NetBSD/sys/net/rtsock.c

1128 lines
29 KiB
C

/* $NetBSD: rtsock.c,v 1.60 2003/05/16 04:54:56 itojun Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1988, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)rtsock.c 8.7 (Berkeley) 10/12/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.60 2003/05/16 04:54:56 itojun Exp $");
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/route.h>
#include <net/raw_cb.h>
#include <machine/stdarg.h>
extern struct domain routedomain; /* or at least forward */
struct sockaddr route_dst = { 2, PF_ROUTE, };
struct sockaddr route_src = { 2, PF_ROUTE, };
struct sockproto route_proto = { PF_ROUTE, };
struct walkarg {
int w_op;
int w_arg;
int w_given;
int w_needed;
caddr_t w_where;
int w_tmemsize;
int w_tmemneeded;
caddr_t w_tmem;
};
static struct mbuf *rt_msg1 __P((int, struct rt_addrinfo *, caddr_t, int));
static int rt_msg2 __P((int, struct rt_addrinfo *, caddr_t, struct walkarg *,
int *));
static int rt_xaddrs __P((caddr_t, caddr_t, struct rt_addrinfo *));
static int sysctl_dumpentry __P((struct radix_node *, void *));
static int sysctl_iflist __P((int, struct walkarg *, int));
static int sysctl_rtable __P((int *, u_int, void *, size_t *, void *, size_t));
static __inline void rt_adjustcount __P((int, int));
/* Sleazy use of local variables throughout file, warning!!!! */
#define dst info.rti_info[RTAX_DST]
#define gate info.rti_info[RTAX_GATEWAY]
#define netmask info.rti_info[RTAX_NETMASK]
#define genmask info.rti_info[RTAX_GENMASK]
#define ifpaddr info.rti_info[RTAX_IFP]
#define ifaaddr info.rti_info[RTAX_IFA]
#define brdaddr info.rti_info[RTAX_BRD]
static __inline void
rt_adjustcount(af, cnt)
int af, cnt;
{
route_cb.any_count += cnt;
switch (af) {
case AF_INET:
route_cb.ip_count += cnt;
return;
#ifdef INET6
case AF_INET6:
route_cb.ip6_count += cnt;
return;
#endif
case AF_IPX:
route_cb.ipx_count += cnt;
return;
case AF_NS:
route_cb.ns_count += cnt;
return;
case AF_ISO:
route_cb.iso_count += cnt;
return;
}
}
/*ARGSUSED*/
int
route_usrreq(so, req, m, nam, control, p)
struct socket *so;
int req;
struct mbuf *m, *nam, *control;
struct proc *p;
{
int error = 0;
struct rawcb *rp = sotorawcb(so);
int s;
if (req == PRU_ATTACH) {
MALLOC(rp, struct rawcb *, sizeof(*rp), M_PCB, M_WAITOK);
if ((so->so_pcb = rp) != NULL)
memset(so->so_pcb, 0, sizeof(*rp));
}
if (req == PRU_DETACH && rp)
rt_adjustcount(rp->rcb_proto.sp_protocol, -1);
s = splsoftnet();
/*
* Don't call raw_usrreq() in the attach case, because
* we want to allow non-privileged processes to listen on
* and send "safe" commands to the routing socket.
*/
if (req == PRU_ATTACH) {
if (p == 0)
error = EACCES;
else
error = raw_attach(so, (int)(long)nam);
} else
error = raw_usrreq(so, req, m, nam, control, p);
rp = sotorawcb(so);
if (req == PRU_ATTACH && rp) {
if (error) {
free((caddr_t)rp, M_PCB);
splx(s);
return (error);
}
rt_adjustcount(rp->rcb_proto.sp_protocol, 1);
rp->rcb_laddr = &route_src;
rp->rcb_faddr = &route_dst;
soisconnected(so);
so->so_options |= SO_USELOOPBACK;
}
splx(s);
return (error);
}
/*ARGSUSED*/
int
#if __STDC__
route_output(struct mbuf *m, ...)
