1540 lines
33 KiB
C
1540 lines
33 KiB
C
/* $NetBSD: sbdsp.c,v 1.19 1996/02/18 22:19:44 mycroft Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1991-1993 Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the Computer Systems
|
|
* Engineering Group at Lawrence Berkeley Laboratory.
|
|
* 4. Neither the name of the University nor of the Laboratory may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
/*
|
|
* SoundBlaster Pro code provided by John Kohl, based on lots of
|
|
* information he gleaned from Steve Haehnichen <steve@vigra.com>'s
|
|
* SBlast driver for 386BSD and DOS driver code from Daniel Sachs
|
|
* <sachs@meibm15.cen.uiuc.edu>.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/device.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/buf.h>
|
|
#include <vm/vm.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/pio.h>
|
|
|
|
#include <sys/audioio.h>
|
|
#include <dev/audio_if.h>
|
|
|
|
#include <dev/isa/isavar.h>
|
|
#include <dev/isa/isadmavar.h>
|
|
#include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
|
|
|
|
#include <dev/isa/sbreg.h>
|
|
#include <dev/isa/sbdspvar.h>
|
|
|
|
#ifdef AUDIO_DEBUG
|
|
extern void Dprintf __P((const char *, ...));
|
|
#define DPRINTF(x) if (sbdspdebug) Dprintf x
|
|
int sbdspdebug = 0;
|
|
#else
|
|
#define DPRINTF(x)
|
|
#endif
|
|
|
|
#ifndef SBDSP_NPOLL
|
|
#define SBDSP_NPOLL 3000
|
|
#endif
|
|
|
|
struct {
|
|
int wdsp;
|
|
int rdsp;
|
|
int wmidi;
|
|
} sberr;
|
|
|
|
/*
|
|
* Time constant routines follow. See SBK, section 12.
|
|
* Although they don't come out and say it (in the docs),
|
|
* the card clearly uses a 1MHz countdown timer, as the
|
|
* low-speed formula (p. 12-4) is:
|
|
* tc = 256 - 10^6 / sr
|
|
* In high-speed mode, the constant is the upper byte of a 16-bit counter,
|
|
* and a 256MHz clock is used:
|
|
* tc = 65536 - 256 * 10^ 6 / sr
|
|
* Since we can only use the upper byte of the HS TC, the two formulae
|
|
* are equivalent. (Why didn't they say so?) E.g.,
|
|
* (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
|
|
*
|
|
* The crossover point (from low- to high-speed modes) is different
|
|
* for the SBPRO and SB20. The table on p. 12-5 gives the following data:
|
|
*
|
|
* SBPRO SB20
|
|
* ----- --------
|
|
* input ls min 4 KHz 4 KHz
|
|
* input ls max 23 KHz 13 KHz
|
|
* input hs max 44.1 KHz 15 KHz
|
|
* output ls min 4 KHz 4 KHz
|
|
* output ls max 23 KHz 23 KHz
|
|
* output hs max 44.1 KHz 44.1 KHz
|
|
*/
|
|
#define SB_LS_MIN 0x06 /* 4000 Hz */
|
|
#define SB_8K 0x83 /* 8000 Hz */
|
|
#define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
|
|
#define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
|
|
#define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
|
|
#define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
|
|
#define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
|
|
#define SB_DAC_HS_MAX 0xea /* 45454 Hz */
|
|
|
|
#ifdef AUDIO_DEBUG
|
|
void
|
|
sb_printsc(struct sbdsp_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
printf("open %d dmachan %d iobase %x\n",
|
|
sc->sc_open, sc->sc_drq, sc->sc_iobase);
|
|
printf("itc %d imode %d otc %d omode %d encoding %x\n",
|
|
sc->sc_itc, sc->sc_imode, sc->sc_otc, sc->sc_omode, sc->encoding);
|
|
printf("outport %d inport %d spkron %d nintr %d\n",
|
|
sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
|
|
printf("chans %x intr %x arg %x\n",
|
|
sc->sc_chans, sc->sc_intr, sc->sc_arg);
|
|
printf("gain: ");
|
|
for (i = 0; i < SB_NDEVS; i++)
|
|
printf("%d ", sc->gain[i]);
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Probe / attach routines.
|
|
*/
|
|
|
|
/*
|
|
* Probe for the soundblaster hardware.
|
|
*/
|
|
int
|
|
sbdsp_probe(sc)
|
|
struct sbdsp_softc *sc;
|
|
{
|
|
register int iobase = sc->sc_iobase;
|
|
|
|
if (sbdsp_reset(sc) < 0) {
|
|
DPRINTF(("sbdsp: couldn't reset card\n"));
|
|
return 0;
|
|
}
|
|
sc->sc_model = sbversion(sc);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Attach hardware to driver, attach hardware driver to audio
|
|
* pseudo-device driver .
