1337 lines
33 KiB
C
1337 lines
33 KiB
C
/* $NetBSD: prop_dictionary.c,v 1.23 2008/03/05 07:47:09 cube Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <prop/prop_array.h>
|
|
#include <prop/prop_dictionary.h>
|
|
#include <prop/prop_string.h>
|
|
#include "prop_object_impl.h"
|
|
#include "prop_rb_impl.h"
|
|
|
|
#if !defined(_KERNEL) && !defined(_STANDALONE)
|
|
#include <errno.h>
|
|
#endif
|
|
|
|
/*
|
|
* We implement these like arrays, but we keep them sorted by key.
|
|
* This allows us to binary-search as well as keep externalized output
|
|
* sane-looking for human eyes.
|
|
*/
|
|
|
|
#define EXPAND_STEP 16
|
|
|
|
/*
|
|
* prop_dictionary_keysym_t is allocated with space at the end to hold the
|
|
* key. This must be a regular object so that we can maintain sane iterator
|
|
* semantics -- we don't want to require that the caller release the result
|
|
* of prop_object_iterator_next().
|
|
*
|
|
* We'd like to have some small'ish keysym objects for up-to-16 characters
|
|
* in a key, some for up-to-32 characters in a key, and then a final bucket
|
|
* for up-to-128 characters in a key (not including NUL). Keys longer than
|
|
* 128 characters are not allowed.
|
|
*/
|
|
struct _prop_dictionary_keysym {
|
|
struct _prop_object pdk_obj;
|
|
size_t pdk_size;
|
|
struct rb_node pdk_link;
|
|
char pdk_key[1];
|
|
/* actually variable length */
|
|
};
|
|
|
|
#define RBNODE_TO_PDK(n) \
|
|
((struct _prop_dictionary_keysym *) \
|
|
((uintptr_t)n - offsetof(struct _prop_dictionary_keysym, pdk_link)))
|
|
|
|
/* pdk_key[1] takes care of the NUL */
|
|
#define PDK_SIZE_16 (sizeof(struct _prop_dictionary_keysym) + 16)
|
|
#define PDK_SIZE_32 (sizeof(struct _prop_dictionary_keysym) + 32)
|
|
#define PDK_SIZE_128 (sizeof(struct _prop_dictionary_keysym) + 128)
|
|
|
|
#define PDK_MAXKEY 128
|
|
|
|
_PROP_POOL_INIT(_prop_dictionary_keysym16_pool, PDK_SIZE_16, "pdict16")
|
|
_PROP_POOL_INIT(_prop_dictionary_keysym32_pool, PDK_SIZE_32, "pdict32")
|
|
_PROP_POOL_INIT(_prop_dictionary_keysym128_pool, PDK_SIZE_128, "pdict128")
|
|
|
|
struct _prop_dict_entry {
|
|
prop_dictionary_keysym_t pde_key;
|
|
prop_object_t pde_objref;
|
|
};
|
|
|
|
struct _prop_dictionary {
|
|
struct _prop_object pd_obj;
|
|
_PROP_RWLOCK_DECL(pd_rwlock)
|
|
struct _prop_dict_entry *pd_array;
|
|
unsigned int pd_capacity;
|
|
unsigned int pd_count;
|
|
int pd_flags;
|
|
|
|
uint32_t pd_version;
|
|
};
|
|
|
|
#define PD_F_IMMUTABLE 0x01 /* dictionary is immutable */
|
|
|
|
_PROP_POOL_INIT(_prop_dictionary_pool, sizeof(struct _prop_dictionary),
|
|
"propdict")
|
|
_PROP_MALLOC_DEFINE(M_PROP_DICT, "prop dictionary",
|
|
"property dictionary container object")
|
|
|
|
static int _prop_dictionary_free(prop_stack_t, prop_object_t *);
|
|
static void _prop_dictionary_emergency_free(prop_object_t);
|
|
static bool _prop_dictionary_externalize(
|
|
struct _prop_object_externalize_context *,
|
|
void *);
|
|
static bool _prop_dictionary_equals(prop_object_t, prop_object_t,
|
|
void **, void **,
|
|
prop_object_t *, prop_object_t *);
|
|
static void _prop_dictionary_equals_finish(prop_object_t, prop_object_t);
|
|
|
|
static const struct _prop_object_type _prop_object_type_dictionary = {
|
|
.pot_type = PROP_TYPE_DICTIONARY,
|
|
.pot_free = _prop_dictionary_free,
|
|
.pot_emergency_free = _prop_dictionary_emergency_free,
|
|
.pot_extern = _prop_dictionary_externalize,
|
|
.pot_equals = _prop_dictionary_equals,
|
|
.pot_equals_finish = _prop_dictionary_equals_finish,
|
|
};
|
|
|
|
static int _prop_dict_keysym_free(prop_stack_t, prop_object_t *);
|
|
static bool _prop_dict_keysym_externalize(
|
|
struct _prop_object_externalize_context *,
|
|
void *);
|
|
static bool _prop_dict_keysym_equals(prop_object_t, prop_object_t,
|
|
void **, void **,
|
|
prop_object_t *, prop_object_t *);
|
|
|
|
static const struct _prop_object_type _prop_object_type_dict_keysym = {
|
|
.pot_type = PROP_TYPE_DICT_KEYSYM,
|
|
.pot_free = _prop_dict_keysym_free,
|
|
.pot_extern = _prop_dict_keysym_externalize,
|
|
.pot_equals = _prop_dict_keysym_equals,
|
|
};
|
|
|
|
#define prop_object_is_dictionary(x) \
|
|
((x) != NULL && (x)->pd_obj.po_type == &_prop_object_type_dictionary)
|
|
#define prop_object_is_dictionary_keysym(x) \
|
|
((x) != NULL && (x)->pdk_obj.po_type == &_prop_object_type_dict_keysym)
|
|
|
|
#define prop_dictionary_is_immutable(x) \
|
|
(((x)->pd_flags & PD_F_IMMUTABLE) != 0)
|
|
|
|
struct _prop_dictionary_iterator {
|
|
struct _prop_object_iterator pdi_base;
|
|
unsigned int pdi_index;
|
|
};
|
|
|
|
/*
|
|
* Dictionary key symbols are immutable, and we are likely to have many
|
|
* duplicated key symbols. So, to save memory, we unique'ify key symbols
|
|
* so we only have to have one copy of each string.