#else
route_output(m, va_alist)
struct mbuf *m;
va_dcl
#endif
{
struct rt_msghdr *rtm = 0;
struct radix_node *rn = 0;
struct rtentry *rt = 0;
struct rtentry *saved_nrt = 0;
struct radix_node_head *rnh;
struct rt_addrinfo info;
int len, error = 0;
struct ifnet *ifp = 0;
struct ifaddr *ifa = 0;
struct socket *so;
va_list ap;
sa_family_t family;
va_start(ap, m);
so = va_arg(ap, struct socket *);
va_end(ap);
#define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0)
if (m == 0 || ((m->m_len < sizeof(int32_t)) &&
(m = m_pullup(m, sizeof(int32_t))) == 0))
return (ENOBUFS);
if ((m->m_flags & M_PKTHDR) == 0)
panic("route_output");
len = m->m_pkthdr.len;
if (len < sizeof(*rtm) ||
len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
dst = 0;
senderr(EINVAL);
}
R_Malloc(rtm, struct rt_msghdr *, len);
if (rtm == 0) {
dst = 0;
senderr(ENOBUFS);
}
m_copydata(m, 0, len, (caddr_t)rtm);
if (rtm->rtm_version != RTM_VERSION) {
dst = 0;
senderr(EPROTONOSUPPORT);
}
rtm->rtm_pid = curproc->p_pid;
memset(&info, 0, sizeof(info));
info.rti_addrs = rtm->rtm_addrs;
if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info))
senderr(EINVAL);
info.rti_flags = rtm->rtm_flags;
if (dst == 0 || (dst->sa_family >= AF_MAX))
senderr(EINVAL);
if (gate != 0 && (gate->sa_family >= AF_MAX))
senderr(EINVAL);
if (genmask) {
struct radix_node *t;
t = rn_addmask((caddr_t)genmask, 0, 1);
if (t && genmask->sa_len >= ((struct sockaddr *)t->rn_key)->sa_len &&
Bcmp((caddr_t *)genmask + 1, (caddr_t *)t->rn_key + 1,
((struct sockaddr *)t->rn_key)->sa_len) - 1)
genmask = (struct sockaddr *)(t->rn_key);
else
senderr(ENOBUFS);
}
/*
* Verify that the caller has the appropriate privilege; RTM_GET
* is the only operation the non-superuser is allowed.
*/
if (rtm->rtm_type != RTM_GET &&
suser(curproc->p_ucred, &curproc->p_acflag) != 0)
senderr(EACCES);
switch (rtm->rtm_type) {
case RTM_ADD:
if (gate == 0)
senderr(EINVAL);
error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
if (error == 0 && saved_nrt) {
rt_setmetrics(rtm->rtm_inits,
&rtm->rtm_rmx, &saved_nrt->rt_rmx);
saved_nrt->rt_refcnt--;
saved_nrt->rt_genmask = genmask;
}
break;
case RTM_DELETE:
error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
if (error == 0) {
(rt = saved_nrt)->rt_refcnt++;
goto report;
}
break;
case RTM_GET:
case RTM_CHANGE:
case RTM_LOCK:
if ((rnh = rt_tables[dst->sa_family]) == 0) {
senderr(EAFNOSUPPORT);
}
rn = rnh->rnh_lookup(dst, netmask, rnh);
if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0) {
senderr(ESRCH);
}
rt = (struct rtentry *)rn;
rt->rt_refcnt++;
switch (rtm->rtm_type) {
case RTM_GET:
report:
dst = rt_key(rt);
gate = rt->rt_gateway;
netmask = rt_mask(rt);
genmask = rt->rt_genmask;
if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
if ((ifp = rt->rt_ifp) != NULL) {
ifpaddr = TAILQ_FIRST(&ifp->if_addrlist)->ifa_addr;
ifaaddr = rt->rt_ifa->ifa_addr;
if (ifp->if_flags & IFF_POINTOPOINT)
brdaddr = rt->rt_ifa->ifa_dstaddr;
else
brdaddr = 0;
rtm->rtm_index = ifp->if_index;
} else {
ifpaddr = 0;
ifaaddr = 0;
}
}
(void)rt_msg2(rtm->rtm_type, &info, (caddr_t)0,
(struct walkarg *)0, &len);
if (len > rtm->rtm_msglen) {
struct rt_msghdr *new_rtm;
R_Malloc(new_rtm, struct rt_msghdr *, len);
if (new_rtm == 0)
senderr(ENOBUFS);
Bcopy(rtm, new_rtm, rtm->rtm_msglen);
Free(rtm); rtm = new_rtm;
}
(void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm,
(struct walkarg *)0, 0);
rtm->rtm_flags = rt->rt_flags;
