NetBSD/sys/arch/sun2/dev/zs.c
2003-07-15 02:54:31 +00:00

719 lines
16 KiB
C

/* $NetBSD: zs.c,v 1.8 2003/07/15 03:36:12 lukem Exp $ */
/*-
* Copyright (c) 1996 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Gordon W. Ross.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Zilog Z8530 Dual UART driver (machine-dependent part)
*
* Runs two serial lines per chip using slave drivers.
* Plain tty/async lines use the zs_async slave.
* Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.8 2003/07/15 03:36:12 lukem Exp $");
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/tty.h>
#include <sys/time.h>
#include <sys/syslog.h>
#include <machine/autoconf.h>
#include <machine/promlib.h>
#include <machine/cpu.h>
#include <machine/eeprom.h>
#include <machine/psl.h>
#include <machine/z8530var.h>
#include <dev/cons.h>
#include <dev/ic/z8530reg.h>
#include <dev/sun/kbd_ms_ttyvar.h>
#include <ddb/db_output.h>
#include <sun2/dev/cons.h>
#include "kbd.h" /* NKBD */
#include "ms.h" /* NMS */
/*
* Some warts needed by z8530tty.c -
* The default parity REALLY needs to be the same as the PROM uses,
* or you can not see messages done with printf during boot-up...
*/
int zs_def_cflag = (CREAD | CS8 | HUPCL);
/* ZS channel used as the console device (if any) */
void *zs_conschan_get, *zs_conschan_put;
static u_char zs_init_reg[16] = {
0, /* 0: CMD (reset, etc.) */
0, /* 1: No interrupts yet. */
#ifdef ZS_INIT_IVECT
ZS_INIT_IVECT, /* 2: IVECT */
#else
0, /* 2: IVECT */
#endif
ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
0, /* 6: TXSYNC/SYNCLO */
0, /* 7: RXSYNC/SYNCHI */
0, /* 8: alias for data port */
#ifdef ZS_INIT_IVECT
ZSWR9_MASTER_IE,
#else
ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
#endif
0, /*10: Misc. TX/RX control bits */
ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
0, /*13: BAUDHI (default=9600) */
ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
ZSWR15_BREAK_IE,
};
/* Console ops */
static int zscngetc __P((dev_t));
static void zscnputc __P((dev_t, int));
static void zscnpollc __P((dev_t, int));
struct consdev zs_consdev = {
NULL,
NULL,
zscngetc,
zscnputc,
zscnpollc,
NULL,
};
/****************************************************************
* Autoconfig
****************************************************************/
static int zs_print __P((void *, const char *name));
extern struct cfdriver zs_cd;
/* Interrupt handlers. */
int zscheckintr __P((void *));
static int zshard __P((void *));
static void zssoft __P((void *));
static int zs_get_speed __P((struct zs_chanstate *));
/*
* Attach a found zs.
*
* USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
* SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
*/
void
zs_attach(zsc, zsd, pri)
struct zsc_softc *zsc;
struct zsdevice *zsd;
int pri;
{
struct zsc_attach_args zsc_args;
struct zs_chanstate *cs;
int s, channel, softpri = IPL_SOFTSERIAL;
if (zsd == NULL) {
printf("configuration incomplete\n");
return;
}
printf(" softpri %d\n", softpri);
/*
* Initialize software state for each channel.
*/
for (channel = 0; channel < 2; channel++) {
struct zschan *zc;
struct device *child;
zsc_args.channel = channel;
cs = &zsc->zsc_cs_store[channel];
zsc->zsc_cs[channel] = cs;
simple_lock_init(&cs->cs_lock);
cs->cs_channel = channel;
cs->cs_private = NULL;
cs->cs_ops = &zsops_null;
cs->cs_brg_clk = PCLK / 16;
zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
zsc_args.consdev = NULL;
zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
zsc->zsc_node,
channel);
if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
zsc_args.consdev = &zs_consdev;
}
if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
zs_conschan_get = zc;
}
if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
zs_conschan_put = zc;
}
/* Children need to set cn_dev, etc */
cs->cs_reg_csr = &zc->zc_csr;
cs->cs_reg_data = &zc->zc_data;
memcpy(cs->cs_creg, zs_init_reg, 16);
memcpy(cs->cs_preg, zs_init_reg, 16);
/* XXX: Consult PROM properties for this?! */
cs->cs_defspeed = zs_get_speed(cs);
cs->cs_defcflag = zs_def_cflag;
/* Make these correspond to cs_defcflag (-crtscts) */
cs->cs_rr0_dcd = ZSRR0_DCD;
cs->cs_rr0_cts = 0;
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
cs->cs_wr5_rts = 0;
/*
* Clear the master interrupt enable.