|
|
*/
|
|
void
|
|
sbdsp_attach(sc)
|
|
struct sbdsp_softc *sc;
|
|
{
|
|
register int iobase = sc->sc_iobase;
|
|
|
|
/* Set defaults */
|
|
if (ISSBPROCLASS(sc))
|
|
sc->sc_itc = sc->sc_otc = SBPRO_ADC_HS_MAX;
|
|
else
|
|
sc->sc_itc = sc->sc_otc = SBCLA_ADC_HS_MAX;
|
|
sc->sc_chans = 1;
|
|
sc->encoding = AUDIO_ENCODING_LINEAR;
|
|
|
|
(void) sbdsp_set_in_port(sc, SB_MIC_PORT);
|
|
(void) sbdsp_set_out_port(sc, SB_SPEAKER);
|
|
|
|
if (ISSBPROCLASS(sc)) {
|
|
int i;
|
|
|
|
/* set mixer to default levels, by sending a mixer
|
|
reset command. */
|
|
sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
|
|
/* then some adjustments :) */
|
|
sbdsp_mix_write(sc, SBP_CD_VOL,
|
|
sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
|
|
sbdsp_mix_write(sc, SBP_DAC_VOL,
|
|
sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
|
|
sbdsp_mix_write(sc, SBP_MASTER_VOL,
|
|
sbdsp_stereo_vol(SBP_MAXVOL/2, SBP_MAXVOL/2));
|
|
sbdsp_mix_write(sc, SBP_LINE_VOL,
|
|
sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
|
|
for (i = 0; i < SB_NDEVS; i++)
|
|
sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
|
|
sc->in_filter = 0; /* no filters turned on, please */
|
|
}
|
|
|
|
printf(": dsp v%d.%02d\n",
|
|
SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model));
|
|
}
|
|
|
|
/*
|
|
* Various routines to interface to higher level audio driver
|
|
*/
|
|
|
|
void
|
|
sbdsp_mix_write(sc, mixerport, val)
|
|
struct sbdsp_softc *sc;
|
|
int mixerport;
|
|
int val;
|
|
{
|
|
int iobase = sc->sc_iobase;
|
|
outb(iobase + SBP_MIXER_ADDR, mixerport);
|
|
delay(10);
|
|
outb(iobase + SBP_MIXER_DATA, val);
|
|
delay(30);
|
|
}
|
|
|
|
int
|
|
sbdsp_mix_read(sc, mixerport)
|
|
struct sbdsp_softc *sc;
|
|
int mixerport;
|
|
{
|
|
int iobase = sc->sc_iobase;
|
|
outb(iobase + SBP_MIXER_ADDR, mixerport);
|
|
delay(10);
|
|
return inb(iobase + SBP_MIXER_DATA);
|
|
}
|
|
|
|
int
|
|
sbdsp_set_in_sr(addr, sr)
|
|
void *addr;
|
|
u_long sr;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
return (sbdsp_srtotc(sc, sr, SB_INPUT_RATE, &sc->sc_itc, &sc->sc_imode));
|
|
}
|
|
|
|
u_long
|
|
sbdsp_get_in_sr(addr)
|
|
void *addr;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
return (sbdsp_tctosr(sc, sc->sc_itc));
|
|
}
|
|
|
|
int
|
|
sbdsp_set_out_sr(addr, sr)
|
|
void *addr;
|
|
u_long sr;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
return (sbdsp_srtotc(sc, sr, SB_OUTPUT_RATE, &sc->sc_otc, &sc->sc_omode));
|
|
}
|
|
|
|
u_long
|
|
sbdsp_get_out_sr(addr)
|
|
void *addr;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
return (sbdsp_tctosr(sc, sc->sc_otc));
|
|
}
|
|
|
|
int
|
|
sbdsp_query_encoding(addr, fp)
|
|
void *addr;
|
|
struct audio_encoding *fp;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
switch (fp->index) {
|
|
case 0:
|
|
strcpy(fp->name, AudioEmulaw);
|
|
fp->format_id = AUDIO_ENCODING_ULAW;
|
|
break;
|
|
case 1:
|
|
strcpy(fp->name, AudioEpcm16);
|
|
fp->format_id = AUDIO_ENCODING_PCM16;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sbdsp_set_encoding(addr, enc)
|
|
void *addr;
|
|
u_int enc;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
switch(enc){
|
|
case AUDIO_ENCODING_ULAW:
|
|
sc->encoding = AUDIO_ENCODING_ULAW;
|
|
break;
|
|
case AUDIO_ENCODING_LINEAR:
|
|
sc->encoding = AUDIO_ENCODING_LINEAR;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sbdsp_get_encoding(addr)
|
|
void *addr;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
return (sc->encoding);
|
|
}
|
|
|
|
int
|
|
sbdsp_set_precision(addr, prec)
|
|
void *addr;
|
|
u_int prec;
|
|
{
|
|
|
|
if (prec != 8)
|
|
return (EINVAL);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sbdsp_get_precision(addr)
|
|
void *addr;
|
|
{
|
|
return (8);
|
|
}
|
|
|
|
int
|
|
sbdsp_set_channels(addr, chans)
|
|
void *addr;
|
|
int chans;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
if (ISSBPROCLASS(sc)) {
|
|
if (chans != 1 && chans != 2)
|
|
return (EINVAL);
|
|
sc->sc_chans = chans;
|
|
|
|
#if 0
|
|
if (rval = sbdsp_set_in_sr_real(addr, sc->sc_irate))
|
|
return rval;
|
|
#endif
|
|
|
|
sbdsp_mix_write(sc, SBP_STEREO,
|
|
(sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
|
|
(chans == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
|
|
/* recording channels needs to be done right when we start
|
|
DMA recording. Just record number of channels for now
|
|
and set stereo when ready. */
|
|
} else {
|
|
if (chans != 1)
|
|
return (EINVAL);
|
|
sc->sc_chans = chans;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sbdsp_get_channels(addr)
|
|
void *addr;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
#if 0
|
|
/* recording stereo may frob the mixer output */
|
|
if (ISSBPROCLASS(sc)) {
|
|
if ((sbdsp_mix_read(sc, SBP_STEREO) & SBP_PLAYMODE_MASK) == SBP_PLAYMODE_STEREO)
|
|
sc->sc_chans = 2;
|
|
else
|
|
sc->sc_chans = 1;
|
|
} else
|
|
sc->sc_chans = 1;
|
|
#endif
|
|
|
|
return (sc->sc_chans);
|
|
}
|
|
|
|
int
|
|
sbdsp_set_ifilter(addr, which)
|
|
void *addr;
|
|
int which;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
int rval, mixval;
|
|
|
|
if (ISSBPROCLASS(sc)) {
|
|
mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
|
|
switch (which) {
|
|
case 0:
|
|
mixval |= SBP_FILTER_OFF;
|
|
break;
|
|
case SBP_TREBLE_EQ:
|
|
mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
|
|
break;
|
|
case SBP_BASS_EQ:
|
|
mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
sc->in_filter = mixval & SBP_IFILTER_MASK;
|
|
sbdsp_mix_write(sc, SBP_INFILTER, mixval);
|
|
return (0);
