02cdf4d2c8
Diff checked with grep and MK1 eyeball. i386 and amd64 GENERIC and sys still build.
273 lines
10 KiB
C
273 lines
10 KiB
C
/* $NetBSD: fpu_emulate.h,v 1.15 2009/03/14 14:46:01 dsl Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1995 Gordon Ross
|
|
* Copyright (c) 1995 Ken Nakata
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
* 4. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Gordon Ross
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef _FPU_EMULATE_H_
|
|
#define _FPU_EMULATE_H_
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/signal.h>
|
|
#include <sys/time.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/siginfo.h>
|
|
#include <m68k/fpreg.h>
|
|
|
|
/*
|
|
* Floating point emulator (tailored for SPARC/modified for m68k, but
|
|
* structurally machine-independent).
|
|
*
|
|
* Floating point numbers are carried around internally in an `expanded'
|
|
* or `unpacked' form consisting of:
|
|
* - sign
|
|
* - unbiased exponent
|
|
* - mantissa (`1.' + 80-bit fraction + guard + round)
|
|
* - sticky bit
|
|
* Any implied `1' bit is inserted, giving a 81-bit mantissa that is
|
|
* always nonzero. Additional low-order `guard' and `round' bits are
|
|
* scrunched in, making the entire mantissa 83 bits long. This is divided
|
|
* into three 32-bit words, with `spare' bits left over in the upper part
|
|
* of the top word (the high bits of fp_mant[0]). An internal `exploded'
|
|
* number is thus kept within the half-open interval [1.0,2.0) (but see
|
|
* the `number classes' below). This holds even for denormalized numbers:
|
|
* when we explode an external denorm, we normalize it, introducing low-order
|
|
* zero bits, so that the rest of the code always sees normalized values.
|
|
*
|
|
* Note that a number of our algorithms use the `spare' bits at the top.
|
|
* The most demanding algorithm---the one for sqrt---depends on two such
|
|
* bits, so that it can represent values up to (but not including) 8.0,
|
|
* and then it needs a carry on top of that, so that we need three `spares'.
|
|
*
|
|
* The sticky-word is 32 bits so that we can use `OR' operators to goosh
|
|
* whole words from the mantissa into it.
|
|
*
|
|
* All operations are done in this internal extended precision. According
|
|
* to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
|
|
* it is OK to do a+b in extended precision and then round the result to
|
|
* single precision---provided single, double, and extended precisions are
|
|
* `far enough apart' (they always are), but we will try to avoid any such
|
|
* extra work where possible.
|
|
*/
|
|
struct fpn {
|
|
int fp_class; /* see below */
|
|
int fp_sign; /* 0 => positive, 1 => negative */
|
|
int fp_exp; /* exponent (unbiased) */
|
|
int fp_sticky; /* nonzero bits lost at right end */
|
|
u_int fp_mant[3]; /* 83-bit mantissa */
|
|
};
|
|
|
|
#define FP_NMANT 83 /* total bits in mantissa (incl g,r) */
|
|
#define FP_NG 2 /* number of low-order guard bits */
|
|
#define FP_LG ((FP_NMANT - 1) & 31) /* log2(1.0) for fp_mant[0] */
|
|
#define FP_QUIETBIT (1 << (FP_LG - 1)) /* Quiet bit in NaNs (0.5) */
|
|
#define FP_1 (1 << FP_LG) /* 1.0 in fp_mant[0] */
|
|
#define FP_2 (1 << (FP_LG + 1)) /* 2.0 in fp_mant[0] */
|
|
|
|
#define CPYFPN(dst, src) \
|
|
if ((dst) != (src)) { \
|
|
(dst)->fp_class = (src)->fp_class; \
|
|
(dst)->fp_sign = (src)->fp_sign; \
|
|
(dst)->fp_exp = (src)->fp_exp; \
|
|
(dst)->fp_sticky = (src)->fp_sticky; \
|
|
(dst)->fp_mant[0] = (src)->fp_mant[0]; \
|
|
(dst)->fp_mant[1] = (src)->fp_mant[1]; \
|
|
(dst)->fp_mant[2] = (src)->fp_mant[2]; \
|
|
}
|
|
|
|
/*
|
|
* Number classes. Since zero, Inf, and NaN cannot be represented using
|
|
* the above layout, we distinguish these from other numbers via a class.