* The INTENA is common to both channels,
* so just do it on the A channel.
*/
if (channel == 0) {
zs_write_reg(cs, 9, 0);
}
/*
* Look for a child driver for this channel.
* The child attach will setup the hardware.
*/
if (!(child =
config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print))) {
/* No sub-driver. Just reset it. */
u_char reset = (channel == 0) ?
ZSWR9_A_RESET : ZSWR9_B_RESET;
s = splzs();
zs_write_reg(cs, 9, reset);
splx(s);
}
#if (NKBD > 0) || (NMS > 0)
/*
* If this was a zstty it has a keyboard
* property on it we need to attach the
* sunkbd and sunms line disciplines.
*/
if (child
&& (!strcmp(child->dv_cfdata->cf_name,
"zstty"))) {
struct kbd_ms_tty_attach_args kma;
struct zstty_softc {
/* The following are the only fields we need here */
struct device zst_dev;
struct tty *zst_tty;
struct zs_chanstate *zst_cs;
} *zst = (struct zstty_softc *)child;
struct tty *tp;
kma.kmta_tp = tp = zst->zst_tty;
if (tp != NULL) {
kma.kmta_dev = tp->t_dev;
kma.kmta_consdev = zsc_args.consdev;
/* Attach 'em if we got 'em. */
switch(zs_peripheral_type(zsc->zsc_promunit,
zsc->zsc_node,
channel)) {
case ZS_PERIPHERAL_SUNKBD:
#if (NKBD > 0)
kma.kmta_name = "keyboard";
config_found(child, (void *)&kma, NULL);
#endif
break;
case ZS_PERIPHERAL_SUNMS:
#if (NMS > 0)
kma.kmta_name = "mouse";
config_found(child, (void *)&kma, NULL);
#endif
break;
default:
break;
}
}
}
#endif
}
/*
* Now safe to install interrupt handlers. Note the arguments
* to the interrupt handlers aren't used. Note, we only do this
* once since both SCCs interrupt at the same level and vector.
*/
bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, 0, zshard, zsc);
if (!(zsc->zsc_softintr = softintr_establish(softpri, zssoft, zsc)))
panic("zsattach: could not establish soft interrupt");
evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
zsc->zsc_dev.dv_xname, "intr");
/*
* Set the master interrupt enable and interrupt vector.
* (common to both channels, do it on A)
*/
cs = zsc->zsc_cs[0];
s = splhigh();
/* interrupt vector */
zs_write_reg(cs, 2, zs_init_reg[2]);
/* master interrupt control (enable) */
zs_write_reg(cs, 9, zs_init_reg[9]);
splx(s);
}
static int
zs_print(aux, name)
void *aux;
const char *name;
{
struct zsc_attach_args *args = aux;
if (name != NULL)
aprint_normal("%s: ", name);
if (args->channel != -1)
aprint_normal(" channel %d", args->channel);
return (UNCONF);
}
static int
zshard(arg)
void *arg;
{
struct zsc_softc *zsc = (struct zsc_softc *)arg;
int rr3, rval;
rval = 0;
while ((rr3 = zsc_intr_hard(zsc))) {
/* Count up the interrupts. */
rval |= rr3;
zsc->zsc_intrcnt.ev_count++;
}
if (((zsc->zsc_cs[0] && zsc->zsc_cs[0]->cs_softreq) ||
(zsc->zsc_cs[1] && zsc->zsc_cs[1]->cs_softreq)) &&
zsc->zsc_softintr) {
softintr_schedule(zsc->zsc_softintr);
}
return (rval);
}
int
zscheckintr(arg)
void *arg;
{
struct zsc_softc *zsc;
int unit, rval;
rval = 0;
for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
zsc = zs_cd.cd_devs[unit];
if (zsc == NULL)
continue;
rval = (zshard((void *)zsc) || rval);
}
return (rval);
}
/*
* We need this only for TTY_DEBUG purposes.