|
|
*/
|
|
|
|
static int
|
|
_prop_dict_keysym_rb_compare_nodes(const struct rb_node *n1,
|
|
const struct rb_node *n2)
|
|
{
|
|
const prop_dictionary_keysym_t pdk1 = RBNODE_TO_PDK(n1);
|
|
const prop_dictionary_keysym_t pdk2 = RBNODE_TO_PDK(n2);
|
|
|
|
return (strcmp(pdk1->pdk_key, pdk2->pdk_key));
|
|
}
|
|
|
|
static int
|
|
_prop_dict_keysym_rb_compare_key(const struct rb_node *n,
|
|
const void *v)
|
|
{
|
|
const prop_dictionary_keysym_t pdk = RBNODE_TO_PDK(n);
|
|
const char *cp = v;
|
|
|
|
return (strcmp(pdk->pdk_key, cp));
|
|
}
|
|
|
|
static const struct rb_tree_ops _prop_dict_keysym_rb_tree_ops = {
|
|
.rbto_compare_nodes = _prop_dict_keysym_rb_compare_nodes,
|
|
.rbto_compare_key = _prop_dict_keysym_rb_compare_key,
|
|
};
|
|
|
|
static struct rb_tree _prop_dict_keysym_tree;
|
|
static bool _prop_dict_keysym_tree_initialized;
|
|
|
|
_PROP_MUTEX_DECL_STATIC(_prop_dict_keysym_tree_mutex)
|
|
|
|
static void
|
|
_prop_dict_keysym_put(prop_dictionary_keysym_t pdk)
|
|
{
|
|
|
|
if (pdk->pdk_size <= PDK_SIZE_16)
|
|
_PROP_POOL_PUT(_prop_dictionary_keysym16_pool, pdk);
|
|
else if (pdk->pdk_size <= PDK_SIZE_32)
|
|
_PROP_POOL_PUT(_prop_dictionary_keysym32_pool, pdk);
|
|
else {
|
|
_PROP_ASSERT(pdk->pdk_size <= PDK_SIZE_128);
|
|
_PROP_POOL_PUT(_prop_dictionary_keysym128_pool, pdk);
|
|
}
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
_prop_dict_keysym_free(prop_stack_t stack, prop_object_t *obj)
|
|
{
|
|
prop_dictionary_keysym_t pdk = *obj;
|
|
|
|
_PROP_MUTEX_LOCK(_prop_dict_keysym_tree_mutex);
|
|
_prop_rb_tree_remove_node(&_prop_dict_keysym_tree, &pdk->pdk_link);
|
|
_PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
|
|
|
|
_prop_dict_keysym_put(pdk);
|
|
|
|
return _PROP_OBJECT_FREE_DONE;
|
|
}
|
|
|
|
static bool
|
|
_prop_dict_keysym_externalize(struct _prop_object_externalize_context *ctx,
|
|
void *v)
|
|
{
|
|
prop_dictionary_keysym_t pdk = v;
|
|
|
|
/* We externalize these as strings, and they're never empty. */
|
|
|
|
_PROP_ASSERT(pdk->pdk_key[0] != '\0');
|
|
|
|
if (_prop_object_externalize_start_tag(ctx, "string") == false ||
|
|
_prop_object_externalize_append_encoded_cstring(ctx,
|
|
pdk->pdk_key) == false ||
|
|
_prop_object_externalize_end_tag(ctx, "string") == false)
|
|
return (false);
|
|
|
|
return (true);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static bool
|
|
_prop_dict_keysym_equals(prop_object_t v1, prop_object_t v2,
|
|
void **stored_pointer1, void **stored_pointer2,
|
|
prop_object_t *next_obj1, prop_object_t *next_obj2)
|
|
{
|
|
prop_dictionary_keysym_t pdk1 = v1;
|
|
prop_dictionary_keysym_t pdk2 = v2;
|
|
|
|
/*
|
|
* There is only ever one copy of a keysym at any given time,
|
|
* so we can reduce this to a simple pointer equality check.
|
|
*/
|
|
if (pdk1 == pdk2)
|
|
return _PROP_OBJECT_EQUALS_TRUE;
|
|
else
|
|
return _PROP_OBJECT_EQUALS_FALSE;
|
|
}
|
|
|
|
static prop_dictionary_keysym_t
|
|
_prop_dict_keysym_alloc(const char *key)
|
|
{
|
|
prop_dictionary_keysym_t opdk, pdk;
|
|
const struct rb_node *n;
|
|
size_t size;
|
|
|
|
/*
|
|
* Check to see if this already exists in the tree. If it does,
|
|
* we just retain it and return it.
|
|
*/
|
|
_PROP_MUTEX_LOCK(_prop_dict_keysym_tree_mutex);
|
|
if (! _prop_dict_keysym_tree_initialized) {
|
|
_prop_rb_tree_init(&_prop_dict_keysym_tree,
|
|
&_prop_dict_keysym_rb_tree_ops);
|
|
_prop_dict_keysym_tree_initialized = true;
|
|
} else {
|
|
n = _prop_rb_tree_find(&_prop_dict_keysym_tree, key);
|
|
if (n != NULL) {
|
|
opdk = RBNODE_TO_PDK(n);
|
|
prop_object_retain(opdk);
|
|
_PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
|
|
return (opdk);
|
|
}
|
|
}
|
|
_PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
|
|
|
|
/*
|
|
* Not in the tree. Create it now.
|
|
*/
|
|
|
|
size = sizeof(*pdk) + strlen(key) /* pdk_key[1] covers the NUL */;
|
|
|
|
if (size <= PDK_SIZE_16)
|
|
pdk = _PROP_POOL_GET(_prop_dictionary_keysym16_pool);
|
|
else if (size <= PDK_SIZE_32)
|
|
pdk = _PROP_POOL_GET(_prop_dictionary_keysym32_pool);
|
|
else if (size <= PDK_SIZE_128)
|
|
pdk = _PROP_POOL_GET(_prop_dictionary_keysym128_pool);
|
|
else
|
|
pdk = NULL; /* key too long */
|
|
|
|
if (pdk == NULL)
|
|
return (NULL);
|
|
|
|
_prop_object_init(&pdk->pdk_obj, &_prop_object_type_dict_keysym);
|
|
|
|
strcpy(pdk->pdk_key, key);
|
|
pdk->pdk_size = size;
|
|
|
|
/*
|
|
* We dropped the mutex when we allocated the new object, so
|
|
* we have to check again if it is in the tree.
