NetBSD/sys/dev/pci/auich.c

1450 lines
38 KiB
C

/* $NetBSD: auich.c,v 1.22 2002/09/30 20:37:08 thorpej Exp $ */
/*-
* Copyright (c) 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2000 Michael Shalayeff
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* from OpenBSD: ich.c,v 1.3 2000/08/11 06:17:18 mickey Exp
*/
/*
* Copyright (c) 2000 Katsurajima Naoto <raven@katsurajima.seya.yokohama.jp>
* Copyright (c) 2001 Cameron Grant <cg@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHERIN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THEPOSSIBILITY OF
* SUCH DAMAGE.
*
* auich_calibrate() was from FreeBSD: ich.c,v 1.22 2002/06/27 22:36:01 scottl Exp
*/
/* #define ICH_DEBUG */
/*
* AC'97 audio found on Intel 810/820/440MX chipsets.
* http://developer.intel.com/design/chipsets/datashts/290655.htm
* http://developer.intel.com/design/chipsets/manuals/298028.htm
* ICH3:http://www.intel.com/design/chipsets/datashts/290716.htm
* ICH4:http://www.intel.com/design/chipsets/datashts/290744.htm
*
* TODO:
* - Add support for the microphone input.
* - 4ch/6ch support.
* - auich_calibrate() is called in auich_open(). It causes about 0.1sec
* delay in the first open(). auich_calibrate() should be called in
* auich_attach(). However microtime() doesn't work in the attach
* stage.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: auich.c,v 1.22 2002/09/30 20:37:08 thorpej Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/fcntl.h>
#include <sys/proc.h>
#include <uvm/uvm_extern.h> /* for PAGE_SIZE */
#include <dev/pci/pcidevs.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/auichreg.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/mulaw.h>
#include <dev/auconv.h>
#include <machine/bus.h>
#include <dev/ic/ac97reg.h>
#include <dev/ic/ac97var.h>
struct auich_dma {
bus_dmamap_t map;
caddr_t addr;
bus_dma_segment_t segs[1];
int nsegs;
size_t size;
struct auich_dma *next;
};
#define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
#define KERNADDR(p) ((void *)((p)->addr))
struct auich_cdata {
struct auich_dmalist ic_dmalist_pcmo[ICH_DMALIST_MAX];
struct auich_dmalist ic_dmalist_pcmi[ICH_DMALIST_MAX];
struct auich_dmalist ic_dmalist_mici[ICH_DMALIST_MAX];
};
#define ICH_CDOFF(x) offsetof(struct auich_cdata, x)
#define ICH_PCMO_OFF(x) ICH_CDOFF(ic_dmalist_pcmo[(x)])
#define ICH_PCMI_OFF(x) ICH_CDOFF(ic_dmalist_pcmi[(x)])
#define ICH_MICI_OFF(x) ICH_CDOFF(ic_dmalist_mici[(x)])
struct auich_softc {
struct device sc_dev;
void *sc_ih;
audio_device_t sc_audev;
bus_space_tag_t iot;
bus_space_handle_t mix_ioh;
bus_space_handle_t aud_ioh;
bus_dma_tag_t dmat;
struct ac97_codec_if *codec_if;
struct ac97_host_if host_if;
/* DMA scatter-gather lists. */
bus_dmamap_t sc_cddmamap;
#define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
struct auich_cdata *sc_cdata;
#define dmalist_pcmo sc_cdata->ic_dmalist_pcmo
#define dmalist_pcmi sc_cdata->ic_dmalist_pcmi
#define dmalist_mici sc_cdata->ic_dmalist_mici
int ptr_pcmo,
ptr_pcmi,
ptr_mici;
/* i/o buffer pointers */
u_int32_t pcmo_start, pcmo_p, pcmo_end;
int pcmo_blksize, pcmo_fifoe;
u_int32_t pcmi_start, pcmi_p, pcmi_end;
int pcmi_blksize, pcmi_fifoe;
u_int32_t mici_start, mici_p, mici_end;
int mici_blksize, mici_fifoe;
struct auich_dma *sc_dmas;
int sc_fixed_rate;
int sc_calibrated; /* sc_ac97rate has correct value */
int sc_ac97rate;
int sc_ignore_codecready;
/* SiS 7012 hack */
int sc_sample_size;
int sc_sts_reg;
void (*sc_pintr)(void *);
void *sc_parg;
void (*sc_rintr)(void *);
void *sc_rarg;
/* Power Management */
void *sc_powerhook;
int sc_suspend;
u_int16_t ext_status;
};
#define FIXED_RATE 48000
/* Debug */
#ifdef AUDIO_DEBUG
#define DPRINTF(l,x) do { if (auich_debug & (l)) printf x; } while(0)
int auich_debug = 0xfffe;
#define ICH_DEBUG_CODECIO 0x0001
#define ICH_DEBUG_DMA 0x0002
#define ICH_DEBUG_PARAM 0x0004
#else
#define DPRINTF(x,y) /* nothing */
#endif
int auich_match(struct device *, struct cfdata *, void *);
void auich_attach(struct device *, struct device *, void *);
int auich_intr(void *);
CFATTACH_DECL(auich, sizeof(struct auich_softc),
auich_match, auich_attach, NULL, NULL)