*/
static void
zssoft(arg)
void *arg;
{
struct zsc_softc *zsc = (struct zsc_softc *)arg;
int s;
/* Make sure we call the tty layer at spltty. */
s = spltty();
(void)zsc_intr_soft(zsc);
#ifdef TTY_DEBUG
{
struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private;
struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private;
if (zst0->zst_overflows || zst1->zst_overflows ) {
struct trapframe *frame = (struct trapframe *)arg;
printf("zs silo overflow from %p\n",
(long)frame->tf_pc);
}
}
#endif
splx(s);
}
/*
* Compute the current baud rate given a ZS channel.
*/
static int
zs_get_speed(cs)
struct zs_chanstate *cs;
{
int tconst;
tconst = zs_read_reg(cs, 12);
tconst |= zs_read_reg(cs, 13) << 8;
return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
}
/*
* MD functions for setting the baud rate and control modes.
*/
int
zs_set_speed(cs, bps)
struct zs_chanstate *cs;
int bps; /* bits per second */
{
int tconst, real_bps;
if (bps == 0)
return (0);
#ifdef DIAGNOSTIC
if (cs->cs_brg_clk == 0)
panic("zs_set_speed");
#endif
tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
if (tconst < 0)
return (EINVAL);
/* Convert back to make sure we can do it. */
real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
/* XXX - Allow some tolerance here? */
if (real_bps != bps)
return (EINVAL);
cs->cs_preg[12] = tconst;
cs->cs_preg[13] = tconst >> 8;
/* Caller will stuff the pending registers. */
return (0);
}
int
zs_set_modes(cs, cflag)
struct zs_chanstate *cs;
int cflag; /* bits per second */
{
int s;
/*
* Output hardware flow control on the chip is horrendous:
* if carrier detect drops, the receiver is disabled, and if
* CTS drops, the transmitter is stoped IN MID CHARACTER!
* Therefore, NEVER set the HFC bit, and instead use the
* status interrupt to detect CTS changes.
*/
s = splzs();
cs->cs_rr0_pps = 0;
if ((cflag & (CLOCAL | MDMBUF)) != 0) {
cs->cs_rr0_dcd = 0;
if ((cflag & MDMBUF) == 0)
cs->cs_rr0_pps = ZSRR0_DCD;
} else
cs->cs_rr0_dcd = ZSRR0_DCD;
if ((cflag & CRTSCTS) != 0) {
cs->cs_wr5_dtr = ZSWR5_DTR;
cs->cs_wr5_rts = ZSWR5_RTS;
cs->cs_rr0_cts = ZSRR0_CTS;
} else if ((cflag & CDTRCTS) != 0) {
cs->cs_wr5_dtr = 0;
cs->cs_wr5_rts = ZSWR5_DTR;
cs->cs_rr0_cts = ZSRR0_CTS;
} else if ((cflag & MDMBUF) != 0) {
cs->cs_wr5_dtr = 0;
cs->cs_wr5_rts = ZSWR5_DTR;
cs->cs_rr0_cts = ZSRR0_DCD;
} else {
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
cs->cs_wr5_rts = 0;
cs->cs_rr0_cts = 0;
}
splx(s);
/* Caller will stuff the pending registers. */
return (0);
}
/*
* Read or write the chip with suitable delays.