|
|
*/
|
|
_PROP_MUTEX_LOCK(_prop_dict_keysym_tree_mutex);
|
|
n = _prop_rb_tree_find(&_prop_dict_keysym_tree, key);
|
|
if (n != NULL) {
|
|
opdk = RBNODE_TO_PDK(n);
|
|
prop_object_retain(opdk);
|
|
_PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
|
|
_prop_dict_keysym_put(pdk);
|
|
return (opdk);
|
|
}
|
|
_prop_rb_tree_insert_node(&_prop_dict_keysym_tree, &pdk->pdk_link);
|
|
_PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
|
|
return (pdk);
|
|
}
|
|
|
|
int dont_free = 1;
|
|
|
|
static int
|
|
_prop_dictionary_free(prop_stack_t stack, prop_object_t *obj)
|
|
{
|
|
prop_dictionary_t pd = *obj;
|
|
prop_dictionary_keysym_t pdk;
|
|
prop_object_t po;
|
|
|
|
_PROP_ASSERT(pd->pd_count <= pd->pd_capacity);
|
|
_PROP_ASSERT((pd->pd_capacity == 0 && pd->pd_array == NULL) ||
|
|
(pd->pd_capacity != 0 && pd->pd_array != NULL));
|
|
|
|
/* The empty dictorinary is easy, handle that first. */
|
|
if (pd->pd_count == 0) {
|
|
if (pd->pd_array != NULL)
|
|
_PROP_FREE(pd->pd_array, M_PROP_DICT);
|
|
|
|
_PROP_RWLOCK_DESTROY(pd->pd_rwlock);
|
|
|
|
_PROP_POOL_PUT(_prop_dictionary_pool, pd);
|
|
|
|
return (_PROP_OBJECT_FREE_DONE);
|
|
}
|
|
|
|
po = pd->pd_array[pd->pd_count - 1].pde_objref;
|
|
_PROP_ASSERT(po != NULL);
|
|
|
|
if (stack == NULL) {
|
|
/*
|
|
* If we are in emergency release mode,
|
|
* just let caller recurse down.
|
|
*/
|
|
*obj = po;
|
|
return (_PROP_OBJECT_FREE_FAILED);
|
|
}
|
|
|
|
/* Otherwise, try to push the current object on the stack. */
|
|
if (!_prop_stack_push(stack, pd, NULL, NULL, NULL)) {
|
|
/* Push failed, entering emergency release mode. */
|
|
return (_PROP_OBJECT_FREE_FAILED);
|
|
}
|
|
/* Object pushed on stack, caller will release it. */
|
|
--pd->pd_count;
|
|
pdk = pd->pd_array[pd->pd_count].pde_key;
|
|
_PROP_ASSERT(pdk != NULL);
|
|
prop_object_release(pdk);
|
|
*obj = po;
|
|
return (_PROP_OBJECT_FREE_RECURSE);
|
|
}
|
|
|
|
static void
|
|
_prop_dictionary_emergency_free(prop_object_t obj)
|
|
{
|
|
prop_dictionary_t pd = obj;
|
|
prop_dictionary_keysym_t pdk;
|
|
|
|
_PROP_ASSERT(pd->pd_count != 0);
|
|
--pd->pd_count;
|
|
|
|
pdk = pd->pd_array[pd->pd_count].pde_key;
|
|
_PROP_ASSERT(pdk != NULL);
|
|
prop_object_release(pdk);
|
|
}
|
|
|
|
static bool
|
|
_prop_dictionary_externalize(struct _prop_object_externalize_context *ctx,
|
|
void *v)
|
|
{
|
|
prop_dictionary_t pd = v;
|
|
prop_dictionary_keysym_t pdk;
|
|
struct _prop_object *po;
|
|
prop_object_iterator_t pi;
|
|
unsigned int i;
|
|
bool rv = false;
|
|
|
|
_PROP_RWLOCK_RDLOCK(pd->pd_rwlock);
|
|
|
|
if (pd->pd_count == 0) {
|
|
_PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
|
|
return (_prop_object_externalize_empty_tag(ctx, "dict"));
|
|
}
|
|
|
|
if (_prop_object_externalize_start_tag(ctx, "dict") == false ||
|
|
_prop_object_externalize_append_char(ctx, '\n') == false)
|
|
goto out;
|
|
|
|
pi = prop_dictionary_iterator(pd);
|
|
if (pi == NULL)
|
|
goto out;
|
|
|
|
ctx->poec_depth++;
|
|
_PROP_ASSERT(ctx->poec_depth != 0);
|
|
|
|
while ((pdk = prop_object_iterator_next(pi)) != NULL) {
|
|
po = prop_dictionary_get_keysym(pd, pdk);
|
|
if (po == NULL ||
|
|
_prop_object_externalize_start_tag(ctx, "key") == false ||
|
|
_prop_object_externalize_append_encoded_cstring(ctx,
|
|
pdk->pdk_key) == false ||
|
|
_prop_object_externalize_end_tag(ctx, "key") == false ||
|
|
(*po->po_type->pot_extern)(ctx, po) == false) {
|
|
prop_object_iterator_release(pi);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
prop_object_iterator_release(pi);
|
|
|
|
ctx->poec_depth--;
|
|
for (i = 0; i < ctx->poec_depth; i++) {
|
|
if (_prop_object_externalize_append_char(ctx, '\t') == false)
|
|
goto out;
|
|
}
|
|
if (_prop_object_externalize_end_tag(ctx, "dict") == false)
|
|
goto out;
|
|
|
|
rv = true;
|
|
|
|
out:
|
|
_PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
|
|
return (rv);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static bool
|
|
_prop_dictionary_equals(prop_object_t v1, prop_object_t v2,
|
|
void **stored_pointer1, void **stored_pointer2,
|
|
prop_object_t *next_obj1, prop_object_t *next_obj2)
|
|
{
|
|
prop_dictionary_t dict1 = v1;
|
|
prop_dictionary_t dict2 = v2;