int auich_open(void *, int);
void auich_close(void *);
int auich_query_encoding(void *, struct audio_encoding *);
int auich_set_params(void *, int, int, struct audio_params *,
struct audio_params *);
int auich_round_blocksize(void *, int);
int auich_halt_output(void *);
int auich_halt_input(void *);
int auich_getdev(void *, struct audio_device *);
int auich_set_port(void *, mixer_ctrl_t *);
int auich_get_port(void *, mixer_ctrl_t *);
int auich_query_devinfo(void *, mixer_devinfo_t *);
void *auich_allocm(void *, int, size_t, int, int);
void auich_freem(void *, void *, int);
size_t auich_round_buffersize(void *, int, size_t);
paddr_t auich_mappage(void *, void *, off_t, int);
int auich_get_props(void *);
int auich_trigger_output(void *, void *, void *, int, void (*)(void *),
void *, struct audio_params *);
int auich_trigger_input(void *, void *, void *, int, void (*)(void *),
void *, struct audio_params *);
int auich_alloc_cdata(struct auich_softc *);
int auich_allocmem(struct auich_softc *, size_t, size_t,
struct auich_dma *);
int auich_freemem(struct auich_softc *, struct auich_dma *);
void auich_powerhook(int, void *);
int auich_set_rate(struct auich_softc *sc, int mode, uint srate);
unsigned int auich_calibrate(struct auich_softc *sc);
struct audio_hw_if auich_hw_if = {
auich_open,
auich_close,
NULL, /* drain */
auich_query_encoding,
auich_set_params,
auich_round_blocksize,
NULL, /* commit_setting */
NULL, /* init_output */
NULL, /* init_input */
NULL, /* start_output */
NULL, /* start_input */
auich_halt_output,
auich_halt_input,
NULL, /* speaker_ctl */
auich_getdev,
NULL, /* getfd */
auich_set_port,
auich_get_port,
auich_query_devinfo,
auich_allocm,
auich_freem,
auich_round_buffersize,
auich_mappage,
auich_get_props,
auich_trigger_output,
auich_trigger_input,
NULL, /* dev_ioctl */
};
int auich_attach_codec(void *, struct ac97_codec_if *);
int auich_read_codec(void *, u_int8_t, u_int16_t *);
int auich_write_codec(void *, u_int8_t, u_int16_t);
void auich_reset_codec(void *);
static const struct auich_devtype {
int vendor;
int product;
const char *name;
const char *shortname;
} auich_devices[] = {
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801AA_ACA,
"i82801AA (ICH) AC-97 Audio", "ICH" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801AB_ACA,
"i82801AB (ICH0) AC-97 Audio", "ICH0" }, /* i810-L */
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801BA_ACA,
"i82801BA (ICH2) AC-97 Audio", "ICH2" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82440MX_ACA,
"i82440MX AC-97 Audio", "440MX" },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801CA_AC,
"i82801CA (ICH3) AC-97 Audio", "ICH3" }, /* i830Mx i845MP/MZ*/
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801DB_AC,
"i82801DB (ICH4) AC-97 Audio", "ICH4" }, /* i845E i845Gx */
{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7012_AC,
"SiS 7012 AC-97 Audio", "SiS7012" },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_MCP_AC,
"nForce MCP AC-97 Audio", "nForce-MCP" },
{ PCI_VENDOR_AMD, PCI_PRODUCT_AMD_PBC768_AC,
"AMD768 AC-97 Audio", "AMD768" },
{ PCI_VENDOR_AMD, PCI_PRODUCT_AMD_PBC8111_AC,
"AMD8111 AC-97 Audio", "AMD8111" },
{ 0,
NULL, NULL },
};
static const struct auich_devtype *
auich_lookup(struct pci_attach_args *pa)
{
const struct auich_devtype *d;
for (d = auich_devices; d->name != NULL; d++) {
if (PCI_VENDOR(pa->pa_id) == d->vendor
&& PCI_PRODUCT(pa->pa_id) == d->product)
return (d);
}
return (NULL);
}
int
auich_match(struct device *parent, struct cfdata *match, void *aux)
{
struct pci_attach_args *pa = aux;
if (auich_lookup(pa) != NULL)
return (1);
return (0);
}
void
auich_attach(struct device *parent, struct device *self, void *aux)
{
struct auich_softc *sc = (struct auich_softc *)self;
struct pci_attach_args *pa = aux;
pci_intr_handle_t ih;
bus_size_t mix_size, aud_size;
pcireg_t csr;
const char *intrstr;
const struct auich_devtype *d;
u_int16_t ext_id, ext_status;
u_int32_t status;
d = auich_lookup(pa);
if (d == NULL)
panic("auich_attach: impossible");
printf(": %s\n", d->name);
if (pci_mapreg_map(pa, ICH_NAMBAR, PCI_MAPREG_TYPE_IO, 0,