rtm->rtm_rmx = rt->rt_rmx;
rtm->rtm_addrs = info.rti_addrs;
break;
case RTM_CHANGE:
/*
* new gateway could require new ifaddr, ifp;
* flags may also be different; ifp may be specified
* by ll sockaddr when protocol address is ambiguous
*/
if ((error = rt_getifa(&info)) != 0)
senderr(error);
if (gate && rt_setgate(rt, rt_key(rt), gate))
senderr(EDQUOT);
/* new gateway could require new ifaddr, ifp;
flags may also be different; ifp may be specified
by ll sockaddr when protocol address is ambiguous */
if (ifpaddr && (ifa = ifa_ifwithnet(ifpaddr)) &&
(ifp = ifa->ifa_ifp) && (ifaaddr || gate))
ifa = ifaof_ifpforaddr(ifaaddr ? ifaaddr : gate,
ifp);
else if ((ifaaddr && (ifa = ifa_ifwithaddr(ifaaddr))) ||
(gate && (ifa = ifa_ifwithroute(rt->rt_flags,
rt_key(rt), gate))))
ifp = ifa->ifa_ifp;
if (ifa) {
struct ifaddr *oifa = rt->rt_ifa;
if (oifa != ifa) {
if (oifa && oifa->ifa_rtrequest)
oifa->ifa_rtrequest(RTM_DELETE, rt,
&info);
IFAFREE(rt->rt_ifa);
rt->rt_ifa = ifa;
IFAREF(rt->rt_ifa);
rt->rt_ifp = ifp;
}
}
rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
&rt->rt_rmx);
if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
if (genmask)
rt->rt_genmask = genmask;
/*
* Fall into
*/
case RTM_LOCK:
rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
rt->rt_rmx.rmx_locks |=
(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
break;
}
break;
default:
senderr(EOPNOTSUPP);
}
flush:
if (rtm) {
if (error)
rtm->rtm_errno = error;
else
rtm->rtm_flags |= RTF_DONE;
}
family = dst ? dst->sa_family : 0;
if (rt)
rtfree(rt);
{
struct rawcb *rp = 0;
/*
* Check to see if we don't want our own messages.
*/
if ((so->so_options & SO_USELOOPBACK) == 0) {
if (route_cb.any_count <= 1) {
if (rtm)
Free(rtm);
m_freem(m);
return (error);
}
/* There is another listener, so construct message */
rp = sotorawcb(so);
}
if (rtm) {
m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
if (m->m_pkthdr.len < rtm->rtm_msglen) {
m_freem(m);
m = NULL;
} else if (m->m_pkthdr.len > rtm->rtm_msglen)
m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
Free(rtm);
}
if (rp)
rp->rcb_proto.sp_family = 0; /* Avoid us */
if (family)
route_proto.sp_protocol = family;
if (m)
raw_input(m, &route_proto, &route_src, &route_dst);
if (rp)
rp->rcb_proto.sp_family = PF_ROUTE;
}
return (error);
}
void
rt_setmetrics(which, in, out)
u_long which;
struct rt_metrics *in, *out;
{
#define metric(f, e) if (which & (f)) out->e = in->e;
metric(RTV_RPIPE, rmx_recvpipe);
metric(RTV_SPIPE, rmx_sendpipe);
metric(RTV_SSTHRESH, rmx_ssthresh);
metric(RTV_RTT, rmx_rtt);
metric(RTV_RTTVAR, rmx_rttvar);
metric(RTV_HOPCOUNT, rmx_hopcount);
metric(RTV_MTU, rmx_mtu);
metric(RTV_EXPIRE, rmx_expire);
#undef metric
}
#define ROUNDUP(a) \
((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
#define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len))
static int
rt_xaddrs(cp, cplim, rtinfo)
caddr_t cp, cplim;
struct rt_addrinfo *rtinfo;
{
struct sockaddr *sa = NULL; /* Quell compiler warning */
int i;
for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
if ((rtinfo->rti_addrs & (1 << i)) == 0)
continue;
rtinfo->rti_info[i] = sa = (struct sockaddr *)cp;
ADVANCE(cp, sa);
}
/* Check for extra addresses specified. */
if ((rtinfo->rti_addrs & (~0 << i)) != 0)
return (1);
/* Check for bad data length. */
if (cp != cplim) {
if (i == RTAX_NETMASK + 1 &&
cp - ROUNDUP(sa->sa_len) + sa->sa_len == cplim)
/*
* The last sockaddr was netmask.
