mem_bs_tag;
struct arm32_pci_chipset *arm32_mvpex_chipset;
prop_data_t io_bs_tag, mem_bs_tag, pc;
uint64_t start, end;
int iotag, memtag;
switch (mvsoc_model()) {
#ifdef ORION
case MARVELL_ORION_1_88F5180N:
case MARVELL_ORION_1_88F5181:
case MARVELL_ORION_1_88F5182:
case MARVELL_ORION_1_88W8660:
case MARVELL_ORION_2_88F5281:
if (mva->mva_offset == MVSOC_PEX_BASE) {
mvpex_io_bs_tag = &orion_pex0_io_bs_tag;
mvpex_mem_bs_tag = &orion_pex0_mem_bs_tag;
arm32_mvpex_chipset = &arm32_mvpex0_chipset;
iotag = ORION_TAG_PEX0_IO;
memtag = ORION_TAG_PEX0_MEM;
} else {
mvpex_io_bs_tag = &orion_pex1_io_bs_tag;
mvpex_mem_bs_tag = &orion_pex1_mem_bs_tag;
arm32_mvpex_chipset = &arm32_mvpex1_chipset;
iotag = ORION_TAG_PEX1_IO;
memtag = ORION_TAG_PEX1_MEM;
}
break;
#endif
#ifdef KIRKWOOD
case MARVELL_KIRKWOOD_88F6180:
case MARVELL_KIRKWOOD_88F6192:
case MARVELL_KIRKWOOD_88F6281:
mvpex_io_bs_tag = &kirkwood_pex_io_bs_tag;
mvpex_mem_bs_tag = &kirkwood_pex_mem_bs_tag;
arm32_mvpex_chipset = &arm32_mvpex0_chipset;
iotag = KIRKWOOD_TAG_PEX_IO;
memtag = KIRKWOOD_TAG_PEX_MEM;
break;
#endif
default:
return;
}
arm32_mvpex_chipset->pc_conf_v = device_private(dev);
arm32_mvpex_chipset->pc_intr_v = device_private(dev);
io_bs_tag = prop_data_create_data_nocopy(
mvpex_io_bs_tag, sizeof(struct bus_space));
KASSERT(io_bs_tag != NULL);
prop_dictionary_set(dict, "io-bus-tag", io_bs_tag);
prop_object_release(io_bs_tag);
mem_bs_tag = prop_data_create_data_nocopy(
mvpex_mem_bs_tag, sizeof(struct bus_space));
KASSERT(mem_bs_tag != NULL);
prop_dictionary_set(dict, "mem-bus-tag", mem_bs_tag);
prop_object_release(mem_bs_tag);
pc = prop_data_create_data_nocopy(arm32_mvpex_chipset,
sizeof(struct arm32_pci_chipset));
KASSERT(pc != NULL);
prop_dictionary_set(dict, "pci-chipset", pc);
prop_object_release(pc);
marvell_startend_by_tag(iotag, &start, &end);
prop_dictionary_set_uint64(dict, "iostart", start);
prop_dictionary_set_uint64(dict, "ioend", end);
marvell_startend_by_tag(memtag, &start, &end);
prop_dictionary_set_uint64(dict, "memstart", start);
prop_dictionary_set_uint64(dict, "memend", end);
prop_dictionary_set_uint32(dict,
"cache-line-size", arm_dcache_align);
}
#endif
}
#if NGTPCI > 0 || NMVPEX > 0
static void
marvell_startend_by_tag(int tag, uint64_t *start, uint64_t *end)
{
uint32_t base, size;
int win;
win = mvsoc_target(tag, NULL, NULL, &base, &size);
if (size != 0) {
if (win < nremap)
*start = read_mlmbreg(MVSOC_MLMB_WRLR(win)) |
((read_mlmbreg(MVSOC_MLMB_WRHR(win)) << 16) << 16);
else
*start = base;
*end = *start + size - 1;
}
}
#endif