&sc->iot, &sc->mix_ioh, NULL, &mix_size)) {
printf("%s: can't map codec i/o space\n",
sc->sc_dev.dv_xname);
return;
}
if (pci_mapreg_map(pa, ICH_NABMBAR, PCI_MAPREG_TYPE_IO, 0,
&sc->iot, &sc->aud_ioh, NULL, &aud_size)) {
printf("%s: can't map device i/o space\n",
sc->sc_dev.dv_xname);
return;
}
sc->dmat = pa->pa_dmat;
/* enable bus mastering */
csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
csr | PCI_COMMAND_MASTER_ENABLE);
/* Map and establish the interrupt. */
if (pci_intr_map(pa, &ih)) {
printf("%s: can't map interrupt\n", sc->sc_dev.dv_xname);
return;
}
intrstr = pci_intr_string(pa->pa_pc, ih);
sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO,
auich_intr, sc);
if (sc->sc_ih == NULL) {
printf("%s: can't establish interrupt", sc->sc_dev.dv_xname);
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
sprintf(sc->sc_audev.name, "%s AC97", d->shortname);
sprintf(sc->sc_audev.version, "0x%02x", PCI_REVISION(pa->pa_class));
strcpy(sc->sc_audev.config, sc->sc_dev.dv_xname);
/* SiS 7012 needs special handling */
if (d->vendor == PCI_VENDOR_SIS
&& d->product == PCI_PRODUCT_SIS_7012_AC) {
sc->sc_sts_reg = ICH_PICB;
sc->sc_sample_size = 1;
} else {
sc->sc_sts_reg = ICH_STS;
sc->sc_sample_size = 2;
}
/* Set up DMA lists. */
sc->ptr_pcmo = sc->ptr_pcmi = sc->ptr_mici = 0;
auich_alloc_cdata(sc);
DPRINTF(ICH_DEBUG_DMA, ("auich_attach: lists %p %p %p\n",
sc->dmalist_pcmo, sc->dmalist_pcmi, sc->dmalist_mici));
sc->sc_ac97rate = FIXED_RATE;
/* Reset codec and AC'97 */
auich_reset_codec(sc);
status = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GSTS);
if (!(status & ICH_PCR)) { /* reset failure */
if (d->vendor == PCI_VENDOR_INTEL
&& d->product == PCI_PRODUCT_INTEL_82801DB_AC) {
/* MSI 845G Max never return ICH_PCR */
sc->sc_ignore_codecready = TRUE;
} else {
return;
}
}
/* Print capabilities though there are no supports for now */
if ((status & ICH_SAMPLE_CAP) == ICH_POM20)
printf("%s: 20 bit precision support\n", sc->sc_dev.dv_xname);
if ((status & ICH_CHAN_CAP) == ICH_PCM4)
printf("%s: 4ch PCM output support\n", sc->sc_dev.dv_xname);
if ((status & ICH_CHAN_CAP) == ICH_PCM6)
printf("%s: 6ch PCM output support\n", sc->sc_dev.dv_xname);
sc->host_if.arg = sc;
sc->host_if.attach = auich_attach_codec;
sc->host_if.read = auich_read_codec;
sc->host_if.write = auich_write_codec;
sc->host_if.reset = auich_reset_codec;
if (ac97_attach(&sc->host_if) != 0)
return;
auich_read_codec(sc, AC97_REG_EXTENDED_ID, &ext_id);
if ((ext_id & (AC97_CODEC_DOES_VRA | AC97_CODEC_DOES_MICVRA)) != 0) {
auich_read_codec(sc, AC97_REG_EXTENDED_STATUS, &ext_status);
if ((ext_id & AC97_CODEC_DOES_VRA) !=0)
ext_status |= AC97_ENAB_VRA;
if ((ext_id & AC97_CODEC_DOES_MICVRA) !=0)
ext_status |= AC97_ENAB_MICVRA;
auich_write_codec(sc, AC97_REG_EXTENDED_STATUS, ext_status);
/* so it claims to do variable rate, let's make sure */
if (auich_set_rate(sc, AUMODE_PLAY, 44100) == 44100)
sc->sc_fixed_rate = 0;
else
sc->sc_fixed_rate = FIXED_RATE;
} else {
sc->sc_fixed_rate = FIXED_RATE;
}
sc->sc_fixed_rate = FIXED_RATE;
if (sc->sc_fixed_rate)
printf("%s: warning, fixed rate codec\n", sc->sc_dev.dv_xname);
audio_attach_mi(&auich_hw_if, sc, &sc->sc_dev);
/* Watch for power change */
sc->sc_suspend = PWR_RESUME;
sc->sc_powerhook = powerhook_establish(auich_powerhook, sc);
}
#define ICH_CODECIO_INTERVAL 10
int
auich_read_codec(void *v, u_int8_t reg, u_int16_t *val)
{
struct auich_softc *sc = v;
int i;
uint32_t status;
status = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GSTS);
if (!sc->sc_ignore_codecready && !(status & ICH_PCR)) {
printf("auich_read_codec: codec is not ready (0x%x)\n", status);
*val = 0xffff;
return -1;
}
/* wait for an access semaphore */
for (i = ICH_SEMATIMO / ICH_CODECIO_INTERVAL; i-- &&
bus_space_read_1(sc->iot, sc->aud_ioh, ICH_CAS) & 1;
DELAY(ICH_CODECIO_INTERVAL));
if (i > 0) {
*val = bus_space_read_2(sc->iot, sc->mix_ioh, reg);
DPRINTF(ICH_DEBUG_CODECIO,
("auich_read_codec(%x, %x)\n", reg, *val));
status = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GSTS);
if (status & ICH_RCS) {
bus_space_write_4(sc->iot, sc->aud_ioh, ICH_GSTS,