|
|
uintptr_t idx;
|
|
bool rv = _PROP_OBJECT_EQUALS_FALSE;
|
|
|
|
if (dict1 == dict2)
|
|
return (_PROP_OBJECT_EQUALS_TRUE);
|
|
|
|
_PROP_ASSERT(*stored_pointer1 == *stored_pointer2);
|
|
|
|
idx = (uintptr_t)*stored_pointer1;
|
|
|
|
if (idx == 0) {
|
|
if ((uintptr_t)dict1 < (uintptr_t)dict2) {
|
|
_PROP_RWLOCK_RDLOCK(dict1->pd_rwlock);
|
|
_PROP_RWLOCK_RDLOCK(dict2->pd_rwlock);
|
|
} else {
|
|
_PROP_RWLOCK_RDLOCK(dict2->pd_rwlock);
|
|
_PROP_RWLOCK_RDLOCK(dict1->pd_rwlock);
|
|
}
|
|
}
|
|
|
|
if (dict1->pd_count != dict2->pd_count)
|
|
goto out;
|
|
|
|
if (idx == dict1->pd_count) {
|
|
rv = _PROP_OBJECT_EQUALS_TRUE;
|
|
goto out;
|
|
}
|
|
|
|
_PROP_ASSERT(idx < dict1->pd_count);
|
|
|
|
*stored_pointer1 = (void *)(idx + 1);
|
|
*stored_pointer2 = (void *)(idx + 1);
|
|
|
|
*next_obj1 = &dict1->pd_array[idx].pde_objref;
|
|
*next_obj2 = &dict2->pd_array[idx].pde_objref;
|
|
|
|
if (!prop_dictionary_keysym_equals(dict1->pd_array[idx].pde_key,
|
|
dict2->pd_array[idx].pde_key))
|
|
goto out;
|
|
|
|
return (_PROP_OBJECT_EQUALS_RECURSE);
|
|
|
|
out:
|
|
_PROP_RWLOCK_UNLOCK(dict1->pd_rwlock);
|
|
_PROP_RWLOCK_UNLOCK(dict2->pd_rwlock);
|
|
return (rv);
|
|
}
|
|
|
|
static void
|
|
_prop_dictionary_equals_finish(prop_object_t v1, prop_object_t v2)
|
|
{
|
|
_PROP_RWLOCK_UNLOCK(((prop_dictionary_t)v1)->pd_rwlock);
|
|
_PROP_RWLOCK_UNLOCK(((prop_dictionary_t)v2)->pd_rwlock);
|
|
}
|
|
|
|
static prop_dictionary_t
|
|
_prop_dictionary_alloc(unsigned int capacity)
|
|
{
|
|
prop_dictionary_t pd;
|
|
struct _prop_dict_entry *array;
|
|
|
|
if (capacity != 0) {
|
|
array = _PROP_CALLOC(capacity * sizeof(*array), M_PROP_DICT);
|
|
if (array == NULL)
|
|
return (NULL);
|
|
} else
|
|
array = NULL;
|
|
|
|
pd = _PROP_POOL_GET(_prop_dictionary_pool);
|
|
if (pd != NULL) {
|
|
_prop_object_init(&pd->pd_obj, &_prop_object_type_dictionary);
|
|
|
|
_PROP_RWLOCK_INIT(pd->pd_rwlock);
|
|
pd->pd_array = array;
|
|
pd->pd_capacity = capacity;
|
|
pd->pd_count = 0;
|
|
pd->pd_flags = 0;
|
|
|
|
pd->pd_version = 0;
|
|
} else if (array != NULL)
|
|
_PROP_FREE(array, M_PROP_DICT);
|
|
|
|
return (pd);
|
|
}
|
|
|
|
static bool
|
|
_prop_dictionary_expand(prop_dictionary_t pd, unsigned int capacity)
|
|
{
|
|
struct _prop_dict_entry *array, *oarray;
|
|
|
|
/*
|
|
* Dictionary must be WRITE-LOCKED.
|
|
*/
|
|
|
|
oarray = pd->pd_array;
|
|
|
|
array = _PROP_CALLOC(capacity * sizeof(*array), M_PROP_DICT);
|
|
if (array == NULL)
|
|
return (false);
|
|
if (oarray != NULL)
|
|
memcpy(array, oarray, pd->pd_capacity * sizeof(*array));
|
|
pd->pd_array = array;
|
|
pd->pd_capacity = capacity;
|
|
|
|
if (oarray != NULL)
|
|
_PROP_FREE(oarray, M_PROP_DICT);
|
|
|
|
return (true);
|
|
}
|
|
|
|
static prop_object_t
|
|
_prop_dictionary_iterator_next_object(void *v)
|
|
{
|
|
struct _prop_dictionary_iterator *pdi = v;
|
|
prop_dictionary_t pd = pdi->pdi_base.pi_obj;
|
|
prop_dictionary_keysym_t pdk = NULL;
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary(pd));
|
|
|
|
_PROP_RWLOCK_RDLOCK(pd->pd_rwlock);
|
|
|
|
if (pd->pd_version != pdi->pdi_base.pi_version)
|
|
goto out; /* dictionary changed during iteration */
|
|
|
|
_PROP_ASSERT(pdi->pdi_index <= pd->pd_count);
|
|
|
|
if (pdi->pdi_index == pd->pd_count)
|
|
goto out; /* we've iterated all objects */
|
|
|
|
pdk = pd->pd_array[pdi->pdi_index].pde_key;
|
|
pdi->pdi_index++;
|
|
|
|
out:
|
|
_PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
|
|
return (pdk);
|
|
}
|
|
|
|
static void
|
|
_prop_dictionary_iterator_reset(void *v)
|
|
{
|
|
struct _prop_dictionary_iterator *pdi = v;
|
|
prop_dictionary_t pd = pdi->pdi_base.pi_obj;
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary(pd));
|
|
|
|
_PROP_RWLOCK_RDLOCK(pd->pd_rwlock);
|
|
|
|
pdi->pdi_index = 0;
|
|
pdi->pdi_base.pi_version = pd->pd_version;
|
|
|
|
_PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_create --
|
|
* Create a dictionary.
|
|
*/
|
|
prop_dictionary_t
|
|
prop_dictionary_create(void)
|
|
{
|
|
|
|
return (_prop_dictionary_alloc(0));
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_create_with_capacity --
|
|
* Create a dictionary with the capacity to store N objects.