|
|
} else
|
|
return (EINVAL);
|
|
}
|
|
|
|
int
|
|
sbdsp_get_ifilter(addr)
|
|
void *addr;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
if (ISSBPROCLASS(sc)) {
|
|
sc->in_filter =
|
|
sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
|
|
switch (sc->in_filter) {
|
|
case SBP_FILTER_ON|SBP_IFILTER_HIGH:
|
|
return (SBP_TREBLE_EQ);
|
|
case SBP_FILTER_ON|SBP_IFILTER_LOW:
|
|
return (SBP_BASS_EQ);
|
|
case SBP_FILTER_OFF:
|
|
default:
|
|
return (0);
|
|
}
|
|
} else
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sbdsp_set_out_port(addr, port)
|
|
void *addr;
|
|
int port;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
sc->out_port = port; /* Just record it */
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sbdsp_get_out_port(addr)
|
|
void *addr;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
return (sc->out_port);
|
|
}
|
|
|
|
|
|
int
|
|
sbdsp_set_in_port(addr, port)
|
|
void *addr;
|
|
int port;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
int mixport, sbport;
|
|
|
|
if (ISSBPROCLASS(sc)) {
|
|
switch (port) {
|
|
case SB_MIC_PORT:
|
|
sbport = SBP_FROM_MIC;
|
|
mixport = SBP_MIC_VOL;
|
|
break;
|
|
case SB_LINE_IN_PORT:
|
|
sbport = SBP_FROM_LINE;
|
|
mixport = SBP_LINE_VOL;
|
|
break;
|
|
case SB_CD_PORT:
|
|
sbport = SBP_FROM_CD;
|
|
mixport = SBP_CD_VOL;
|
|
break;
|
|
case SB_DAC_PORT:
|
|
case SB_FM_PORT:
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
} else {
|
|
switch (port) {
|
|
case SB_MIC_PORT:
|
|
sbport = SBP_FROM_MIC;
|
|
mixport = SBP_MIC_VOL;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
sc->in_port = port; /* Just record it */
|
|
|
|
if (ISSBPROCLASS(sc)) {
|
|
/* record from that port */
|
|
sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
|
|
SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
|
|
/* fetch gain from that port */
|
|
sc->gain[port] = sbdsp_mix_read(sc, mixport);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sbdsp_get_in_port(addr)
|
|
void *addr;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
return (sc->in_port);
|
|
}
|
|
|
|
|
|
int
|
|
sbdsp_speaker_ctl(addr, newstate)
|
|
void *addr;
|
|
int newstate;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
if ((newstate == SPKR_ON) &&
|
|
(sc->spkr_state == SPKR_OFF)) {
|
|
sbdsp_spkron(sc);
|
|
sc->spkr_state = SPKR_ON;
|
|
}
|
|
if ((newstate == SPKR_OFF) &&
|
|
(sc->spkr_state == SPKR_ON)) {
|
|
sbdsp_spkroff(sc);
|
|
sc->spkr_state = SPKR_OFF;
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
int
|
|
sbdsp_round_blocksize(addr, blk)
|
|
void *addr;
|
|
int blk;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
sc->sc_last_hs_size = 0;
|
|
|
|
/* Higher speeds need bigger blocks to avoid popping and silence gaps. */
|
|
if ((sc->sc_otc > SB_8K || sc->sc_itc > SB_8K) &&
|
|
(blk > NBPG/2 || blk < NBPG/4))
|
|
blk = NBPG/2;
|
|
/* don't try to DMA too much at once, though. */
|
|
if (blk > NBPG)
|
|
blk = NBPG;
|
|
if (sc->sc_chans == 2)
|
|
return (blk & ~1); /* must be even to preserve stereo separation */
|
|
else
|
|
return (blk); /* Anything goes :-) */
|
|
}
|
|
|
|
int
|
|
sbdsp_commit_settings(addr)
|
|
void *addr;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
/* due to potentially unfortunate ordering in the above layers,
|
|
re-do a few sets which may be important--input gains
|
|
(adjust the proper channels), number of input channels (hit the
|
|
record rate and set mode) */
|
|
|
|
/*
|
|
* XXX
|
|
* Should wait for chip to be idle.
|
|
*/
|
|
sc->sc_dmadir = SB_DMA_NONE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
sbdsp_open(sc, dev, flags)
|
|
register struct sbdsp_softc *sc;
|
|
dev_t dev;
|
|
int flags;
|
|
{
|
|
DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
|
|
|
|
if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
|
|
return ENXIO;
|
|
|
|
sc->sc_open = 1;
|
|
sc->sc_mintr = 0;
|
|
if (ISSBPROCLASS(sc) &&
|
|
sbdsp_wdsp(sc->sc_iobase, SB_DSP_RECORD_MONO) < 0) {
|
|
DPRINTF(("sbdsp_open: can't set mono mode\n"));
|
|
/* we'll readjust when it's time for DMA. */
|
|
}
|
|
|
|
/*
|
|
* Leave most things as they were; users must change things if
|
|
* the previous process didn't leave it they way they wanted.
|
|
* Looked at another way, it's easy to set up a configuration
|
|
* in one program and leave it for another to inherit.
|
|
*/
|
|
DPRINTF(("sbdsp_open: opened\n"));
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
sbdsp_close(addr)
|
|
void *addr;
|
|
{
|
|
struct sbdsp_softc *sc = addr;
|
|
|
|
DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
|
|
|
|
sc->sc_open = 0;
|
|
sbdsp_spkroff(sc);
|
|
sc->spkr_state = SPKR_OFF;
|
|
sc->sc_mintr = 0;
|
|
sbdsp_haltdma(sc);
|
|
|
|
DPRINTF(("sbdsp_close: closed\n"));
|
|
}
|
|
|
|
/*
|
|
* Lower-level routines
|
|
*/
|
|
|
|
/*
|
|
* Reset the card.
|
|
* Return non-zero if the card isn't detected.
|
|
*/
|
|
int
|
|
sbdsp_reset(sc)
|
|
register struct sbdsp_softc *sc;
|
|
{
|
|
register int iobase = sc->sc_iobase;
|
|
|
|
sc->sc_intr = 0;
|
|
if (sc->sc_dmadir != SB_DMA_NONE) {
|
|
isa_dmaabort(sc->sc_drq);
|
|
sc->sc_dmadir = SB_DMA_NONE;
|
|
}
|
|
sc->sc_last_hs_size = 0;
|
|
|
|
/*
|
|
* See SBK, section 11.3.
|
|
* We pulse a reset signal into the card.
|
|
* Gee, what a brilliant hardware design.
|
|
*/
|
|
outb(iobase + SBP_DSP_RESET, 1);
|
|
delay(10);
|
|
outb(iobase + SBP_DSP_RESET, 0);
|
|
delay(30);
|
|
if (sbdsp_rdsp(iobase) != SB_MAGIC)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write a byte to the dsp.