status & ~(ICH_SRI|ICH_PRI|ICH_GSCI));
*val = 0xffff;
}
return 0;
} else {
DPRINTF(ICH_DEBUG_CODECIO,
("%s: read_codec timeout\n", sc->sc_dev.dv_xname));
return -1;
}
}
int
auich_write_codec(void *v, u_int8_t reg, u_int16_t val)
{
struct auich_softc *sc = v;
int i;
DPRINTF(ICH_DEBUG_CODECIO, ("auich_write_codec(%x, %x)\n", reg, val));
if (!sc->sc_ignore_codecready
&& !(bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GSTS) & ICH_PCR)) {
printf("auich_write_codec: codec is not ready.");
return -1;
}
/* wait for an access semaphore */
for (i = ICH_SEMATIMO / ICH_CODECIO_INTERVAL; i-- &&
bus_space_read_1(sc->iot, sc->aud_ioh, ICH_CAS) & 1;
DELAY(ICH_CODECIO_INTERVAL));
if (i > 0) {
bus_space_write_2(sc->iot, sc->mix_ioh, reg, val);
return 0;
} else {
DPRINTF(ICH_DEBUG_CODECIO,
("%s: write_codec timeout\n", sc->sc_dev.dv_xname));
return -1;
}
}
int
auich_attach_codec(void *v, struct ac97_codec_if *cif)
{
struct auich_softc *sc = v;
sc->codec_if = cif;
return 0;
}
void
auich_reset_codec(void *v)
{
struct auich_softc *sc = v;
int i;
uint32_t control;
control = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GCTRL);
control &= ~(ICH_ACLSO | ICH_PCM246_MASK);
control |= (control & ICH_CRESET) ? ICH_WRESET : ICH_CRESET;
bus_space_write_4(sc->iot, sc->aud_ioh, ICH_GCTRL, control);
for (i = 500000; i-- &&
!(bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GSTS) & ICH_PCR);
DELAY(1)); /* or ICH_SCR? */
if (i <= 0)
printf("%s: auich_reset_codec: time out\n", sc->sc_dev.dv_xname);
}
int
auich_open(void *v, int flags)
{
struct auich_softc *sc = v;
if (!sc->sc_fixed_rate && !sc->sc_calibrated) {
sc->sc_ac97rate = auich_calibrate(sc);
sc->sc_calibrated = TRUE;
}
return 0;
}
void
auich_close(void *v)
{
struct auich_softc *sc = v;
auich_halt_output(sc);
auich_halt_input(sc);
sc->sc_pintr = NULL;
sc->sc_rintr = NULL;
}
int
auich_query_encoding(void *v, struct audio_encoding *aep)
{
switch (aep->index) {
case 0:
strcpy(aep->name, AudioEulinear);
aep->encoding = AUDIO_ENCODING_ULINEAR;
aep->precision = 8;
aep->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 1:
strcpy(aep->name, AudioEmulaw);
aep->encoding = AUDIO_ENCODING_ULAW;
aep->precision = 8;
aep->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 2:
strcpy(aep->name, AudioEalaw);
aep->encoding = AUDIO_ENCODING_ALAW;
aep->precision = 8;
aep->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 3:
strcpy(aep->name, AudioEslinear);
aep->encoding = AUDIO_ENCODING_SLINEAR;
aep->precision = 8;
aep->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 4:
strcpy(aep->name, AudioEslinear_le);
aep->encoding = AUDIO_ENCODING_SLINEAR_LE;
aep->precision = 16;
aep->flags = 0;
return (0);
case 5:
strcpy(aep->name, AudioEulinear_le);
aep->encoding = AUDIO_ENCODING_ULINEAR_LE;
aep->precision = 16;
aep->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 6:
strcpy(aep->name, AudioEslinear_be);
aep->encoding = AUDIO_ENCODING_SLINEAR_BE;
aep->precision = 16;
aep->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 7:
strcpy(aep->name, AudioEulinear_be);
aep->encoding = AUDIO_ENCODING_ULINEAR_BE;
aep->precision = 16;
aep->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
default:
return (EINVAL);
}
}
int
auich_set_rate(struct auich_softc *sc, int mode, uint srate)
{
u_int16_t val, rate, inout;
u_int32_t rvalue;
inout = mode == AUMODE_PLAY ? ICH_PM_PCMO : ICH_PM_PCMI;
auich_read_codec(sc, AC97_REG_POWER, &val);
auich_write_codec(sc, AC97_REG_POWER, val | inout);
rvalue = srate * FIXED_RATE / sc->sc_ac97rate;
if (mode == AUMODE_PLAY) {
auich_write_codec(sc, AC97_REG_PCM_FRONT_DAC_RATE, rvalue);
auich_read_codec(sc, AC97_REG_PCM_FRONT_DAC_RATE, &rate);
} else {
auich_write_codec(sc, AC97_REG_PCM_LR_ADC_RATE, rvalue);
auich_read_codec(sc, AC97_REG_PCM_LR_ADC_RATE, &rate);
}
auich_write_codec(sc, AC97_REG_POWER, val);
/* Cast to avoid integer overflow */
rvalue = (u_int32_t)rate * sc->sc_ac97rate / FIXED_RATE;
return rvalue;
}
int
auich_set_params(void *v, int setmode, int usemode, struct audio_params *play,
struct audio_params *rec)
{
struct auich_softc *sc = v;
struct audio_params *p;
int mode;