|
|
*/
|
|
prop_dictionary_t
|
|
prop_dictionary_create_with_capacity(unsigned int capacity)
|
|
{
|
|
|
|
return (_prop_dictionary_alloc(capacity));
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_copy --
|
|
* Copy a dictionary. The new dictionary has an initial capacity equal
|
|
* to the number of objects stored int the original dictionary. The new
|
|
* dictionary contains refrences to the original dictionary's objects,
|
|
* not copies of those objects (i.e. a shallow copy).
|
|
*/
|
|
prop_dictionary_t
|
|
prop_dictionary_copy(prop_dictionary_t opd)
|
|
{
|
|
prop_dictionary_t pd;
|
|
prop_dictionary_keysym_t pdk;
|
|
prop_object_t po;
|
|
unsigned int idx;
|
|
|
|
if (! prop_object_is_dictionary(opd))
|
|
return (NULL);
|
|
|
|
_PROP_RWLOCK_RDLOCK(opd->pd_rwlock);
|
|
|
|
pd = _prop_dictionary_alloc(opd->pd_count);
|
|
if (pd != NULL) {
|
|
for (idx = 0; idx < opd->pd_count; idx++) {
|
|
pdk = opd->pd_array[idx].pde_key;
|
|
po = opd->pd_array[idx].pde_objref;
|
|
|
|
prop_object_retain(pdk);
|
|
prop_object_retain(po);
|
|
|
|
pd->pd_array[idx].pde_key = pdk;
|
|
pd->pd_array[idx].pde_objref = po;
|
|
}
|
|
pd->pd_count = opd->pd_count;
|
|
pd->pd_flags = opd->pd_flags;
|
|
}
|
|
_PROP_RWLOCK_UNLOCK(opd->pd_rwlock);
|
|
return (pd);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_copy_mutable --
|
|
* Like prop_dictionary_copy(), but the resulting dictionary is
|
|
* mutable.
|
|
*/
|
|
prop_dictionary_t
|
|
prop_dictionary_copy_mutable(prop_dictionary_t opd)
|
|
{
|
|
prop_dictionary_t pd;
|
|
|
|
if (! prop_object_is_dictionary(opd))
|
|
return (NULL);
|
|
|
|
pd = prop_dictionary_copy(opd);
|
|
if (pd != NULL)
|
|
pd->pd_flags &= ~PD_F_IMMUTABLE;
|
|
|
|
return (pd);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_make_immutable --
|
|
* Set the immutable flag on that dictionary.
|
|
*/
|
|
void
|
|
prop_dictionary_make_immutable(prop_dictionary_t pd)
|
|
{
|
|
|
|
_PROP_RWLOCK_WRLOCK(pd->pd_rwlock);
|
|
if (prop_dictionary_is_immutable(pd) == false)
|
|
pd->pd_flags |= PD_F_IMMUTABLE;
|
|
_PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_count --
|
|
* Return the number of objects stored in the dictionary.
|
|
*/
|
|
unsigned int
|
|
prop_dictionary_count(prop_dictionary_t pd)
|
|
{
|
|
unsigned int rv;
|
|
|
|
if (! prop_object_is_dictionary(pd))
|
|
return (0);
|
|
|
|
_PROP_RWLOCK_RDLOCK(pd->pd_rwlock);
|
|
rv = pd->pd_count;
|
|
_PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_ensure_capacity --
|
|
* Ensure that the dictionary has the capacity to store the specified
|
|
* total number of objects (including the objects already stored in
|
|
* the dictionary).
|
|
*/
|
|
bool
|
|
prop_dictionary_ensure_capacity(prop_dictionary_t pd, unsigned int capacity)
|
|
{
|
|
bool rv;
|
|
|
|
if (! prop_object_is_dictionary(pd))
|
|
return (false);
|
|
|
|
_PROP_RWLOCK_WRLOCK(pd->pd_rwlock);
|
|
if (capacity > pd->pd_capacity)
|
|
rv = _prop_dictionary_expand(pd, capacity);
|
|
else
|
|
rv = true;
|
|
_PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_iterator --
|
|
* Return an iterator for the dictionary. The dictionary is retained by
|
|
* the iterator.
|
|
*/
|
|
prop_object_iterator_t
|
|
prop_dictionary_iterator(prop_dictionary_t pd)
|
|
{
|
|
struct _prop_dictionary_iterator *pdi;
|
|
|
|
if (! prop_object_is_dictionary(pd))
|
|
return (NULL);
|
|
|
|
pdi = _PROP_CALLOC(sizeof(*pdi), M_TEMP);
|
|
if (pdi == NULL)
|
|
return (NULL);
|
|
pdi->pdi_base.pi_next_object = _prop_dictionary_iterator_next_object;
|
|
pdi->pdi_base.pi_reset = _prop_dictionary_iterator_reset;
|
|
prop_object_retain(pd);
|
|
pdi->pdi_base.pi_obj = pd;
|
|
_prop_dictionary_iterator_reset(pdi);
|
|
|
|
return (&pdi->pdi_base);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_all_keys --
|
|
* Return an array containing a snapshot of all of the keys
|
|
* in the dictionary.
|
|
*/
|
|
prop_array_t
|
|
prop_dictionary_all_keys(prop_dictionary_t pd)
|
|
{
|
|
prop_array_t array;
|
|
unsigned int idx;
|
|
bool rv = true;
|
|
|
|
if (! prop_object_is_dictionary(pd))
|
|
return (NULL);
|
|
|
|
/* There is no pressing need to lock the dictionary for this. */
|
|
array = prop_array_create_with_capacity(pd->pd_count);
|
|
|
|
_PROP_RWLOCK_RDLOCK(pd->pd_rwlock);
|
|
|
|
for (idx = 0; idx < pd->pd_count; idx++) {
|
|
rv = prop_array_add(array, pd->pd_array[idx].pde_key);
|
|
if (rv == false)
|
|
break;
|
|
}
|
|
|
|
_PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
|
|
|
|
if (rv == false) {
|
|
prop_object_release(array);
|
|
array = NULL;
|
|
}
|
|
return (array);
|
|
}
|
|
|
|
static struct _prop_dict_entry *
|
|
_prop_dict_lookup(prop_dictionary_t pd, const char *key,
|
|
unsigned int *idxp)
|
|
{
|
|
struct _prop_dict_entry *pde;
|
|
unsigned int base, idx, distance;
|
|
int res;
|
|
|
|
/*
|
|
* Dictionary must be READ-LOCKED or WRITE-LOCKED.