*/
u_char
zs_read_reg(cs, reg)
struct zs_chanstate *cs;
u_char reg;
{
u_char val;
*cs->cs_reg_csr = reg;
ZS_DELAY();
val = *cs->cs_reg_csr;
ZS_DELAY();
return (val);
}
void
zs_write_reg(cs, reg, val)
struct zs_chanstate *cs;
u_char reg, val;
{
*cs->cs_reg_csr = reg;
ZS_DELAY();
*cs->cs_reg_csr = val;
ZS_DELAY();
}
u_char
zs_read_csr(cs)
struct zs_chanstate *cs;
{
u_char val;
val = *cs->cs_reg_csr;
ZS_DELAY();
return (val);
}
void zs_write_csr(cs, val)
struct zs_chanstate *cs;
u_char val;
{
*cs->cs_reg_csr = val;
ZS_DELAY();
}
u_char zs_read_data(cs)
struct zs_chanstate *cs;
{
u_char val;
val = *cs->cs_reg_data;
ZS_DELAY();
return (val);
}
void zs_write_data(cs, val)
struct zs_chanstate *cs;
u_char val;
{
*cs->cs_reg_data = val;
ZS_DELAY();
}
/****************************************************************
* Console support functions (Sun specific!)
* Note: this code is allowed to know about the layout of
* the chip registers, and uses that to keep things simple.
* XXX - I think I like the mvme167 code better. -gwr
****************************************************************/
extern void Debugger __P((void));
/*
* Handle user request to enter kernel debugger.
*/
void
zs_abort(cs)
struct zs_chanstate *cs;
{
volatile struct zschan *zc = zs_conschan_get;
int rr0;
/* Wait for end of break to avoid PROM abort. */
/* XXX - Limit the wait? */
do {
rr0 = zc->zc_csr;
ZS_DELAY();
} while (rr0 & ZSRR0_BREAK);
#if defined(KGDB)
zskgdb(cs);
#elif defined(DDB)
{
extern int db_active;
if (!db_active)
Debugger();
else
/* Debugger is probably hozed */
callrom();
}
#else
printf("stopping on keyboard abort\n");
callrom();
#endif
}
/*
* Polled input char.
*/
int
zs_getc(arg)
void *arg;
{
volatile struct zschan *zc = arg;
int s, c, rr0;
s = splhigh();
/* Wait for a character to arrive. */
do {
rr0 = zc->zc_csr;
ZS_DELAY();
} while ((rr0 & ZSRR0_RX_READY) == 0);
c = zc->zc_data;
ZS_DELAY();
splx(s);
/*
* This is used by the kd driver to read scan codes,
* so don't translate '\r' ==> '\n' here...
*/
return (c);
}
/*
* Polled output char.
*/
void
zs_putc(arg, c)
void *arg;
int c;
{
volatile struct zschan *zc = arg;
int s, rr0;
s = splhigh();
/* Wait for transmitter to become ready. */
do {
rr0 = zc->zc_csr;
ZS_DELAY();
} while ((rr0 & ZSRR0_TX_READY) == 0);
/*
* Send the next character.
* Now you'd think that this could be followed by a ZS_DELAY()
* just like all the other chip accesses, but it turns out that
* the `transmit-ready' interrupt isn't de-asserted until
* some period of time after the register write completes
* (more than a couple instructions). So to avoid stray
* interrupts we put in the 2us delay regardless of cpu model.
*/
zc->zc_data = c;
delay(2);
splx(s);
}
/*****************************************************************/
/*
* Polled console input putchar.
*/
static int
zscngetc(dev)
dev_t dev;
{
return (zs_getc(zs_conschan_get));
}
/*
* Polled console output putchar.
*/
static void
zscnputc(dev, c)
dev_t dev;
int c;
{
zs_putc(zs_conschan_put, c);
}
int swallow_zsintrs;
static void
zscnpollc(dev, on)
dev_t dev;
int on;
{
/*
* Need to tell zs driver to acknowledge all interrupts or we get
* annoying spurious interrupt messages. This is because mucking
* with spl() levels during polling does not prevent interrupts from
* being generated.
*/
if (on) swallow_zsintrs++;
else swallow_zsintrs--;
}