for (mode = AUMODE_RECORD; mode != -1;
mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
if ((setmode & mode) == 0)
continue;
p = mode == AUMODE_PLAY ? play : rec;
if (p == NULL)
continue;
if ((p->sample_rate != 8000) &&
(p->sample_rate != 11025) &&
(p->sample_rate != 16000) &&
(p->sample_rate != 22050) &&
(p->sample_rate != 32000) &&
(p->sample_rate != 44100) &&
(p->sample_rate != 48000))
return (EINVAL);
p->factor = 1;
if (p->precision == 8)
p->factor *= 2;
p->sw_code = NULL;
/* setup hardware formats */
p->hw_encoding = AUDIO_ENCODING_SLINEAR_LE;
p->hw_precision = 16;
/* If manaural is requested, aurateconv expands a monaural
* stream to stereo. */
if (p->channels < 2)
p->hw_channels = 2;
switch (p->encoding) {
case AUDIO_ENCODING_SLINEAR_BE:
if (p->precision == 16) {
p->sw_code = swap_bytes;
} else {
if (mode == AUMODE_PLAY)
p->sw_code = linear8_to_linear16_le;
else
p->sw_code = linear16_to_linear8_le;
}
break;
case AUDIO_ENCODING_SLINEAR_LE:
if (p->precision != 16) {
if (mode == AUMODE_PLAY)
p->sw_code = linear8_to_linear16_le;
else
p->sw_code = linear16_to_linear8_le;
}
break;
case AUDIO_ENCODING_ULINEAR_BE:
if (p->precision == 16) {
if (mode == AUMODE_PLAY)
p->sw_code =
swap_bytes_change_sign16_le;
else
p->sw_code =
change_sign16_swap_bytes_le;
} else {
if (mode == AUMODE_PLAY)
p->sw_code =
ulinear8_to_slinear16_le;
else
p->sw_code =
slinear16_to_ulinear8_le;
}
break;
case AUDIO_ENCODING_ULINEAR_LE:
if (p->precision == 16) {
p->sw_code = change_sign16_le;
} else {
if (mode == AUMODE_PLAY)
p->sw_code =
ulinear8_to_slinear16_le;
else
p->sw_code =
slinear16_to_ulinear8_le;
}
break;
case AUDIO_ENCODING_ULAW:
if (mode == AUMODE_PLAY) {
p->sw_code = mulaw_to_slinear16_le;
} else {
p->sw_code = slinear16_to_mulaw_le;
}
break;
case AUDIO_ENCODING_ALAW:
if (mode == AUMODE_PLAY) {
p->sw_code = alaw_to_slinear16_le;
} else {
p->sw_code = slinear16_to_alaw_le;
}
break;
default:
return (EINVAL);
}
if (sc->sc_fixed_rate) {
p->hw_sample_rate = sc->sc_fixed_rate;
} else {
p->hw_sample_rate = auich_set_rate(sc, mode,
p->sample_rate);
}
/* If hw_sample_rate is different from sample_rate, aurateconv
* works. */
}
return (0);
}
int
auich_round_blocksize(void *v, int blk)
{
return (blk & ~0x3f); /* keep good alignment */
}
int
auich_halt_output(void *v)
{
struct auich_softc *sc = v;
DPRINTF(ICH_DEBUG_DMA, ("%s: halt_output\n", sc->sc_dev.dv_xname));
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_CTRL, ICH_RR);
return (0);
}
int
auich_halt_input(void *v)
{
struct auich_softc *sc = v;
DPRINTF(ICH_DEBUG_DMA,
("%s: halt_input\n", sc->sc_dev.dv_xname));
/* XXX halt both unless known otherwise */
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, ICH_RR);
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_MICI + ICH_CTRL, ICH_RR);
return (0);
}
int
auich_getdev(void *v, struct audio_device *adp)
{
struct auich_softc *sc = v;
*adp = sc->sc_audev;
return (0);
}
int
auich_set_port(void *v, mixer_ctrl_t *cp)
{
struct auich_softc *sc = v;
return (sc->codec_if->vtbl->mixer_set_port(sc->codec_if, cp));
}
int
auich_get_port(void *v, mixer_ctrl_t *cp)
{
struct auich_softc *sc = v;
return (sc->codec_if->vtbl->mixer_get_port(sc->codec_if, cp));
}
int
auich_query_devinfo(void *v, mixer_devinfo_t *dp)
{
struct auich_softc *sc = v;
return (sc->codec_if->vtbl->query_devinfo(sc->codec_if, dp));
}
void *
auich_allocm(void *v, int direction, size_t size, int pool, int flags)
{
struct auich_softc *sc = v;
struct auich_dma *p;
int error;
if (size > (ICH_DMALIST_MAX * ICH_DMASEG_MAX))
return (NULL);
p = malloc(sizeof(*p), pool, flags|M_ZERO);
if (p == NULL)
return (NULL);
error = auich_allocmem(sc, size, 0, p);
if (error) {
free(p, pool);
return (NULL);
}
p->next = sc->sc_dmas;
sc->sc_dmas = p;
return (KERNADDR(p));
}
void
auich_freem(void *v, void *ptr, int pool)
{
struct auich_softc *sc = v;
struct auich_dma *p, **pp;
for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
if (KERNADDR(p) == ptr) {
auich_freemem(sc, p);
*pp = p->next;
free(p, pool);
return;
}
}
}
size_t
auich_round_buffersize(void *v, int direction, size_t size)
{