|
|
*/
|
|
|
|
for (idx = 0, base = 0, distance = pd->pd_count; distance != 0;
|
|
distance >>= 1) {
|
|
idx = base + (distance >> 1);
|
|
pde = &pd->pd_array[idx];
|
|
_PROP_ASSERT(pde->pde_key != NULL);
|
|
res = strcmp(key, pde->pde_key->pdk_key);
|
|
if (res == 0) {
|
|
if (idxp != NULL)
|
|
*idxp = idx;
|
|
return (pde);
|
|
}
|
|
if (res > 0) { /* key > pdk_key: move right */
|
|
base = idx + 1;
|
|
distance--;
|
|
} /* else move left */
|
|
}
|
|
|
|
/* idx points to the slot we looked at last. */
|
|
if (idxp != NULL)
|
|
*idxp = idx;
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_get --
|
|
* Return the object stored with specified key.
|
|
*/
|
|
prop_object_t
|
|
prop_dictionary_get(prop_dictionary_t pd, const char *key)
|
|
{
|
|
const struct _prop_dict_entry *pde;
|
|
prop_object_t po = NULL;
|
|
|
|
if (! prop_object_is_dictionary(pd))
|
|
return (NULL);
|
|
|
|
_PROP_RWLOCK_RDLOCK(pd->pd_rwlock);
|
|
pde = _prop_dict_lookup(pd, key, NULL);
|
|
if (pde != NULL) {
|
|
_PROP_ASSERT(pde->pde_objref != NULL);
|
|
po = pde->pde_objref;
|
|
}
|
|
_PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
|
|
return (po);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_get_keysym --
|
|
* Return the object stored at the location encoded by the keysym.
|
|
*/
|
|
prop_object_t
|
|
prop_dictionary_get_keysym(prop_dictionary_t pd, prop_dictionary_keysym_t pdk)
|
|
{
|
|
|
|
if (! (prop_object_is_dictionary(pd) &&
|
|
prop_object_is_dictionary_keysym(pdk)))
|
|
return (NULL);
|
|
|
|
return (prop_dictionary_get(pd, pdk->pdk_key));
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_set --
|
|
* Store a reference to an object at with the specified key.
|
|
* If the key already exisit, the original object is released.
|
|
*/
|
|
bool
|
|
prop_dictionary_set(prop_dictionary_t pd, const char *key, prop_object_t po)
|
|
{
|
|
struct _prop_dict_entry *pde;
|
|
prop_dictionary_keysym_t pdk;
|
|
unsigned int idx;
|
|
bool rv = false;
|
|
|
|
if (! prop_object_is_dictionary(pd))
|
|
return (false);
|
|
|
|
_PROP_ASSERT(pd->pd_count <= pd->pd_capacity);
|
|
|
|
if (prop_dictionary_is_immutable(pd))
|
|
return (false);
|
|
|
|
_PROP_RWLOCK_WRLOCK(pd->pd_rwlock);
|
|
|
|
pde = _prop_dict_lookup(pd, key, &idx);
|
|
if (pde != NULL) {
|
|
prop_object_t opo = pde->pde_objref;
|
|
prop_object_retain(po);
|
|
pde->pde_objref = po;
|
|
prop_object_release(opo);
|
|
rv = true;
|
|
goto out;
|
|
}
|
|
|
|
pdk = _prop_dict_keysym_alloc(key);
|
|
if (pdk == NULL)
|
|
goto out;
|
|
|
|
if (pd->pd_count == pd->pd_capacity &&
|
|
_prop_dictionary_expand(pd,
|
|
pd->pd_capacity + EXPAND_STEP) == false) {
|
|
prop_object_release(pdk);
|
|
goto out;
|
|
}
|
|
|
|
/* At this point, the store will succeed. */
|
|
prop_object_retain(po);
|
|
|
|
if (pd->pd_count == 0) {
|
|
pd->pd_array[0].pde_key = pdk;
|
|
pd->pd_array[0].pde_objref = po;
|
|
pd->pd_count++;
|
|
pd->pd_version++;
|
|
rv = true;
|
|
goto out;
|
|
}
|
|
|
|
pde = &pd->pd_array[idx];
|
|
_PROP_ASSERT(pde->pde_key != NULL);
|
|
|
|
if (strcmp(key, pde->pde_key->pdk_key) < 0) {
|
|
/*
|
|
* key < pdk_key: insert to the left. This is the same as
|
|
* inserting to the right, except we decrement the current
|
|
* index first.
|
|
*
|
|
* Because we're unsigned, we have to special case 0
|
|
* (grumble).
|
|
*/
|
|
if (idx == 0) {
|
|
memmove(&pd->pd_array[1], &pd->pd_array[0],
|
|
pd->pd_count * sizeof(*pde));
|
|
pd->pd_array[0].pde_key = pdk;
|
|
pd->pd_array[0].pde_objref = po;
|
|
pd->pd_count++;
|
|
pd->pd_version++;
|
|
rv = true;
|
|
goto out;
|
|
}
|
|
idx--;
|
|
}
|
|
|
|
memmove(&pd->pd_array[idx + 2], &pd->pd_array[idx + 1],
|
|
(pd->pd_count - (idx + 1)) * sizeof(*pde));
|
|
pd->pd_array[idx + 1].pde_key = pdk;
|
|
pd->pd_array[idx + 1].pde_objref = po;
|
|
pd->pd_count++;
|
|
|
|
pd->pd_version++;
|
|
|
|
rv = true;
|
|
|
|
out:
|
|
_PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_set_keysym --
|
|
* Replace the object in the dictionary at the location encoded by
|
|
* the keysym.