|
|
* XXX We are at the mercy of the card as we use a
|
|
* polling loop and wait until it can take the byte.
|
|
*/
|
|
int
|
|
sbdsp_wdsp(int iobase, int v)
|
|
{
|
|
register int i;
|
|
|
|
for (i = SBDSP_NPOLL; --i >= 0; ) {
|
|
register u_char x;
|
|
x = inb(iobase + SBP_DSP_WSTAT);
|
|
delay(10);
|
|
if ((x & SB_DSP_BUSY) != 0)
|
|
continue;
|
|
outb(iobase + SBP_DSP_WRITE, v);
|
|
delay(10);
|
|
return 0;
|
|
}
|
|
++sberr.wdsp;
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Read a byte from the DSP, using polling.
|
|
*/
|
|
int
|
|
sbdsp_rdsp(int iobase)
|
|
{
|
|
register int i;
|
|
|
|
for (i = SBDSP_NPOLL; --i >= 0; ) {
|
|
register u_char x;
|
|
x = inb(iobase + SBP_DSP_RSTAT);
|
|
delay(10);
|
|
if ((x & SB_DSP_READY) == 0)
|
|
continue;
|
|
x = inb(iobase + SBP_DSP_READ);
|
|
delay(10);
|
|
return x;
|
|
}
|
|
++sberr.rdsp;
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Doing certain things (like toggling the speaker) make
|
|
* the SB hardware go away for a while, so pause a little.
|
|
*/
|
|
void
|
|
sbdsp_to(arg)
|
|
void *arg;
|
|
{
|
|
wakeup(arg);
|
|
}
|
|
|
|
void
|
|
sbdsp_pause(sc)
|
|
struct sbdsp_softc *sc;
|
|
{
|
|
extern int hz;
|
|
|
|
timeout(sbdsp_to, sbdsp_to, hz/8);
|
|
(void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
|
|
}
|
|
|
|
/*
|
|
* Turn on the speaker. The SBK documention says this operation
|
|
* can take up to 1/10 of a second. Higher level layers should
|
|
* probably let the task sleep for this amount of time after
|
|
* calling here. Otherwise, things might not work (because
|
|
* sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
|
|
*
|
|
* These engineers had their heads up their ass when
|
|
* they designed this card.
|
|
*/
|
|
void
|
|
sbdsp_spkron(sc)
|
|
struct sbdsp_softc *sc;
|
|
{
|
|
(void)sbdsp_wdsp(sc->sc_iobase, SB_DSP_SPKR_ON);
|
|
sbdsp_pause(sc);
|
|
}
|
|
|
|
/*
|
|
* Turn off the speaker; see comment above.
|
|
*/
|
|
void
|
|
sbdsp_spkroff(sc)
|
|
struct sbdsp_softc *sc;
|
|
{
|
|
(void)sbdsp_wdsp(sc->sc_iobase, SB_DSP_SPKR_OFF);
|
|
sbdsp_pause(sc);
|
|
}
|
|
|
|
/*
|
|
* Read the version number out of the card. Return major code
|
|
* in high byte, and minor code in low byte.
|
|
*/
|
|
short
|
|
sbversion(sc)
|
|
struct sbdsp_softc *sc;
|
|
{
|
|
register int iobase = sc->sc_iobase;
|
|
short v;
|
|
|
|
if (sbdsp_wdsp(iobase, SB_DSP_VERSION) < 0)
|
|
return 0;
|
|
v = sbdsp_rdsp(iobase) << 8;
|
|
v |= sbdsp_rdsp(iobase);
|
|
return ((v >= 0) ? v : 0);
|
|
}
|
|
|
|
/*
|
|
* Halt a DMA in progress. A low-speed transfer can be
|
|
* resumed with sbdsp_contdma().
|
|
*/
|
|
int
|
|
sbdsp_haltdma(addr)
|
|
void *addr;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
|
|
|
|
sbdsp_reset(sc);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
sbdsp_contdma(addr)
|
|
void *addr;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
|
|
|
|
/* XXX how do we reinitialize the DMA controller state? do we care? */
|
|
(void)sbdsp_wdsp(sc->sc_iobase, SB_DSP_CONT);
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Convert a linear sampling rate into the DAC time constant.
|
|
* Set *mode to indicate the high/low-speed DMA operation.
|
|
* Because of limitations of the card, not all rates are possible.
|
|
* We return the time constant of the closest possible rate.
|
|
* The sampling rate limits are different for the DAC and ADC,
|
|
* so isdac indicates output, and !isdac indicates input.
|
|
*/
|
|
int
|
|
sbdsp_srtotc(sc, sr, isdac, tcp, modep)
|
|
register struct sbdsp_softc *sc;
|
|
int sr;
|
|
int isdac;
|
|
int *tcp, *modep;
|
|
{
|
|
int tc, mode;
|
|
|
|
if (sr == 0) {
|
|
tc = SB_LS_MIN;
|
|
mode = SB_ADAC_LS;
|
|
goto out;
|
|
}
|
|
|
|
tc = 256 - (1000000 / sr);
|
|
|
|
if (tc < SB_LS_MIN) {
|
|
tc = SB_LS_MIN;
|
|
mode = SB_ADAC_LS;
|
|
goto out;
|
|
} else if (isdac) {
|
|
if (tc <= SB_DAC_LS_MAX)
|
|
mode = SB_ADAC_LS;
|
|
else {
|
|
mode = SB_ADAC_HS;
|
|
if (tc > SB_DAC_HS_MAX)
|
|
tc = SB_DAC_HS_MAX;
|
|
}
|
|
} else {
|
|
int adc_ls_max, adc_hs_max;
|
|
|
|
/* XXX use better rounding--compare distance to nearest tc on both
|
|
sides of requested speed */
|
|
if (ISSBPROCLASS(sc)) {
|
|
adc_ls_max = SBPRO_ADC_LS_MAX;
|
|
adc_hs_max = SBPRO_ADC_HS_MAX;
|
|
} else {
|
|
adc_ls_max = SBCLA_ADC_LS_MAX;
|
|
adc_hs_max = SBCLA_ADC_HS_MAX;
|
|
}
|
|
|
|
if (tc <= adc_ls_max)
|
|
mode = SB_ADAC_LS;
|
|
else {
|
|
mode = SB_ADAC_HS;
|
|
if (tc > adc_hs_max)
|
|
tc = adc_hs_max;
|
|
}
|
|
}
|
|
|
|
out:
|
|
*tcp = tc;
|
|
*modep = mode;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Convert a DAC time constant to a sampling rate.