if (size > (ICH_DMALIST_MAX * ICH_DMASEG_MAX))
size = ICH_DMALIST_MAX * ICH_DMASEG_MAX;
return size;
}
paddr_t
auich_mappage(void *v, void *mem, off_t off, int prot)
{
struct auich_softc *sc = v;
struct auich_dma *p;
if (off < 0)
return (-1);
for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
;
if (!p)
return (-1);
return (bus_dmamem_mmap(sc->dmat, p->segs, p->nsegs,
off, prot, BUS_DMA_WAITOK));
}
int
auich_get_props(void *v)
{
return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
AUDIO_PROP_FULLDUPLEX);
}
int
auich_intr(void *v)
{
struct auich_softc *sc = v;
int ret = 0, sts, gsts, i, qptr;
gsts = bus_space_read_2(sc->iot, sc->aud_ioh, ICH_GSTS);
DPRINTF(ICH_DEBUG_DMA, ("auich_intr: gsts=0x%x\n", gsts));
if (gsts & ICH_POINT) {
sts = bus_space_read_2(sc->iot, sc->aud_ioh, ICH_PCMO+sc->sc_sts_reg);
DPRINTF(ICH_DEBUG_DMA,
("auich_intr: osts=0x%x\n", sts));
if (sts & ICH_FIFOE) {
printf("%s: fifo underrun # %u\n",
sc->sc_dev.dv_xname, ++sc->pcmo_fifoe);
}
i = bus_space_read_1(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_CIV);
if (sts & (ICH_LVBCI | ICH_CELV)) {
struct auich_dmalist *q;
qptr = sc->ptr_pcmo;
while (qptr != i) {
q = &sc->dmalist_pcmo[qptr];
q->base = sc->pcmo_p;
q->len = (sc->pcmo_blksize / sc->sc_sample_size) | ICH_DMAF_IOC;
DPRINTF(ICH_DEBUG_DMA,
("auich_intr: %p, %p = %x @ 0x%x\n",
&sc->dmalist_pcmo[i], q,
sc->pcmo_blksize / 2, sc->pcmo_p));
sc->pcmo_p += sc->pcmo_blksize;
if (sc->pcmo_p >= sc->pcmo_end)
sc->pcmo_p = sc->pcmo_start;
if (++qptr == ICH_DMALIST_MAX)
qptr = 0;
}
sc->ptr_pcmo = qptr;
bus_space_write_1(sc->iot, sc->aud_ioh,
ICH_PCMO + ICH_LVI,
(sc->ptr_pcmo - 1) & ICH_LVI_MASK);
}
if (sts & ICH_BCIS && sc->sc_pintr)
sc->sc_pintr(sc->sc_parg);
/* int ack */
bus_space_write_2(sc->iot, sc->aud_ioh, ICH_PCMO + sc->sc_sts_reg,
sts & (ICH_LVBCI | ICH_CELV | ICH_BCIS | ICH_FIFOE));
bus_space_write_2(sc->iot, sc->aud_ioh, ICH_GSTS, ICH_POINT);
ret++;
}
if (gsts & ICH_PIINT) {
sts = bus_space_read_2(sc->iot, sc->aud_ioh, ICH_PCMI+sc->sc_sts_reg);
DPRINTF(ICH_DEBUG_DMA,
("auich_intr: ists=0x%x\n", sts));
if (sts & ICH_FIFOE) {
printf("%s: fifo overrun # %u\n",
sc->sc_dev.dv_xname, ++sc->pcmi_fifoe);
}
i = bus_space_read_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CIV);
if (sts & (ICH_LVBCI | ICH_CELV)) {
struct auich_dmalist *q;
qptr = sc->ptr_pcmi;
while (qptr != i) {
q = &sc->dmalist_pcmi[qptr];
q->base = sc->pcmi_p;
q->len = (sc->pcmi_blksize / sc->sc_sample_size) | ICH_DMAF_IOC;
DPRINTF(ICH_DEBUG_DMA,
("auich_intr: %p, %p = %x @ 0x%x\n",
&sc->dmalist_pcmi[i], q,
sc->pcmi_blksize / 2, sc->pcmi_p));
sc->pcmi_p += sc->pcmi_blksize;
if (sc->pcmi_p >= sc->pcmi_end)
sc->pcmi_p = sc->pcmi_start;
if (++qptr == ICH_DMALIST_MAX)
qptr = 0;
}
sc->ptr_pcmi = qptr;
bus_space_write_1(sc->iot, sc->aud_ioh,
ICH_PCMI + ICH_LVI,
(sc->ptr_pcmi - 1) & ICH_LVI_MASK);
}
if (sts & ICH_BCIS && sc->sc_rintr)
sc->sc_rintr(sc->sc_rarg);
/* int ack */
bus_space_write_2(sc->iot, sc->aud_ioh, ICH_PCMI + sc->sc_sts_reg,
sts & (ICH_LVBCI | ICH_CELV | ICH_BCIS | ICH_FIFOE));
bus_space_write_2(sc->iot, sc->aud_ioh, ICH_GSTS, ICH_POINT);
ret++;
}
if (gsts & ICH_MIINT) {
sts = bus_space_read_2(sc->iot, sc->aud_ioh, ICH_MICI+sc->sc_sts_reg);
DPRINTF(ICH_DEBUG_DMA,
("auich_intr: ists=0x%x\n", sts));
if (sts & ICH_FIFOE)
printf("%s: fifo overrun\n", sc->sc_dev.dv_xname);
/* TODO mic input dma */
bus_space_write_2(sc->iot, sc->aud_ioh, ICH_GSTS, ICH_MIINT);
}
return ret;
}
int
auich_trigger_output(void *v, void *start, void *end, int blksize,
void (*intr)(void *), void *arg, struct audio_params *param)
{
struct auich_softc *sc = v;
struct auich_dmalist *q;
struct auich_dma *p;
size_t size;
DPRINTF(ICH_DEBUG_DMA,
("auich_trigger_output(%p, %p, %d, %p, %p, %p)\n",
start, end, blksize, intr, arg, param));
sc->sc_pintr = intr;
sc->sc_parg = arg;
for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
;
if (!p) {
printf("auich_trigger_output: bad addr %p\n", start);
return (EINVAL);
}
size = (size_t)((caddr_t)end - (caddr_t)start);
/*
* The logic behind this is:
* setup one buffer to play, then LVI dump out the rest
* to the scatter-gather chain.