* We accept this for now for the sake of old
* binaries or third party softwares.
*/
;
else
return (1);
}
return (0);
}
static struct mbuf *
rt_msg1(type, rtinfo, data, datalen)
int type;
struct rt_addrinfo *rtinfo;
caddr_t data;
int datalen;
{
struct rt_msghdr *rtm;
struct mbuf *m;
int i;
struct sockaddr *sa;
int len, dlen;
m = m_gethdr(M_DONTWAIT, MT_DATA);
if (m == 0)
return (m);
MCLAIM(m, &routedomain.dom_mowner);
switch (type) {
case RTM_DELADDR:
case RTM_NEWADDR:
len = sizeof(struct ifa_msghdr);
break;
#ifdef COMPAT_14
case RTM_OIFINFO:
len = sizeof(struct if_msghdr14);
break;
#endif
case RTM_IFINFO:
len = sizeof(struct if_msghdr);
break;
case RTM_IFANNOUNCE:
len = sizeof(struct if_announcemsghdr);
break;
default:
len = sizeof(struct rt_msghdr);
}
if (len > MHLEN + MLEN)
panic("rt_msg1: message too long");
else if (len > MHLEN) {
m->m_next = m_get(M_DONTWAIT, MT_DATA);
if (m->m_next == NULL) {
m_freem(m);
return (NULL);
}
MCLAIM(m->m_next, m->m_owner);
m->m_pkthdr.len = len;
m->m_len = MHLEN;
m->m_next->m_len = len - MHLEN;
} else {
m->m_pkthdr.len = m->m_len = len;
}
m->m_pkthdr.rcvif = 0;
m_copyback(m, 0, datalen, data);
rtm = mtod(m, struct rt_msghdr *);
for (i = 0; i < RTAX_MAX; i++) {
if ((sa = rtinfo->rti_info[i]) == NULL)
continue;
rtinfo->rti_addrs |= (1 << i);
dlen = ROUNDUP(sa->sa_len);
m_copyback(m, len, dlen, (caddr_t)sa);
len += dlen;
}
if (m->m_pkthdr.len != len) {
m_freem(m);
return (NULL);
}
rtm->rtm_msglen = len;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = type;
return (m);
}
/*
* rt_msg2
*
* fills 'cp' or 'w'.w_tmem with the routing socket message and
* returns the length of the message in 'lenp'.
*
* if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold
* the message
* otherwise walkarg's w_needed is updated and if the user buffer is
* specified and w_needed indicates space exists the information is copied
* into the temp space (w_tmem). w_tmem is [re]allocated if necessary,
* if the allocation fails ENOBUFS is returned.