|
|
* See SBK, section 12.
|
|
*/
|
|
int
|
|
sbdsp_tctosr(sc, tc)
|
|
register struct sbdsp_softc *sc;
|
|
int tc;
|
|
{
|
|
int adc;
|
|
|
|
if (ISSBPROCLASS(sc))
|
|
adc = SBPRO_ADC_HS_MAX;
|
|
else
|
|
adc = SBCLA_ADC_HS_MAX;
|
|
|
|
if (tc > adc)
|
|
tc = adc;
|
|
|
|
return (1000000 / (256 - tc));
|
|
}
|
|
|
|
int
|
|
sbdsp_set_tc(sc, tc)
|
|
register struct sbdsp_softc *sc;
|
|
int tc;
|
|
{
|
|
register int iobase;
|
|
|
|
/*
|
|
* A SBPro in stereo mode uses time constants at double the
|
|
* actual rate.
|
|
*/
|
|
if (ISSBPRO(sc) && sc->sc_chans == 2)
|
|
tc = 256 - ((256 - tc) / 2);
|
|
|
|
DPRINTF(("sbdsp_set_tc: sc=%p tc=%d\n", sc, tc));
|
|
|
|
iobase = sc->sc_iobase;
|
|
if (sbdsp_wdsp(iobase, SB_DSP_TIMECONST) < 0 ||
|
|
sbdsp_wdsp(iobase, tc) < 0)
|
|
return (EIO);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sbdsp_dma_input(addr, p, cc, intr, arg)
|
|
void *addr;
|
|
void *p;
|
|
int cc;
|
|
void (*intr)();
|
|
void *arg;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
register int iobase;
|
|
|
|
#ifdef AUDIO_DEBUG
|
|
if (sbdspdebug > 1)
|
|
Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
|
|
#endif
|
|
if (sc->sc_chans == 2 && (cc & 1)) {
|
|
DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
|
|
return EIO;
|
|
}
|
|
|
|
iobase = sc->sc_iobase;
|
|
if (sc->sc_dmadir != SB_DMA_IN) {
|
|
if (ISSBPROCLASS(sc)) {
|
|
if (sc->sc_chans == 2) {
|
|
if (sbdsp_wdsp(iobase, SB_DSP_RECORD_STEREO) < 0)
|
|
goto badmode;
|
|
sbdsp_mix_write(sc, SBP_INFILTER,
|
|
(sbdsp_mix_read(sc, SBP_INFILTER) &
|
|
~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
|
|
} else {
|
|
if (sbdsp_wdsp(iobase, SB_DSP_RECORD_MONO) < 0)
|
|
goto badmode;
|
|
sbdsp_mix_write(sc, SBP_INFILTER,
|
|
(sbdsp_mix_read(sc, SBP_INFILTER) &
|
|
~SBP_IFILTER_MASK) | sc->in_filter);
|
|
}
|
|
}
|
|
|
|
sbdsp_set_tc(sc, sc->sc_itc);
|
|
sc->sc_dmadir = SB_DMA_IN;
|
|
}
|
|
|
|
isa_dmastart(B_READ, p, cc, sc->sc_drq);
|
|
sc->sc_intr = intr;
|
|
sc->sc_arg = arg;
|
|
sc->dmaflags = B_READ;
|
|
sc->dmaaddr = p;
|
|
sc->dmacnt = --cc; /* DMA controller is strange...? */
|
|
|
|
if (sc->sc_imode == SB_ADAC_LS) {
|
|
if (sbdsp_wdsp(iobase, SB_DSP_RDMA) < 0 ||
|
|
sbdsp_wdsp(iobase, cc) < 0 ||
|
|
sbdsp_wdsp(iobase, cc >> 8) < 0) {
|
|
DPRINTF(("sbdsp_dma_input: LS DMA start failed\n"));
|
|
goto giveup;
|
|
}
|
|
}
|
|
else {
|
|
if (cc != sc->sc_last_hs_size) {
|
|
if (sbdsp_wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
|
|
sbdsp_wdsp(iobase, cc) < 0 ||
|
|
sbdsp_wdsp(iobase, cc >> 8) < 0) {
|
|
DPRINTF(("sbdsp_dma_input: HS DMA start failed\n"));
|
|
goto giveup;
|
|
}
|
|
sc->sc_last_hs_size = cc;
|
|
}
|
|
if (sbdsp_wdsp(iobase, SB_DSP_HS_INPUT) < 0) {
|
|
DPRINTF(("sbdsp_dma_input: HS DMA restart failed\n"));
|
|
goto giveup;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
giveup:
|
|
sbdsp_reset(sc);
|
|
return EIO;
|
|
|
|
badmode:
|
|
DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
|
|
sc->sc_chans == 2 ? "stereo" : "mono"));
|
|
return EIO;
|
|
}
|
|
|
|
int
|
|
sbdsp_dma_output(addr, p, cc, intr, arg)
|
|
void *addr;
|
|
void *p;
|
|
int cc;
|
|
void (*intr)();
|
|
void *arg;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
register int iobase;
|
|
|
|
#ifdef AUDIO_DEBUG
|
|
if (sbdspdebug > 1)
|
|
Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
|
|
#endif
|
|
if (sc->sc_chans == 2 && (cc & 1)) {
|
|
DPRINTF(("stereo playback odd bytes (%d)\n", cc));
|
|
return EIO;
|
|
}
|
|
|
|
iobase = sc->sc_iobase;
|
|
if (sc->sc_dmadir != SB_DMA_OUT) {
|
|
if (ISSBPROCLASS(sc)) {
|
|
/* make sure we re-set stereo mixer bit when we start
|
|
output. */
|
|
sbdsp_mix_write(sc, SBP_STEREO,
|
|
(sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
|
|
(sc->sc_chans == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
|
|
}
|
|
|
|
sbdsp_set_tc(sc, sc->sc_otc);
|
|
sc->sc_dmadir = SB_DMA_OUT;
|
|
}
|
|
|
|
isa_dmastart(B_WRITE, p, cc, sc->sc_drq);
|
|
sc->sc_intr = intr;
|
|
sc->sc_arg = arg;
|
|
sc->dmaflags = B_WRITE;
|
|
sc->dmaaddr = p;
|
|
sc->dmacnt = --cc; /* a vagary of how DMA works, apparently. */
|
|
|
|
if (sc->sc_omode == SB_ADAC_LS) {
|
|
if (sbdsp_wdsp(iobase, SB_DSP_WDMA) < 0 ||
|
|
sbdsp_wdsp(iobase, cc) < 0 ||
|
|
sbdsp_wdsp(iobase, cc >> 8) < 0) {
|
|
DPRINTF(("sbdsp_dma_output: LS DMA start failed\n"));
|
|
goto giveup;
|
|
}
|
|
}
|
|
else {
|
|
if (cc != sc->sc_last_hs_size) {
|
|
if (sbdsp_wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
|
|
sbdsp_wdsp(iobase, cc) < 0 ||
|
|
sbdsp_wdsp(iobase, cc >> 8) < 0) {
|
|
DPRINTF(("sbdsp_dma_output: HS DMA start failed\n"));
|
|
goto giveup;
|
|
}
|
|
sc->sc_last_hs_size = cc;
|
|
}
|
|
if (sbdsp_wdsp(iobase, SB_DSP_HS_OUTPUT) < 0) {
|
|
DPRINTF(("sbdsp_dma_output: HS DMA restart failed\n"));
|
|
goto giveup;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
giveup:
|
|
sbdsp_reset(sc);
|
|
return EIO;
|
|
}
|
|
|
|
/*
|
|
* Only the DSP unit on the sound blaster generates interrupts.