*/
sc->pcmo_start = DMAADDR(p);
sc->pcmo_p = sc->pcmo_start + blksize;
sc->pcmo_end = sc->pcmo_start + size;
sc->pcmo_blksize = blksize;
sc->ptr_pcmo = 0;
q = &sc->dmalist_pcmo[sc->ptr_pcmo];
q->base = sc->pcmo_start;
q->len = (blksize / sc->sc_sample_size) | ICH_DMAF_IOC;
if (++sc->ptr_pcmo == ICH_DMALIST_MAX)
sc->ptr_pcmo = 0;
bus_space_write_4(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_BDBAR,
sc->sc_cddma + ICH_PCMO_OFF(0));
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_CTRL,
ICH_IOCE | ICH_FEIE | ICH_LVBIE | ICH_RPBM);
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_LVI,
(sc->ptr_pcmo - 1) & ICH_LVI_MASK);
return (0);
}
int
auich_trigger_input(v, start, end, blksize, intr, arg, param)
void *v;
void *start, *end;
int blksize;
void (*intr)(void *);
void *arg;
struct audio_params *param;
{
struct auich_softc *sc = v;
struct auich_dmalist *q;
struct auich_dma *p;
size_t size;
DPRINTF(ICH_DEBUG_DMA,
("auich_trigger_input(%p, %p, %d, %p, %p, %p)\n",
start, end, blksize, intr, arg, param));
sc->sc_rintr = intr;
sc->sc_rarg = arg;
for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
;
if (!p) {
printf("auich_trigger_input: bad addr %p\n", start);
return (EINVAL);
}
size = (size_t)((caddr_t)end - (caddr_t)start);
/*
* The logic behind this is:
* setup one buffer to play, then LVI dump out the rest
* to the scatter-gather chain.
*/
sc->pcmi_start = DMAADDR(p);
sc->pcmi_p = sc->pcmi_start + blksize;
sc->pcmi_end = sc->pcmi_start + size;
sc->pcmi_blksize = blksize;
sc->ptr_pcmi = 0;
q = &sc->dmalist_pcmi[sc->ptr_pcmi];
q->base = sc->pcmi_start;
q->len = (blksize / sc->sc_sample_size) | ICH_DMAF_IOC;
if (++sc->ptr_pcmi == ICH_DMALIST_MAX)
sc->ptr_pcmi = 0;
bus_space_write_4(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_BDBAR,
sc->sc_cddma + ICH_PCMI_OFF(0));
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL,
ICH_IOCE | ICH_FEIE | ICH_LVBIE | ICH_RPBM);
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_LVI,
(sc->ptr_pcmi - 1) & ICH_LVI_MASK);
return (0);
}
int
auich_allocmem(struct auich_softc *sc, size_t size, size_t align,
struct auich_dma *p)
{
int error;
p->size = size;
error = bus_dmamem_alloc(sc->dmat, p->size, align, 0,
p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
&p->nsegs, BUS_DMA_NOWAIT);
if (error)
return (error);
error = bus_dmamem_map(sc->dmat, p->segs, p->nsegs, p->size,
&p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
if (error)
goto free;
error = bus_dmamap_create(sc->dmat, p->size, 1, p->size,
0, BUS_DMA_NOWAIT, &p->map);
if (error)
goto unmap;
error = bus_dmamap_load(sc->dmat, p->map, p->addr, p->size, NULL,
BUS_DMA_NOWAIT);
if (error)
goto destroy;
return (0);
destroy:
bus_dmamap_destroy(sc->dmat, p->map);
unmap:
bus_dmamem_unmap(sc->dmat, p->addr, p->size);
free:
bus_dmamem_free(sc->dmat, p->segs, p->nsegs);
return (error);
}
int
auich_freemem(struct auich_softc *sc, struct auich_dma *p)
{
bus_dmamap_unload(sc->dmat, p->map);
bus_dmamap_destroy(sc->dmat, p->map);
bus_dmamem_unmap(sc->dmat, p->addr, p->size);
bus_dmamem_free(sc->dmat, p->segs, p->nsegs);
return (0);
}
int
auich_alloc_cdata(struct auich_softc *sc)
{
bus_dma_segment_t seg;
int error, rseg;
/*
* Allocate the control data structure, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->dmat,
sizeof(struct auich_cdata),
PAGE_SIZE, 0, &seg, 1, &rseg, 0)) != 0) {
printf("%s: unable to allocate control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->dmat, &seg, rseg,
sizeof(struct auich_cdata),
(caddr_t *) &sc->sc_cdata,
BUS_DMA_COHERENT)) != 0) {
printf("%s: unable to map control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->dmat, sizeof(struct auich_cdata), 1,
sizeof(struct auich_cdata), 0, 0,
&sc->sc_cddmamap)) != 0) {
printf("%s: unable to create control data DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->dmat, sc->sc_cddmamap,
sc->sc_cdata, sizeof(struct auich_cdata),
NULL, 0)) != 0) {