|
|
*/
|
|
bool
|
|
prop_dictionary_set_keysym(prop_dictionary_t pd, prop_dictionary_keysym_t pdk,
|
|
prop_object_t po)
|
|
{
|
|
|
|
if (! (prop_object_is_dictionary(pd) &&
|
|
prop_object_is_dictionary_keysym(pdk)))
|
|
return (false);
|
|
|
|
return (prop_dictionary_set(pd, pdk->pdk_key, po));
|
|
}
|
|
|
|
static void
|
|
_prop_dictionary_remove(prop_dictionary_t pd, struct _prop_dict_entry *pde,
|
|
unsigned int idx)
|
|
{
|
|
prop_dictionary_keysym_t pdk = pde->pde_key;
|
|
prop_object_t po = pde->pde_objref;
|
|
|
|
/*
|
|
* Dictionary must be WRITE-LOCKED.
|
|
*/
|
|
|
|
_PROP_ASSERT(pd->pd_count != 0);
|
|
_PROP_ASSERT(idx < pd->pd_count);
|
|
_PROP_ASSERT(pde == &pd->pd_array[idx]);
|
|
|
|
idx++;
|
|
memmove(&pd->pd_array[idx - 1], &pd->pd_array[idx],
|
|
(pd->pd_count - idx) * sizeof(*pde));
|
|
pd->pd_count--;
|
|
pd->pd_version++;
|
|
|
|
prop_object_release(pdk);
|
|
prop_object_release(po);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_remove --
|
|
* Remove the reference to an object with the specified key from
|
|
* the dictionary.
|
|
*/
|
|
void
|
|
prop_dictionary_remove(prop_dictionary_t pd, const char *key)
|
|
{
|
|
struct _prop_dict_entry *pde;
|
|
unsigned int idx;
|
|
|
|
if (! prop_object_is_dictionary(pd))
|
|
return;
|
|
|
|
_PROP_RWLOCK_WRLOCK(pd->pd_rwlock);
|
|
|
|
/* XXX Should this be a _PROP_ASSERT()? */
|
|
if (prop_dictionary_is_immutable(pd))
|
|
goto out;
|
|
|
|
pde = _prop_dict_lookup(pd, key, &idx);
|
|
/* XXX Should this be a _PROP_ASSERT()? */
|
|
if (pde == NULL)
|
|
goto out;
|
|
|
|
_prop_dictionary_remove(pd, pde, idx);
|
|
out:
|
|
_PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_remove_keysym --
|
|
* Remove a reference to an object stored in the dictionary at the
|
|
* location encoded by the keysym.
|
|
*/
|
|
void
|
|
prop_dictionary_remove_keysym(prop_dictionary_t pd,
|
|
prop_dictionary_keysym_t pdk)
|
|
{
|
|
|
|
if (! (prop_object_is_dictionary(pd) &&
|
|
prop_object_is_dictionary_keysym(pdk)))
|
|
return;
|
|
|
|
prop_dictionary_remove(pd, pdk->pdk_key);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_equals --
|
|
* Return true if the two dictionaries are equivalent. Note we do a
|
|
* by-value comparison of the objects in the dictionary.
|
|
*/
|
|
bool
|
|
prop_dictionary_equals(prop_dictionary_t dict1, prop_dictionary_t dict2)
|
|
{
|
|
if (!prop_object_is_dictionary(dict1) ||
|
|
!prop_object_is_dictionary(dict2))
|
|
return (false);
|
|
|
|
return (prop_object_equals(dict1, dict2));
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_keysym_cstring_nocopy --
|
|
* Return an immutable reference to the keysym's value.
|
|
*/
|
|
const char *
|
|
prop_dictionary_keysym_cstring_nocopy(prop_dictionary_keysym_t pdk)
|
|
{
|
|
|
|
if (! prop_object_is_dictionary_keysym(pdk))
|
|
return (NULL);
|
|
|
|
return (pdk->pdk_key);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_keysym_equals --
|
|
* Return true if the two dictionary key symbols are equivalent.
|
|
* Note: We do not compare the object references.
|
|
*/
|
|
bool
|
|
prop_dictionary_keysym_equals(prop_dictionary_keysym_t pdk1,
|
|
prop_dictionary_keysym_t pdk2)
|
|
{
|
|
if (!prop_object_is_dictionary_keysym(pdk1) ||
|
|
!prop_object_is_dictionary_keysym(pdk2))
|
|
return (_PROP_OBJECT_EQUALS_FALSE);
|
|
|
|
return (prop_object_equals(pdk1, pdk2));
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_externalize --
|
|
* Externalize a dictionary, returning a NUL-terminated buffer
|
|
* containing the XML-style representation. The buffer is allocated
|
|
* with the M_TEMP memory type.
|
|
*/
|
|
char *
|
|
prop_dictionary_externalize(prop_dictionary_t pd)
|
|
{
|
|
struct _prop_object_externalize_context *ctx;
|
|
char *cp;
|
|
|
|
ctx = _prop_object_externalize_context_alloc();
|
|
if (ctx == NULL)
|
|
return (NULL);
|
|
|
|
if (_prop_object_externalize_header(ctx) == false ||
|
|
(*pd->pd_obj.po_type->pot_extern)(ctx, pd) == false ||
|
|
_prop_object_externalize_footer(ctx) == false) {
|
|
/* We are responsible for releasing the buffer. */
|
|
_PROP_FREE(ctx->poec_buf, M_TEMP);
|
|
_prop_object_externalize_context_free(ctx);
|
|
return (NULL);
|
|
}
|
|
|
|
cp = ctx->poec_buf;
|
|
_prop_object_externalize_context_free(ctx);
|
|
|
|
return (cp);
|
|
}
|
|
|
|
/*
|
|
* _prop_dictionary_internalize --
|
|
* Parse a <dict>...</dict> and return the object created from the
|
|
* external representation.
|
|
*
|
|
* Internal state in via rec_data is the storage area for the last processed
|
|
* key.
|
|
* _prop_dictionary_internalize_body is the upper half of the parse loop.
|
|
* It is responsible for parsing the key directly and storing it in the area
|
|
* referenced by rec_data.
|
|
* _prop_dictionary_internalize_cont is the lower half and called with the value
|
|
* associated with the key.