|
|
* There are three cases of interrupt: reception of a midi byte
|
|
* (when mode is enabled), completion of dma transmission, or
|
|
* completion of a dma reception. The three modes are mutually
|
|
* exclusive so we know a priori which event has occurred.
|
|
*/
|
|
int
|
|
sbdsp_intr(arg)
|
|
void *arg;
|
|
{
|
|
register struct sbdsp_softc *sc = arg;
|
|
u_char x;
|
|
|
|
#ifdef AUDIO_DEBUG
|
|
if (sbdspdebug > 1)
|
|
Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
|
|
#endif
|
|
sc->sc_interrupts++;
|
|
/* clear interrupt */
|
|
x = inb(sc->sc_iobase + SBP_DSP_RSTAT);
|
|
delay(10);
|
|
#if 0
|
|
if ((x & SB_DSP_READY) == 0) {
|
|
printf("sbdsp_intr: still busy\n");
|
|
return 0;
|
|
}
|
|
#endif
|
|
#if 0
|
|
if (sc->sc_mintr != 0) {
|
|
x = sbdsp_rdsp(sc->sc_iobase);
|
|
(*sc->sc_mintr)(sc->sc_arg, x);
|
|
} else
|
|
#endif
|
|
if (sc->sc_intr != 0) {
|
|
/*
|
|
* The SBPro used to develop and test this driver often
|
|
* generated dma underruns--it interrupted to signal
|
|
* completion of the DMA input recording block, but the
|
|
* ISA DMA controller didn't think the channel was
|
|
* finished. Maybe this is just a bus speed issue, I dunno,
|
|
* but it seems strange and leads to channel-flipping with
|
|
* stereo recording. Sigh.
|
|
*/
|
|
isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->sc_drq);
|
|
(*sc->sc_intr)(sc->sc_arg);
|
|
}
|
|
else
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Enter midi uart mode and arrange for read interrupts
|
|
* to vector to `intr'. This puts the card in a mode
|
|
* which allows only midi I/O; the card must be reset
|
|
* to leave this mode. Unfortunately, the card does not
|
|
* use transmit interrupts, so bytes must be output
|
|
* using polling. To keep the polling overhead to a
|
|
* minimum, output should be driven off a timer.
|
|
* This is a little tricky since only 320us separate
|
|
* consecutive midi bytes.
|
|
*/
|
|
void
|
|
sbdsp_set_midi_mode(sc, intr, arg)
|
|
struct sbdsp_softc *sc;
|
|
void (*intr)();
|
|
void *arg;
|
|
{
|
|
|
|
sbdsp_wdsp(sc->sc_iobase, SB_MIDI_UART_INTR);
|
|
sc->sc_mintr = intr;
|
|
sc->sc_intr = 0;
|
|
sc->sc_arg = arg;
|
|
}
|
|
|
|
/*
|
|
* Write a byte to the midi port, when in midi uart mode.
|
|
*/
|
|
void
|
|
sbdsp_midi_output(sc, v)
|
|
struct sbdsp_softc *sc;
|
|
int v;
|
|
{
|
|
|
|
if (sbdsp_wdsp(sc->sc_iobase, v) < 0)
|
|
++sberr.wmidi;
|
|
}
|
|
#endif
|
|
|
|
u_int
|
|
sbdsp_get_silence(enc)
|
|
int enc;
|
|
{
|
|
#define ULAW_SILENCE 0x7f
|
|
#define LINEAR_SILENCE 0
|
|
u_int auzero;
|
|
|
|
switch (enc) {
|
|
case AUDIO_ENCODING_ULAW:
|
|
auzero = ULAW_SILENCE;
|
|
break;
|
|
case AUDIO_ENCODING_PCM16:
|
|
default:
|
|
auzero = LINEAR_SILENCE;
|
|
break;
|
|
}
|
|
|
|
return (auzero);
|
|
}
|
|
|
|
int
|
|
sbdsp_setfd(addr, flag)
|
|
void *addr;
|
|
int flag;
|
|
{
|
|
/* Can't do full-duplex */
|
|
return(ENOTTY);
|
|
}
|
|
|
|
int
|
|
sbdsp_mixer_set_port(addr, cp)
|
|
void *addr;
|
|
mixer_ctrl_t *cp;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
int src, gain;
|
|
|
|
DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
|
|
cp->un.value.num_channels));
|
|
|
|
/*
|
|
* Everything is a value except for SBPro BASS/TREBLE and
|
|
* RECORD_SOURCE
|
|
*/
|
|
switch (cp->dev) {
|
|
case SB_SPEAKER:
|
|
cp->dev = SB_MASTER_VOL;
|
|
case SB_MIC_PORT:
|
|
case SB_LINE_IN_PORT:
|
|
case SB_DAC_PORT:
|
|
case SB_FM_PORT:
|
|
case SB_CD_PORT:
|
|
case SB_MASTER_VOL:
|
|
if (cp->type != AUDIO_MIXER_VALUE)
|
|
return EINVAL;
|
|
|
|
/*
|
|
* All the mixer ports are stereo except for the microphone.