printf("%s: unable tp load control data DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail_3;
}
return (0);
fail_3:
bus_dmamap_destroy(sc->dmat, sc->sc_cddmamap);
fail_2:
bus_dmamem_unmap(sc->dmat, (caddr_t) sc->sc_cdata,
sizeof(struct auich_cdata));
fail_1:
bus_dmamem_free(sc->dmat, &seg, rseg);
fail_0:
return (error);
}
void
auich_powerhook(int why, void *addr)
{
struct auich_softc *sc = (struct auich_softc *)addr;
switch (why) {
case PWR_SUSPEND:
case PWR_STANDBY:
/* Power down */
DPRINTF(1, ("%s: power down\n", sc->sc_dev.dv_xname));
sc->sc_suspend = why;
auich_read_codec(sc, AC97_REG_EXTENDED_STATUS, &sc->ext_status);
break;
case PWR_RESUME:
/* Wake up */
DPRINTF(1, ("%s: power resume\n", sc->sc_dev.dv_xname));
if (sc->sc_suspend == PWR_RESUME) {
printf("%s: resume without suspend.\n",
sc->sc_dev.dv_xname);
sc->sc_suspend = why;
return;
}
sc->sc_suspend = why;
auich_reset_codec(sc);
DELAY(1000);
(sc->codec_if->vtbl->restore_ports)(sc->codec_if);
auich_write_codec(sc, AC97_REG_EXTENDED_STATUS, sc->ext_status);
break;
case PWR_SOFTSUSPEND:
case PWR_SOFTSTANDBY:
case PWR_SOFTRESUME:
break;
}
}
/* -------------------------------------------------------------------- */
/* Calibrate card (some boards are overclocked and need scaling) */
unsigned int
auich_calibrate(struct auich_softc *sc)
{
struct timeval t1, t2;
u_int8_t ociv, nciv;
u_int32_t wait_us, actual_48k_rate, bytes, ac97rate;
void *temp_buffer;
struct auich_dma *p;
ac97rate = 48000;
/*
* Grab audio from input for fixed interval and compare how
* much we actually get with what we expect. Interval needs
* to be sufficiently short that no interrupts are
* generated.
*/
/* Setup a buffer */
bytes = 16000;
temp_buffer = auich_allocm(sc, AUMODE_RECORD, bytes, M_DEVBUF, M_WAITOK);
for (p = sc->sc_dmas; p && KERNADDR(p) != temp_buffer; p = p->next)
;
if (p == NULL) {
printf("auich_calibrate: bad address %p\n", temp_buffer);
return ac97rate;
}
sc->dmalist_pcmi[0].base = DMAADDR(p);
sc->dmalist_pcmi[0].len = (bytes / sc->sc_sample_size) | ICH_DMAF_IOC;
/*
* our data format is stereo, 16 bit so each sample is 4 bytes.
* assuming we get 48000 samples per second, we get 192000 bytes/sec.
* we're going to start recording with interrupts disabled and measure
* the time taken for one block to complete. we know the block size,
* we know the time in microseconds, we calculate the sample rate:
*
* actual_rate [bps] = bytes / (time [s] * 4)
* actual_rate [bps] = (bytes * 1000000) / (time [us] * 4)
* actual_rate [Hz] = (bytes * 250000) / time [us]
*/
/* prepare */
ociv = bus_space_read_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CIV);
nciv = ociv;
bus_space_write_4(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_BDBAR,
sc->sc_cddma + ICH_PCMI_OFF(0));
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_LVI,
(0 - 1) & ICH_LVI_MASK);
/* start */
microtime(&t1);
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, ICH_RPBM);
/* wait */
while (nciv == ociv) {
microtime(&t2);
if (t2.tv_sec - t1.tv_sec > 1)
break;
nciv = bus_space_read_1(sc->iot, sc->aud_ioh,
ICH_PCMI + ICH_CIV);
}
microtime(&t2);
/* stop */
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, 0);
/* reset */
DELAY(100);
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, ICH_RR);
/* turn time delta into us */
wait_us = ((t2.tv_sec - t1.tv_sec) * 1000000) + t2.tv_usec - t1.tv_usec;
auich_freem(sc, temp_buffer, M_DEVBUF);
if (nciv == ociv) {
printf("%s: ac97 link rate calibration timed out after %d us\n",
sc->sc_dev.dv_xname, wait_us);
return ac97rate;
}
actual_48k_rate = (bytes * 250000) / wait_us;
if (actual_48k_rate < 47500 || actual_48k_rate > 48500) {
ac97rate = actual_48k_rate;
}
if (ac97rate != 48000) {
printf("%s: measured ac97 link rate at %d Hz",
sc->sc_dev.dv_xname, actual_48k_rate);
if (ac97rate != actual_48k_rate)
printf(", will use %d Hz", ac97rate);
printf("\n");
}
return ac97rate;
}