*/
static int
rt_msg2(type, rtinfo, cp, w, lenp)
int type;
struct rt_addrinfo *rtinfo;
caddr_t cp;
struct walkarg *w;
int *lenp;
{
int i;
int len, dlen, second_time = 0;
caddr_t cp0;
rtinfo->rti_addrs = 0;
again:
switch (type) {
case RTM_DELADDR:
case RTM_NEWADDR:
len = sizeof(struct ifa_msghdr);
break;
#ifdef COMPAT_14
case RTM_OIFINFO:
len = sizeof(struct if_msghdr14);
break;
#endif
case RTM_IFINFO:
len = sizeof(struct if_msghdr);
break;
default:
len = sizeof(struct rt_msghdr);
}
if ((cp0 = cp) != NULL)
cp += len;
for (i = 0; i < RTAX_MAX; i++) {
struct sockaddr *sa;
if ((sa = rtinfo->rti_info[i]) == 0)
continue;
rtinfo->rti_addrs |= (1 << i);
dlen = ROUNDUP(sa->sa_len);
if (cp) {
bcopy(sa, cp, (unsigned)dlen);
cp += dlen;
}
len += dlen;
}
if (cp == 0 && w != NULL && !second_time) {
struct walkarg *rw = w;
rw->w_needed += len;
if (rw->w_needed <= 0 && rw->w_where) {
if (rw->w_tmemsize < len) {
if (rw->w_tmem)
free(rw->w_tmem, M_RTABLE);
rw->w_tmem = (caddr_t) malloc(len, M_RTABLE,
M_NOWAIT);
if (rw->w_tmem)
rw->w_tmemsize = len;
}
if (rw->w_tmem) {
cp = rw->w_tmem;
second_time = 1;
goto again;
} else {
rw->w_tmemneeded = len;
return (ENOBUFS);
}
}
}
if (cp) {
struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = type;
rtm->rtm_msglen = len;
}
if (lenp)
*lenp = len;
return (0);
}
/*
* This routine is called to generate a message from the routing
* socket indicating that a redirect has occurred, a routing lookup
* has failed, or that a protocol has detected timeouts to a particular
* destination.
*/
void
rt_missmsg(type, rtinfo, flags, error)
int type, flags, error;
struct rt_addrinfo *rtinfo;
{
struct rt_msghdr rtm;
struct mbuf *m;
struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
if (route_cb.any_count == 0)
return;
memset(&rtm, 0, sizeof(rtm));
rtm.rtm_flags = RTF_DONE | flags;
rtm.rtm_errno = error;
m = rt_msg1(type, rtinfo, (caddr_t)&rtm, sizeof(rtm));
if (m == 0)
return;
mtod(m, struct rt_msghdr *)->rtm_addrs = rtinfo->rti_addrs;
route_proto.sp_protocol = sa ? sa->sa_family : 0;
raw_input(m, &route_proto, &route_src, &route_dst);
}
/*
* This routine is called to generate a message from the routing
* socket indicating that the status of a network interface has changed.
*/
void
rt_ifmsg(ifp)
struct ifnet *ifp;
{
struct if_msghdr ifm;
#ifdef COMPAT_14
struct if_msghdr14 oifm;
#endif
struct mbuf *m;
struct rt_addrinfo info;
if (route_cb.any_count == 0)
return;
memset(&info, 0, sizeof(info));
memset(&ifm, 0, sizeof(ifm));
ifm.ifm_index = ifp->if_index;
ifm.ifm_flags = ifp->if_flags;
ifm.ifm_data = ifp->if_data;
ifm.ifm_addrs = 0;
m = rt_msg1(RTM_IFINFO, &info, (caddr_t)&ifm, sizeof(ifm));
if (m == 0)
return;
route_proto.sp_protocol = 0;
raw_input(m, &route_proto, &route_src, &route_dst);
#ifdef COMPAT_14
memset(&info, 0, sizeof(info));
memset(&oifm, 0, sizeof(oifm));
oifm.ifm_index = ifp->if_index;
oifm.ifm_flags = ifp->if_flags;
oifm.ifm_data.ifi_type = ifp->if_data.ifi_type;
oifm.ifm_data.ifi_addrlen = ifp->if_data.ifi_addrlen;
oifm.ifm_data.ifi_hdrlen = ifp->if_data.ifi_hdrlen;
oifm.ifm_data.ifi_mtu = ifp->if_data.ifi_mtu;
oifm.ifm_data.ifi_metric = ifp->if_data.ifi_metric;
oifm.ifm_data.ifi_baudrate = ifp->if_data.ifi_baudrate;
oifm.ifm_data.ifi_ipackets = ifp->if_data.ifi_ipackets;
oifm.ifm_data.ifi_ierrors = ifp->if_data.ifi_ierrors;
oifm.ifm_data.ifi_opackets = ifp->if_data.ifi_opackets;
oifm.ifm_data.ifi_oerrors = ifp->if_data.ifi_oerrors;
oifm.ifm_data.ifi_collisions = ifp->if_data.ifi_collisions;
oifm.ifm_data.ifi_ibytes = ifp->if_data.ifi_ibytes;
oifm.ifm_data.ifi_obytes = ifp->if_data.ifi_obytes;
oifm.ifm_data.ifi_imcasts = ifp->if_data.ifi_imcasts;
oifm.ifm_data.ifi_omcasts = ifp->if_data.ifi_omcasts;
oifm.ifm_data.ifi_iqdrops = ifp->if_data.ifi_iqdrops;
oifm.ifm_data.ifi_noproto = ifp->if_data.ifi_noproto;
oifm.ifm_data.ifi_lastchange = ifp->if_data.ifi_lastchange;
oifm.ifm_addrs = 0;
m = rt_msg1(RTM_OIFINFO, &info, (caddr_t)&oifm, sizeof(oifm));
if (m == 0)
return;
route_proto.sp_protocol = 0;
raw_input(m, &route_proto, &route_src, &route_dst);
#endif
}
/*
* This is called to generate messages from the routing socket
* indicating a network interface has had addresses associated with it.
