NetBSD/lib/libpthread/pthread_mutex.c

473 lines
12 KiB
C

/* $NetBSD: pthread_mutex.c,v 1.38 2007/11/19 15:14:13 ad Exp $ */
/*-
* Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__RCSID("$NetBSD: pthread_mutex.c,v 1.38 2007/11/19 15:14:13 ad Exp $");
#include <errno.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/lock.h>
#include "pthread.h"
#include "pthread_int.h"
#ifndef PTHREAD__HAVE_ATOMIC
static int pthread_mutex_lock_slow(pthread_t, pthread_mutex_t *);
__strong_alias(__libc_mutex_init,pthread_mutex_init)
__strong_alias(__libc_mutex_lock,pthread_mutex_lock)
__strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
__strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
__strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
__strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
__strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
__strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
__strong_alias(__libc_thr_once,pthread_once)
struct mutex_private {
int type;
int recursecount;
};
static const struct mutex_private mutex_private_default = {
PTHREAD_MUTEX_DEFAULT,
0,
};
struct mutexattr_private {
int type;
};
static const struct mutexattr_private mutexattr_private_default = {
PTHREAD_MUTEX_DEFAULT,
};
int
pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
{
struct mutexattr_private *map;
struct mutex_private *mp;
pthread__error(EINVAL, "Invalid mutex attribute",
(attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
if (attr != NULL && (map = attr->ptma_private) != NULL &&
memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
mp = malloc(sizeof(*mp));
if (mp == NULL)
return ENOMEM;
mp->type = map->type;
mp->recursecount = 0;
} else {
/* LINTED cast away const */
mp = (struct mutex_private *) &mutex_private_default;
}
mutex->ptm_magic = _PT_MUTEX_MAGIC;
mutex->ptm_owner = NULL;
pthread_lockinit(&mutex->ptm_lock);
pthread_lockinit(&mutex->ptm_interlock);
PTQ_INIT(&mutex->ptm_blocked);
mutex->ptm_private = mp;
return 0;
}
int
pthread_mutex_destroy(pthread_mutex_t *mutex)
{
pthread__error(EINVAL, "Invalid mutex",
mutex->ptm_magic == _PT_MUTEX_MAGIC);
pthread__error(EBUSY, "Destroying locked mutex",
__SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock));
mutex->ptm_magic = _PT_MUTEX_DEAD;
if (mutex->ptm_private != NULL &&
mutex->ptm_private != (const void *)&mutex_private_default)
free(mutex->ptm_private);
return 0;
}
/*
* Note regarding memory visibility: Pthreads has rules about memory
* visibility and mutexes. Very roughly: Memory a thread can see when
* it unlocks a mutex can be seen by another thread that locks the
* same mutex.
*
* A memory barrier after a lock and before an unlock will provide
* this behavior. This code relies on pthread__spintrylock() to issue
* a barrier after obtaining a lock, and on pthread__spinunlock() to
* issue a barrier before releasing a lock.
*/
int
pthread_mutex_lock(pthread_mutex_t *mutex)
{
pthread_t self;
int error;
self = pthread__self();
/*
* Note that if we get the lock, we don't have to deal with any
* non-default lock type handling.
*/
if (__predict_false(pthread__spintrylock(self, &mutex->ptm_lock) == 0)) {
error = pthread_mutex_lock_slow(self, mutex);
if (error)
return error;
}
/*
* We have the lock!
*/
mutex->ptm_owner = self;
return 0;
}
static int
pthread_mutex_lock_slow(pthread_t self, pthread_mutex_t *mutex)
{
extern int pthread__started;
struct mutex_private *mp;
sigset_t ss;
int count;
pthread__error(EINVAL, "Invalid mutex",
mutex->ptm_magic == _PT_MUTEX_MAGIC);
for (;;) {
/* Spin for a while. */
count = pthread__nspins;
while (__SIMPLELOCK_LOCKED_P(&mutex->ptm_lock) && --count > 0)
pthread__smt_pause();
if (count > 0) {
if (pthread__spintrylock(self, &mutex->ptm_lock) != 0)
break;
continue;
}
/* Okay, didn't look free. Get the interlock... */
pthread__spinlock(self, &mutex->ptm_interlock);
/*
* The mutex_unlock routine will get the interlock
* before looking at the list of sleepers, so if the
* lock is held we can safely put ourselves on the
* sleep queue. If it's not held, we can try taking it
* again.
*/
PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
if (__SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock)) {
PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
pthread__spinunlock(self, &mutex->ptm_interlock);
continue;
}
mp = mutex->ptm_private;
if (mutex->ptm_owner == self && mp != NULL) {
switch (mp->type) {
case PTHREAD_MUTEX_ERRORCHECK:
PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
pthread__spinunlock(self, &mutex->ptm_interlock);
return EDEADLK;
case PTHREAD_MUTEX_RECURSIVE:
/*
* It's safe to do this without
* holding the interlock, because
* we only modify it if we know we
* own the mutex.