|
|
*/
|
|
#define FPC_SNAN -2 /* signalling NaN (sign irrelevant) */
|
|
#define FPC_QNAN -1 /* quiet NaN (sign irrelevant) */
|
|
#define FPC_ZERO 0 /* zero (sign matters) */
|
|
#define FPC_NUM 1 /* number (sign matters) */
|
|
#define FPC_INF 2 /* infinity (sign matters) */
|
|
|
|
#define ISNAN(fp) ((fp)->fp_class < 0)
|
|
#define ISZERO(fp) ((fp)->fp_class == 0)
|
|
#define ISINF(fp) ((fp)->fp_class == FPC_INF)
|
|
|
|
/*
|
|
* ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
|
|
* to the `more significant' operand for our purposes. Appendix N says that
|
|
* the result of a computation involving two numbers are:
|
|
*
|
|
* If both are SNaN: operand 2, converted to Quiet
|
|
* If only one is SNaN: the SNaN operand, converted to Quiet
|
|
* If both are QNaN: operand 2
|
|
* If only one is QNaN: the QNaN operand
|
|
*
|
|
* In addition, in operations with an Inf operand, the result is usually
|
|
* Inf. The class numbers are carefully arranged so that if
|
|
* (unsigned)class(op1) > (unsigned)class(op2)
|
|
* then op1 is the one we want; otherwise op2 is the one we want.
|
|
*/
|
|
#define ORDER(x, y) { \
|
|
if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
|
|
SWAP(x, y); \
|
|
}
|
|
#define SWAP(x, y) { \
|
|
register struct fpn *swap; \
|
|
swap = (x), (x) = (y), (y) = swap; \
|
|
}
|
|
|
|
/*
|
|
* Emulator state.
|
|
*/
|
|
struct fpemu {
|
|
struct frame *fe_frame; /* integer regs, etc */
|
|
struct fpframe *fe_fpframe; /* FP registers, etc */
|
|
u_int fe_fpsr; /* fpsr copy (modified during op) */
|
|
u_int fe_fpcr; /* fpcr copy */
|
|
struct fpn fe_f1; /* operand 1 */
|
|
struct fpn fe_f2; /* operand 2, if required */
|
|
struct fpn fe_f3; /* available storage for result */
|
|
};
|
|
|
|
/*****************************************************************************
|
|
* End of definitions derived from Sparc FPE
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* Internal info about a decoded effective address.
|
|
*/
|
|
struct insn_ea {
|
|
int ea_regnum;
|
|
int ea_ext[3]; /* extension words if any */
|
|
int ea_flags; /* flags == 0 means mode 2: An@ */
|
|
#define EA_DIRECT 0x001 /* mode [01]: Dn or An */
|
|
#define EA_PREDECR 0x002 /* mode 4: An@- */
|
|
#define EA_POSTINCR 0x004 /* mode 3: An@+ */
|
|
#define EA_OFFSET 0x008 /* mode 5 or (7,2): APC@(d16) */
|
|
#define EA_INDEXED 0x010 /* mode 6 or (7,3): APC@(Xn:*:*,d8) etc */
|
|
#define EA_ABS 0x020 /* mode (7,[01]): abs */
|
|
#define EA_PC_REL 0x040 /* mode (7,[23]): PC@(d16) etc */
|
|
#define EA_IMMED 0x080 /* mode (7,4): #immed */
|
|
#define EA_MEM_INDIR 0x100 /* mode 6 or (7,3): APC@(Xn:*:*,*)@(*) etc */
|
|
#define EA_BASE_SUPPRSS 0x200 /* mode 6 or (7,3): base register suppressed */
|
|
#define EA_FRAME_EA 0x400 /* MC68LC040 only: precalculated EA from
|
|
format 4 stack frame */
|
|
int ea_moffs; /* offset used for fmoveMulti */
|
|
};
|
|
|
|
#define ea_offset ea_ext[0] /* mode 5: offset word */
|
|
#define ea_absaddr ea_ext[0] /* mode (7,[01]): absolute address */
|
|