* if we ever reverse the logic and replace messages TO the routing
* socket indicate a request to configure interfaces, then it will
* be unnecessary as the routing socket will automatically generate
* copies of it.
*/
void
rt_newaddrmsg(cmd, ifa, error, rt)
int cmd, error;
struct ifaddr *ifa;
struct rtentry *rt;
{
struct rt_addrinfo info;
struct sockaddr *sa = NULL;
int pass;
struct mbuf *m = NULL;
struct ifnet *ifp = ifa->ifa_ifp;
if (route_cb.any_count == 0)
return;
for (pass = 1; pass < 3; pass++) {
memset(&info, 0, sizeof(info));
if ((cmd == RTM_ADD && pass == 1) ||
(cmd == RTM_DELETE && pass == 2)) {
struct ifa_msghdr ifam;
int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
ifaaddr = sa = ifa->ifa_addr;
ifpaddr = TAILQ_FIRST(&ifp->if_addrlist)->ifa_addr;
netmask = ifa->ifa_netmask;
brdaddr = ifa->ifa_dstaddr;
memset(&ifam, 0, sizeof(ifam));
ifam.ifam_index = ifp->if_index;
ifam.ifam_metric = ifa->ifa_metric;
ifam.ifam_flags = ifa->ifa_flags;
m = rt_msg1(ncmd, &info, (caddr_t)&ifam, sizeof(ifam));
if (m == NULL)
continue;
mtod(m, struct ifa_msghdr *)->ifam_addrs =
info.rti_addrs;
}
if ((cmd == RTM_ADD && pass == 2) ||
(cmd == RTM_DELETE && pass == 1)) {
struct rt_msghdr rtm;
if (rt == 0)
continue;
netmask = rt_mask(rt);
dst = sa = rt_key(rt);
gate = rt->rt_gateway;
memset(&rtm, 0, sizeof(rtm));
rtm.rtm_index = ifp->if_index;
rtm.rtm_flags |= rt->rt_flags;
rtm.rtm_errno = error;
m = rt_msg1(cmd, &info, (caddr_t)&rtm, sizeof(rtm));
if (m == NULL)
continue;
mtod(m, struct rt_msghdr *)->rtm_addrs = info.rti_addrs;
}
route_proto.sp_protocol = sa ? sa->sa_family : 0;
raw_input(m, &route_proto, &route_src, &route_dst);
}
}
/*
* This is called to generate routing socket messages indicating
* network interface arrival and departure.
*/
void
rt_ifannouncemsg(ifp, what)
struct ifnet *ifp;
int what;
{
struct if_announcemsghdr ifan;
struct mbuf *m;
struct rt_addrinfo info;
if (route_cb.any_count == 0)
return;
memset(&info, 0, sizeof(info));
memset(&ifan, 0, sizeof(ifan));
ifan.ifan_index = ifp->if_index;
strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name));
ifan.ifan_what = what;
m = rt_msg1(RTM_IFANNOUNCE, &info, (caddr_t)&ifan, sizeof(ifan));
if (m == 0)
return;
route_proto.sp_protocol = 0;
raw_input(m, &route_proto, &route_src, &route_dst);
}
/*
* This is used in dumping the kernel table via sysctl().