|
|
*/
|
|
static bool _prop_dictionary_internalize_body(prop_stack_t,
|
|
prop_object_t *, struct _prop_object_internalize_context *, char *);
|
|
|
|
bool
|
|
_prop_dictionary_internalize(prop_stack_t stack, prop_object_t *obj,
|
|
struct _prop_object_internalize_context *ctx)
|
|
{
|
|
prop_dictionary_t dict;
|
|
char *tmpkey;
|
|
|
|
/* We don't currently understand any attributes. */
|
|
if (ctx->poic_tagattr != NULL)
|
|
return (true);
|
|
|
|
dict = prop_dictionary_create();
|
|
if (dict == NULL)
|
|
return (true);
|
|
|
|
if (ctx->poic_is_empty_element) {
|
|
*obj = dict;
|
|
return (true);
|
|
}
|
|
|
|
tmpkey = _PROP_MALLOC(PDK_MAXKEY + 1, M_TEMP);
|
|
if (tmpkey == NULL) {
|
|
prop_object_release(dict);
|
|
return (true);
|
|
}
|
|
|
|
*obj = dict;
|
|
/*
|
|
* Opening tag is found, storage for key allocated and
|
|
* now continue to the first element.
|
|
*/
|
|
return _prop_dictionary_internalize_body(stack, obj, ctx, tmpkey);
|
|
}
|
|
|
|
static bool
|
|
_prop_dictionary_internalize_continue(prop_stack_t stack, prop_object_t *obj,
|
|
struct _prop_object_internalize_context *ctx, void *data, prop_object_t child)
|
|
{
|
|
prop_dictionary_t dict = *obj;
|
|
char *tmpkey = data;
|
|
|
|
_PROP_ASSERT(tmpkey != NULL);
|
|
|
|
if (child == NULL ||
|
|
prop_dictionary_set(dict, tmpkey, child) == false) {
|
|
_PROP_FREE(tmpkey, M_TEMP);
|
|
if (child != NULL)
|
|
prop_object_release(child);
|
|
prop_object_release(dict);
|
|
*obj = NULL;
|
|
return (true);
|
|
}
|
|
|
|
prop_object_release(child);
|
|
|
|
/*
|
|
* key, value was added, now continue looking for the next key
|
|
* or the closing tag.
|
|
*/
|
|
return _prop_dictionary_internalize_body(stack, obj, ctx, tmpkey);
|
|
}
|
|
|
|
static bool
|
|
_prop_dictionary_internalize_body(prop_stack_t stack, prop_object_t *obj,
|
|
struct _prop_object_internalize_context *ctx, char *tmpkey)
|
|
{
|
|
prop_dictionary_t dict = *obj;
|
|
size_t keylen;
|
|
|
|
/* Fetch the next tag. */
|
|
if (_prop_object_internalize_find_tag(ctx, NULL, _PROP_TAG_TYPE_EITHER) == false)
|
|
goto bad;
|
|
|
|
/* Check to see if this is the end of the dictionary. */
|
|
if (_PROP_TAG_MATCH(ctx, "dict") &&
|
|
ctx->poic_tag_type == _PROP_TAG_TYPE_END) {
|
|
_PROP_FREE(tmpkey, M_TEMP);
|
|
return (true);
|
|
}
|
|
|
|
/* Ok, it must be a non-empty key start tag. */
|
|
if (!_PROP_TAG_MATCH(ctx, "key") ||
|
|
ctx->poic_tag_type != _PROP_TAG_TYPE_START ||
|
|
ctx->poic_is_empty_element)
|
|
goto bad;
|
|
|
|
if (_prop_object_internalize_decode_string(ctx,
|
|
tmpkey, PDK_MAXKEY, &keylen,
|
|
&ctx->poic_cp) == false)
|
|
goto bad;
|
|
|
|
_PROP_ASSERT(keylen <= PDK_MAXKEY);
|
|
tmpkey[keylen] = '\0';
|
|
|
|
if (_prop_object_internalize_find_tag(ctx, "key",
|
|
_PROP_TAG_TYPE_END) == false)
|
|
goto bad;
|
|
|
|
/* ..and now the beginning of the value. */
|
|
if (_prop_object_internalize_find_tag(ctx, NULL,
|
|
_PROP_TAG_TYPE_START) == false)
|
|
goto bad;
|
|
|
|
/*
|
|
* Key is found, now wait for value to be parsed.
|
|
*/
|
|
if (_prop_stack_push(stack, *obj,
|
|
_prop_dictionary_internalize_continue,
|
|
tmpkey, NULL))
|
|
return (false);
|
|
|
|
bad:
|
|
_PROP_FREE(tmpkey, M_TEMP);
|
|
prop_object_release(dict);
|
|
*obj = NULL;
|
|
return (true);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_internalize --
|
|
* Create a dictionary by parsing the NUL-terminated XML-style
|
|
* representation.
|
|
*/
|
|
prop_dictionary_t
|
|
prop_dictionary_internalize(const char *xml)
|
|
{
|
|
return _prop_generic_internalize(xml, "dict");
|
|
}
|
|
|
|
#if !defined(_KERNEL) && !defined(_STANDALONE)
|
|
/*
|
|
* prop_dictionary_externalize_to_file --
|
|
* Externalize a dictionary to the specified file.
|
|
*/
|
|
bool
|
|
prop_dictionary_externalize_to_file(prop_dictionary_t dict, const char *fname)
|
|
{
|
|
char *xml;
|
|
bool rv;
|
|
int save_errno = 0; /* XXXGCC -Wuninitialized [mips, ...] */
|
|
|
|
xml = prop_dictionary_externalize(dict);
|
|
if (xml == NULL)
|
|
return (false);
|
|
rv = _prop_object_externalize_write_file(fname, xml, strlen(xml));
|
|
if (rv == false)
|
|
save_errno = errno;
|
|
_PROP_FREE(xml, M_TEMP);
|
|
if (rv == false)
|
|
errno = save_errno;
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_internalize_from_file --
|
|
* Internalize a dictionary from a file.
|
|
*/
|
|
prop_dictionary_t
|
|
prop_dictionary_internalize_from_file(const char *fname)
|
|
{
|
|
struct _prop_object_internalize_mapped_file *mf;
|
|
prop_dictionary_t dict;
|
|
|
|
mf = _prop_object_internalize_map_file(fname);
|
|
if (mf == NULL)
|
|
return (NULL);
|
|
dict = prop_dictionary_internalize(mf->poimf_xml);
|
|
_prop_object_internalize_unmap_file(mf);
|
|
|
|
return (dict);
|
|
}
|
|
#endif /* !_KERNEL && !_STANDALONE */
|