#define ea_immed ea_ext /* mode (7,4): immediate value */
|
|
#define ea_basedisp ea_ext[0] /* mode 6: base displacement */
|
|
#define ea_outerdisp ea_ext[1] /* mode 6: outer displacement */
|
|
#define ea_idxreg ea_ext[2] /* mode 6: index register number */
|
|
#define ea_fea ea_ext[0] /* MC68LC040 only: frame EA */
|
|
|
|
struct instruction {
|
|
u_int is_pc; /* insn's address */
|
|
u_int is_nextpc; /* next PC */
|
|
int is_advance; /* length of instruction */
|
|
int is_datasize; /* size of memory operand */
|
|
int is_opcode; /* opcode word */
|
|
int is_word1; /* second word */
|
|
struct insn_ea is_ea; /* decoded effective address mode */
|
|
};
|
|
|
|
/*
|
|
* FP data types
|
|
*/
|
|
#define FTYPE_LNG 0 /* Long Word Integer */
|
|
#define FTYPE_SNG 1 /* Single Prec */
|
|
#define FTYPE_EXT 2 /* Extended Prec */
|
|
#define FTYPE_BCD 3 /* Packed BCD */
|
|
#define FTYPE_WRD 4 /* Word Integer */
|
|
#define FTYPE_DBL 5 /* Double Prec */
|
|
#define FTYPE_BYT 6 /* Byte Integer */
|
|
|
|
/*
|
|
* Other functions.
|
|
*/
|
|
|
|
/* Build a new Quiet NaN (sign=0, frac=all 1's). */
|
|
struct fpn *fpu_newnan(struct fpemu *fe);
|
|
|
|
/*
|
|
* Shift a number right some number of bits, taking care of round/sticky.
|
|
* Note that the result is probably not a well-formed number (it will lack
|
|
* the normal 1-bit mant[0]&FP_1).
|
|
*/
|
|
int fpu_shr(struct fpn * fp, int shr);
|
|
/*
|
|
* Round a number according to the round mode in FPCR
|
|
*/
|
|
int fpu_round(register struct fpemu *fe, register struct fpn *fp);
|
|
|
|
/* type conversion */
|
|
void fpu_explode(struct fpemu *fe, struct fpn *fp, int t, u_int *src);
|
|
void fpu_implode(struct fpemu *fe, struct fpn *fp, int t, u_int *dst);
|
|
|
|
/*
|
|
* non-static emulation functions
|
|
*/
|
|
/* type 0 */
|
|
int fpu_emul_fmovecr(struct fpemu *fe, struct instruction *insn);
|
|
int fpu_emul_fstore(struct fpemu *fe, struct instruction *insn);
|
|
int fpu_emul_fscale(struct fpemu *fe, struct instruction *insn);
|
|
|
|
/*
|
|
* include function declarations of those which are called by fpu_emul_arith()
|
|
*/
|
|
#include "fpu_arith_proto.h"
|
|
|
|
int fpu_emulate(struct frame *frame, struct fpframe *fpf, ksiginfo_t *ksi);
|
|
|
|
/*
|
|
* "helper" functions
|
|
*/
|
|
/* return values from constant rom */
|
|
struct fpn *fpu_const(struct fpn *fp, u_int offset);
|
|
/* update exceptions and FPSR */
|
|
int fpu_upd_excp(struct fpemu *fe);
|
|
u_int fpu_upd_fpsr(struct fpemu *fe, struct fpn *fp);
|
|
|
|
/* address mode decoder, and load/store */
|
|
int fpu_decode_ea(struct frame *frame, struct instruction *insn,
|
|
struct insn_ea *ea, int modreg);
|
|
int fpu_load_ea(struct frame *frame, struct instruction *insn,
|
|
struct insn_ea *ea, char *dst);
|
|
int fpu_store_ea(struct frame *frame, struct instruction *insn,
|
|
struct insn_ea *ea, char *src);
|
|
|
|
/* fpu_subr.c */
|
|
void fpu_norm(register struct fpn *fp);
|
|
|
|
#if !defined(FPE_DEBUG)
|
|
# define FPE_DEBUG 0
|
|
#endif
|
|
|
|
#endif /* _FPU_EMULATE_H_ */
|