|
|
* If we get a single-channel gain value passed in, then we
|
|
* duplicate it to both left and right channels.
|
|
*/
|
|
|
|
switch (cp->dev) {
|
|
case SB_MIC_PORT:
|
|
if (cp->un.value.num_channels != 1)
|
|
return EINVAL;
|
|
|
|
/* handle funny microphone gain */
|
|
gain = SBP_AGAIN_TO_MICGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
|
|
break;
|
|
case SB_LINE_IN_PORT:
|
|
case SB_DAC_PORT:
|
|
case SB_FM_PORT:
|
|
case SB_CD_PORT:
|
|
if (!ISSBPROCLASS(sc))
|
|
return EINVAL;
|
|
case SB_MASTER_VOL:
|
|
switch (cp->un.value.num_channels) {
|
|
case 1:
|
|
gain = SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
|
|
break;
|
|
case 2:
|
|
if (!ISSBPROCLASS(sc))
|
|
return EINVAL;
|
|
gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]),
|
|
SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]));
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
break;
|
|
}
|
|
|
|
switch (cp->dev) {
|
|
case SB_MIC_PORT:
|
|
src = SBP_MIC_VOL;
|
|
break;
|
|
case SB_MASTER_VOL:
|
|
src = SBP_MASTER_VOL;
|
|
break;
|
|
case SB_LINE_IN_PORT:
|
|
src = SBP_LINE_VOL;
|
|
break;
|
|
case SB_DAC_PORT:
|
|
src = SBP_DAC_VOL;
|
|
break;
|
|
case SB_FM_PORT:
|
|
src = SBP_FM_VOL;
|
|
break;
|
|
case SB_CD_PORT:
|
|
src = SBP_CD_VOL;
|
|
break;
|
|
}
|
|
|
|
sbdsp_mix_write(sc, src, gain);
|
|
sc->gain[cp->dev] = gain;
|
|
break;
|
|
|
|
case SB_TREBLE:
|
|
case SB_BASS:
|
|
case SB_RECORD_SOURCE:
|
|
if (cp->type != AUDIO_MIXER_ENUM)
|
|
return EINVAL;
|
|
if (!ISSBPROCLASS(sc))
|
|
return EINVAL;
|
|
|
|
switch (cp->dev) {
|
|
case SB_TREBLE:
|
|
return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_TREBLE_EQ : 0);
|
|
case SB_BASS:
|
|
return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_BASS_EQ : 0);
|
|
case SB_RECORD_SOURCE:
|
|
return sbdsp_set_in_port(addr, cp->un.ord);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sbdsp_mixer_get_port(addr, cp)
|
|
void *addr;
|
|
mixer_ctrl_t *cp;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
int gain;
|
|
|
|
DPRINTF(("sbdsp_mixer_get_port: port=%d", cp->dev));
|
|
|
|
switch (cp->dev) {
|
|
case SB_SPEAKER:
|
|
cp->dev = SB_MASTER_VOL;
|
|
case SB_MIC_PORT:
|
|
case SB_LINE_IN_PORT:
|
|
case SB_DAC_PORT:
|
|
case SB_FM_PORT:
|
|
case SB_CD_PORT:
|
|
case SB_MASTER_VOL:
|
|
gain = sc->gain[cp->dev];
|
|
|
|
switch (cp->dev) {
|
|
case SB_MIC_PORT:
|
|
if (cp->un.value.num_channels != 1)
|
|
return EINVAL;
|
|
|
|
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_MICGAIN_TO_AGAIN(gain);
|
|
break;
|
|
case SB_LINE_IN_PORT:
|
|
case SB_DAC_PORT:
|
|
case SB_FM_PORT:
|
|
case SB_CD_PORT:
|
|
if (!ISSBPROCLASS(sc))
|
|
return EINVAL;
|
|
case SB_MASTER_VOL:
|
|
switch (cp->un.value.num_channels) {
|
|
case 1:
|
|
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_SBGAIN_TO_AGAIN(gain);
|
|
break;
|
|
case 2:
|
|
if (!ISSBPROCLASS(sc))
|
|
return EINVAL;
|
|
cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = SBP_LEFTGAIN(gain);
|
|
cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = SBP_RIGHTGAIN(gain);
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SB_TREBLE:
|
|
case SB_BASS:
|
|
case SB_RECORD_SOURCE:
|
|
if (!ISSBPROCLASS(sc))
|
|
return EINVAL;
|
|
|
|
switch (cp->dev) {
|
|
case SB_TREBLE:
|
|
cp->un.ord = sbdsp_get_ifilter(addr) == SBP_TREBLE_EQ;
|
|
return 0;
|
|
case SB_BASS:
|
|
cp->un.ord = sbdsp_get_ifilter(addr) == SBP_BASS_EQ;
|
|
return 0;
|
|
case SB_RECORD_SOURCE:
|
|
cp->un.ord = sbdsp_get_in_port(addr);
|
|
return 0;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sbdsp_mixer_query_devinfo(addr, dip)
|
|
void *addr;
|
|
register mixer_devinfo_t *dip;
|
|
{
|
|
register struct sbdsp_softc *sc = addr;
|
|
|
|
DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
|
|
|
|
switch (dip->index) {
|
|
case SB_MIC_PORT:
|
|
dip->type = AUDIO_MIXER_VALUE;
|
|
dip->mixer_class = SB_INPUT_CLASS;
|
|
dip->prev = AUDIO_MIXER_LAST;
|
|
dip->next = AUDIO_MIXER_LAST;
|
|
strcpy(dip->label.name, AudioNmicrophone);
|
|
dip->un.v.num_channels = 1;
|
|