*/
PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
pthread__spinunlock(self, &mutex->ptm_interlock);
if (mp->recursecount == INT_MAX)
return EAGAIN;
mp->recursecount++;
return 0;
}
}
if (pthread__started == 0) {
/* The spec says we must deadlock, so... */
pthread__assert(mp->type == PTHREAD_MUTEX_NORMAL);
(void) sigprocmask(SIG_SETMASK, NULL, &ss);
for (;;) {
sigsuspend(&ss);
}
/*NOTREACHED*/
}
/*
* Locking a mutex is not a cancellation
* point, so we don't need to do the
* test-cancellation dance. We may get woken
* up spuriously by pthread_cancel or signals,
* but it's okay since we're just going to
* retry.
*/
self->pt_sleeponq = 1;
self->pt_sleepobj = &mutex->ptm_blocked;
pthread__spinunlock(self, &mutex->ptm_interlock);
(void)pthread__park(self, &mutex->ptm_interlock,
&mutex->ptm_blocked, NULL, 0, &mutex->ptm_blocked);
}
return 0;
}
int
pthread_mutex_trylock(pthread_mutex_t *mutex)
{
struct mutex_private *mp;
pthread_t self;
pthread__error(EINVAL, "Invalid mutex",
mutex->ptm_magic == _PT_MUTEX_MAGIC);
self = pthread__self();
if (pthread__spintrylock(self, &mutex->ptm_lock) == 0) {
/*
* These tests can be performed without holding the
* interlock because these fields are only modified
* if we know we own the mutex.
*/
mp = mutex->ptm_private;
if (mp != NULL && mp->type == PTHREAD_MUTEX_RECURSIVE &&
mutex->ptm_owner == self) {
if (mp->recursecount == INT_MAX)
return EAGAIN;
mp->recursecount++;
return 0;
}
return EBUSY;
}
mutex->ptm_owner = self;
return 0;
}
int
pthread_mutex_unlock(pthread_mutex_t *mutex)
{
struct mutex_private *mp;
pthread_t self;
int weown;
pthread__error(EINVAL, "Invalid mutex",
mutex->ptm_magic == _PT_MUTEX_MAGIC);
/*
* These tests can be performed without holding the
* interlock because these fields are only modified
* if we know we own the mutex.
*/
self = pthread__self();
weown = (mutex->ptm_owner == self);
mp = mutex->ptm_private;
if (mp == NULL) {
if (__predict_false(!weown)) {
pthread__error(EPERM, "Unlocking unlocked mutex",
(mutex->ptm_owner != 0));
pthread__error(EPERM,
"Unlocking mutex owned by another thread", weown);
}
} else if (mp->type == PTHREAD_MUTEX_RECURSIVE) {
if (!weown)
return EPERM;
if (mp->recursecount != 0) {
mp->recursecount--;
return 0;
}
} else if (mp->type == PTHREAD_MUTEX_ERRORCHECK) {
if (!weown)
return EPERM;
if (__predict_false(!weown)) {
pthread__error(EPERM, "Unlocking unlocked mutex",
(mutex->ptm_owner != 0));
pthread__error(EPERM,
"Unlocking mutex owned by another thread", weown);
}
}
mutex->ptm_owner = NULL;
pthread__spinunlock(self, &mutex->ptm_lock);
/*
* Do a double-checked locking dance to see if there are any
* waiters. If we don't see any waiters, we can exit, because
* we've already released the lock. If we do see waiters, they
* were probably waiting on us... there's a slight chance that
* they are waiting on a different thread's ownership of the
* lock that happened between the unlock above and this
* examination of the queue; if so, no harm is done, as the
* waiter will loop and see that the mutex is still locked.
*/
pthread__spinlock(self, &mutex->ptm_interlock);
pthread__unpark_all(self, &mutex->ptm_interlock, &mutex->ptm_blocked);
return 0;
}
int
pthread_mutexattr_init(pthread_mutexattr_t *attr)
{
struct mutexattr_private *map;
map = malloc(sizeof(*map));
if (map == NULL)
return ENOMEM;
*map = mutexattr_private_default;
attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
attr->ptma_private = map;
return 0;
}
int
pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
{
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
attr->ptma_magic = _PT_MUTEXATTR_DEAD;
if (attr->ptma_private != NULL)
free(attr->ptma_private);
return 0;
}
int
pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
{
struct mutexattr_private *map;
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
map = attr->ptma_private;
*typep = map->type;
return 0;
}
int
pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
{
struct mutexattr_private *map;
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
map = attr->ptma_private;
switch (type) {
case PTHREAD_MUTEX_NORMAL:
case PTHREAD_MUTEX_ERRORCHECK:
case PTHREAD_MUTEX_RECURSIVE:
map->type = type;
break;
default:
return EINVAL;
}
return 0;
}
static void
once_cleanup(void *closure)
{
pthread_mutex_unlock((pthread_mutex_t *)closure);
}
int
pthread_once(pthread_once_t *once_control, void (*routine)(void))
{
if (once_control->pto_done == 0) {
pthread_mutex_lock(&once_control->pto_mutex);
pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
if (once_control->pto_done == 0) {
routine();
once_control->pto_done = 1;
}
pthread_cleanup_pop(1);
}
return 0;
}
int
pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *mutex)
{
return mutex->ptm_owner == thread;
}
#endif /* !PTHREAD__HAVE_ATOMIC */