*/
static int
sysctl_dumpentry(rn, v)
struct radix_node *rn;
void *v;
{
struct walkarg *w = v;
struct rtentry *rt = (struct rtentry *)rn;
int error = 0, size;
struct rt_addrinfo info;
if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
return 0;
memset(&info, 0, sizeof(info));
dst = rt_key(rt);
gate = rt->rt_gateway;
netmask = rt_mask(rt);
genmask = rt->rt_genmask;
if (rt->rt_ifp) {
ifpaddr = TAILQ_FIRST(&rt->rt_ifp->if_addrlist)->ifa_addr;
ifaaddr = rt->rt_ifa->ifa_addr;
if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
brdaddr = rt->rt_ifa->ifa_dstaddr;
}
if ((error = rt_msg2(RTM_GET, &info, 0, w, &size)))
return (error);
if (w->w_where && w->w_tmem && w->w_needed <= 0) {
struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
rtm->rtm_flags = rt->rt_flags;
rtm->rtm_use = rt->rt_use;
rtm->rtm_rmx = rt->rt_rmx;
rtm->rtm_index = rt->rt_ifp->if_index;
rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
rtm->rtm_addrs = info.rti_addrs;
if ((error = copyout(rtm, w->w_where, size)) != 0)
w->w_where = NULL;
else
w->w_where += size;
}
return (error);
}
static int
sysctl_iflist(af, w, type)
int af;
struct walkarg *w;
int type;
{
struct ifnet *ifp;
struct ifaddr *ifa;
struct rt_addrinfo info;
int len, error = 0;
memset(&info, 0, sizeof(info));
TAILQ_FOREACH(ifp, &ifnet, if_list) {
if (w->w_arg && w->w_arg != ifp->if_index)
continue;
ifa = TAILQ_FIRST(&ifp->if_addrlist);
ifpaddr = ifa->ifa_addr;
switch (type) {
case NET_RT_IFLIST:
error =
rt_msg2(RTM_IFINFO, &info, (caddr_t)0, w, &len);
break;
#ifdef COMPAT_14
case NET_RT_OIFLIST:
error =
rt_msg2(RTM_OIFINFO, &info, (caddr_t)0, w, &len);
break;
#endif
default:
panic("sysctl_iflist(1)");
}
if (error)
return (error);
ifpaddr = 0;
if (w->w_where && w->w_tmem && w->w_needed <= 0) {
switch (type) {
case NET_RT_IFLIST: {
struct if_msghdr *ifm;
ifm = (struct if_msghdr *)w->w_tmem;
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags = ifp->if_flags;
ifm->ifm_data = ifp->if_data;
ifm->ifm_addrs = info.rti_addrs;
error = copyout(ifm, w->w_where, len);
if (error)
return (error);
w->w_where += len;
break;
}
#ifdef COMPAT_14
case NET_RT_OIFLIST: {
struct if_msghdr14 *ifm;
ifm = (struct if_msghdr14 *)w->w_tmem;
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags = ifp->if_flags;
ifm->ifm_data.ifi_type = ifp->if_data.ifi_type;
ifm->ifm_data.ifi_addrlen =
ifp->if_data.ifi_addrlen;
ifm->ifm_data.ifi_hdrlen =
ifp->if_data.ifi_hdrlen;
ifm->ifm_data.ifi_mtu = ifp->if_data.ifi_mtu;
ifm->ifm_data.ifi_metric =
ifp->if_data.ifi_metric;
ifm->ifm_data.ifi_baudrate =
ifp->if_data.ifi_baudrate;
ifm->ifm_data.ifi_ipackets =
ifp->if_data.ifi_ipackets;
ifm->ifm_data.ifi_ierrors =
ifp->if_data.ifi_ierrors;
ifm->ifm_data.ifi_opackets =
ifp->if_data.ifi_opackets;
ifm->ifm_data.ifi_oerrors =
ifp->if_data.ifi_oerrors;
ifm->ifm_data.ifi_collisions =
ifp->if_data.ifi_collisions;
ifm->ifm_data.ifi_ibytes =
ifp->if_data.ifi_ibytes;
ifm->ifm_data.ifi_obytes =