strcpy(dip->un.v.units.name, AudioNvolume);
|
|
return 0;
|
|
|
|
case SB_SPEAKER:
|
|
dip->type = AUDIO_MIXER_VALUE;
|
|
dip->mixer_class = SB_OUTPUT_CLASS;
|
|
dip->prev = AUDIO_MIXER_LAST;
|
|
dip->next = AUDIO_MIXER_LAST;
|
|
strcpy(dip->label.name, AudioNspeaker);
|
|
dip->un.v.num_channels = 1;
|
|
strcpy(dip->un.v.units.name, AudioNvolume);
|
|
return 0;
|
|
|
|
case SB_INPUT_CLASS:
|
|
dip->type = AUDIO_MIXER_CLASS;
|
|
dip->mixer_class = SB_INPUT_CLASS;
|
|
dip->next = dip->prev = AUDIO_MIXER_LAST;
|
|
strcpy(dip->label.name, AudioCInputs);
|
|
return 0;
|
|
|
|
case SB_OUTPUT_CLASS:
|
|
dip->type = AUDIO_MIXER_CLASS;
|
|
dip->mixer_class = SB_OUTPUT_CLASS;
|
|
dip->next = dip->prev = AUDIO_MIXER_LAST;
|
|
strcpy(dip->label.name, AudioCOutputs);
|
|
return 0;
|
|
}
|
|
|
|
if (ISSBPROCLASS(sc)) {
|
|
switch (dip->index) {
|
|
case SB_LINE_IN_PORT:
|
|
dip->type = AUDIO_MIXER_VALUE;
|
|
dip->mixer_class = SB_INPUT_CLASS;
|
|
dip->prev = AUDIO_MIXER_LAST;
|
|
dip->next = AUDIO_MIXER_LAST;
|
|
strcpy(dip->label.name, AudioNline);
|
|
dip->un.v.num_channels = 2;
|
|
strcpy(dip->un.v.units.name, AudioNvolume);
|
|
return 0;
|
|
|
|
case SB_DAC_PORT:
|
|
dip->type = AUDIO_MIXER_VALUE;
|
|
dip->mixer_class = SB_INPUT_CLASS;
|
|
dip->prev = AUDIO_MIXER_LAST;
|
|
dip->next = AUDIO_MIXER_LAST;
|
|
strcpy(dip->label.name, AudioNdac);
|
|
dip->un.v.num_channels = 2;
|
|
strcpy(dip->un.v.units.name, AudioNvolume);
|
|
return 0;
|
|
|
|
case SB_CD_PORT:
|
|
dip->type = AUDIO_MIXER_VALUE;
|
|
dip->mixer_class = SB_INPUT_CLASS;
|
|
dip->prev = AUDIO_MIXER_LAST;
|
|
dip->next = AUDIO_MIXER_LAST;
|
|
strcpy(dip->label.name, AudioNcd);
|
|
dip->un.v.num_channels = 2;
|
|
strcpy(dip->un.v.units.name, AudioNvolume);
|
|
return 0;
|
|
|
|
case SB_FM_PORT:
|
|
dip->type = AUDIO_MIXER_VALUE;
|
|
dip->mixer_class = SB_INPUT_CLASS;
|
|
dip->prev = AUDIO_MIXER_LAST;
|
|
dip->next = AUDIO_MIXER_LAST;
|
|
strcpy(dip->label.name, AudioNfmsynth);
|
|
dip->un.v.num_channels = 2;
|
|
strcpy(dip->un.v.units.name, AudioNvolume);
|
|
return 0;
|
|
|
|
case SB_MASTER_VOL:
|
|
dip->type = AUDIO_MIXER_VALUE;
|
|
dip->mixer_class = SB_OUTPUT_CLASS;
|
|
dip->prev = AUDIO_MIXER_LAST;
|
|
dip->next = AUDIO_MIXER_LAST;
|
|
strcpy(dip->label.name, AudioNvolume);
|
|
dip->un.v.num_channels = 2;
|
|
strcpy(dip->un.v.units.name, AudioNvolume);
|
|
return 0;
|
|
|
|
case SB_RECORD_SOURCE:
|
|
dip->mixer_class = SB_RECORD_CLASS;
|
|
dip->type = AUDIO_MIXER_ENUM;
|
|
dip->prev = AUDIO_MIXER_LAST;
|
|
dip->next = AUDIO_MIXER_LAST;
|
|
strcpy(dip->label.name, AudioNsource);
|
|
dip->un.e.num_mem = 3;
|
|
strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
|
|
dip->un.e.member[0].ord = SB_MIC_PORT;
|
|
strcpy(dip->un.e.member[1].label.name, AudioNcd);
|
|
dip->un.e.member[1].ord = SB_CD_PORT;
|
|
strcpy(dip->un.e.member[2].label.name, AudioNline);
|
|
dip->un.e.member[2].ord = SB_LINE_IN_PORT;
|
|
return 0;
|
|
|
|
case SB_BASS:
|
|
dip->type = AUDIO_MIXER_ENUM;
|
|
dip->mixer_class = SB_INPUT_CLASS;
|
|
dip->prev = AUDIO_MIXER_LAST;
|
|
dip->next = AUDIO_MIXER_LAST;
|
|
strcpy(dip->label.name, AudioNbass);
|
|
dip->un.e.num_mem = 2;
|
|
strcpy(dip->un.e.member[0].label.name, AudioNoff);
|
|
dip->un.e.member[0].ord = 0;
|
|
strcpy(dip->un.e.member[1].label.name, AudioNon);
|
|
dip->un.e.member[1].ord = 1;
|
|
return 0;
|
|
|
|
case SB_TREBLE:
|
|
dip->type = AUDIO_MIXER_ENUM;
|
|
dip->mixer_class = SB_INPUT_CLASS;
|
|
dip->prev = AUDIO_MIXER_LAST;
|
|
dip->next = AUDIO_MIXER_LAST;
|
|
strcpy(dip->label.name, AudioNtreble);
|
|
dip->un.e.num_mem = 2;
|
|
strcpy(dip->un.e.member[0].label.name, AudioNoff);
|
|
dip->un.e.member[0].ord = 0;
|
|
strcpy(dip->un.e.member[1].label.name, AudioNon);
|
|
dip->un.e.member[1].ord = 1;
|
|
return 0;
|
|
|
|
case SB_RECORD_CLASS: /* record source class */
|
|
dip->type = AUDIO_MIXER_CLASS;
|
|
dip->mixer_class = SB_RECORD_CLASS;
|
|
dip->next = dip->prev = AUDIO_MIXER_LAST;
|
|
strcpy(dip->label.name, AudioCRecord);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return ENXIO;
|
|
}
|