ifp->if_data.ifi_obytes;
ifm->ifm_data.ifi_imcasts =
ifp->if_data.ifi_imcasts;
ifm->ifm_data.ifi_omcasts =
ifp->if_data.ifi_omcasts;
ifm->ifm_data.ifi_iqdrops =
ifp->if_data.ifi_iqdrops;
ifm->ifm_data.ifi_noproto =
ifp->if_data.ifi_noproto;
ifm->ifm_data.ifi_lastchange =
ifp->if_data.ifi_lastchange;
ifm->ifm_addrs = info.rti_addrs;
error = copyout(ifm, w->w_where, len);
if (error)
return (error);
w->w_where += len;
break;
}
#endif
default:
panic("sysctl_iflist(2)");
}
}
while ((ifa = TAILQ_NEXT(ifa, ifa_list)) != NULL) {
if (af && af != ifa->ifa_addr->sa_family)
continue;
ifaaddr = ifa->ifa_addr;
netmask = ifa->ifa_netmask;
brdaddr = ifa->ifa_dstaddr;
if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len)))
return (error);
if (w->w_where && w->w_tmem && w->w_needed <= 0) {
struct ifa_msghdr *ifam;
ifam = (struct ifa_msghdr *)w->w_tmem;
ifam->ifam_index = ifa->ifa_ifp->if_index;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_metric = ifa->ifa_metric;
ifam->ifam_addrs = info.rti_addrs;
error = copyout(w->w_tmem, w->w_where, len);
if (error)
return (error);
w->w_where += len;
}
}
ifaaddr = netmask = brdaddr = 0;
}
return (0);
}
static int
sysctl_rtable(name, namelen, where, given, new, newlen)
int *name;
u_int namelen;
void *where;
size_t *given;
void *new;
size_t newlen;
{
struct radix_node_head *rnh;
int i, s, error = EINVAL;
u_char af;
struct walkarg w;
if (new)
return (EPERM);
if (namelen != 3)
return (EINVAL);
af = name[0];
w.w_tmemneeded = 0;
w.w_tmemsize = 0;
w.w_tmem = NULL;
again:
/* we may return here if a later [re]alloc of the t_mem buffer fails */
if (w.w_tmemneeded) {
w.w_tmem = (caddr_t) malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK);
w.w_tmemsize = w.w_tmemneeded;
w.w_tmemneeded = 0;
}
w.w_op = name[1];
w.w_arg = name[2];
w.w_given = *given;
w.w_needed = 0 - w.w_given;
w.w_where = where;
s = splsoftnet();
switch (w.w_op) {
case NET_RT_DUMP:
case NET_RT_FLAGS:
for (i = 1; i <= AF_MAX; i++)
if ((rnh = rt_tables[i]) && (af == 0 || af == i) &&
(error = (*rnh->rnh_walktree)(rnh,
sysctl_dumpentry, &w)))
break;
break;
#ifdef COMPAT_14
case NET_RT_OIFLIST:
error = sysctl_iflist(af, &w, w.w_op);
break;
#endif
case NET_RT_IFLIST:
error = sysctl_iflist(af, &w, w.w_op);
}
splx(s);
/* check to see if we couldn't allocate memory with NOWAIT */
if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded)
goto again;
if (w.w_tmem)
free(w.w_tmem, M_RTABLE);
w.w_needed += w.w_given;
if (where) {
*given = w.w_where - (caddr_t) where;
if (*given < w.w_needed)
return (ENOMEM);
} else {
*given = (11 * w.w_needed) / 10;
}
return (error);
}
/*
* Definitions of protocols supported in the ROUTE domain.
*/
struct protosw routesw[] = {
{ SOCK_RAW, &routedomain, 0, PR_ATOMIC|PR_ADDR,
raw_input, route_output, raw_ctlinput, 0,
route_usrreq,
raw_init, 0, 0, 0,
sysctl_rtable,
}
};
struct domain routedomain =
{ PF_ROUTE, "route", route_init, 0, 0,
routesw, &routesw[sizeof(routesw)/sizeof(routesw[0])] };