NetBSD/sys/dev/cgd.c
christos 66f8c2438f PR/39525: Joachim Schueth, Frederik Sausmikat:
cgd inadvertently encrypts blkno eight times to generate IV
Add "encblkno1" IV type to encrypt only once, rename old "encblkno" to
"encblkno8" for clarity, and make "encblkno" an alias for "encblkno8"
for backward compatibility.
2008-09-12 16:51:54 +00:00

818 lines
20 KiB
C

/* $NetBSD: cgd.c,v 1.53 2008/09/12 16:51:55 christos Exp $ */
/*-
* Copyright (c) 2002 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Roland C. Dowdeswell.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cgd.c,v 1.53 2008/09/12 16:51:55 christos Exp $");
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/errno.h>
#include <sys/buf.h>
#include <sys/bufq.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/disk.h>
#include <sys/disklabel.h>
#include <sys/fcntl.h>
#include <sys/vnode.h>
#include <sys/conf.h>
#include <dev/dkvar.h>
#include <dev/cgdvar.h>
/* Entry Point Functions */
void cgdattach(int);
static dev_type_open(cgdopen);
static dev_type_close(cgdclose);
static dev_type_read(cgdread);
static dev_type_write(cgdwrite);
static dev_type_ioctl(cgdioctl);
static dev_type_strategy(cgdstrategy);
static dev_type_dump(cgddump);
static dev_type_size(cgdsize);
const struct bdevsw cgd_bdevsw = {
cgdopen, cgdclose, cgdstrategy, cgdioctl,
cgddump, cgdsize, D_DISK
};
const struct cdevsw cgd_cdevsw = {
cgdopen, cgdclose, cgdread, cgdwrite, cgdioctl,
nostop, notty, nopoll, nommap, nokqfilter, D_DISK
};
/* Internal Functions */
static int cgdstart(struct dk_softc *, struct buf *);
static void cgdiodone(struct buf *);
static int cgd_ioctl_set(struct cgd_softc *, void *, struct lwp *);
static int cgd_ioctl_clr(struct cgd_softc *, void *, struct lwp *);
static int cgdinit(struct cgd_softc *, const char *, struct vnode *,
struct lwp *);
static void cgd_cipher(struct cgd_softc *, void *, void *,
size_t, daddr_t, size_t, int);
/* Pseudo-disk Interface */
static struct dk_intf the_dkintf = {
DTYPE_CGD,
"cgd",
cgdopen,
cgdclose,
cgdstrategy,
cgdstart,
};
static struct dk_intf *di = &the_dkintf;
static struct dkdriver cgddkdriver = {
.d_strategy = cgdstrategy,
.d_minphys = minphys,
};
/* DIAGNOSTIC and DEBUG definitions */
#if defined(CGDDEBUG) && !defined(DEBUG)
#define DEBUG
#endif
#ifdef DEBUG
int cgddebug = 0;
#define CGDB_FOLLOW 0x1
#define CGDB_IO 0x2
#define CGDB_CRYPTO 0x4
#define IFDEBUG(x,y) if (cgddebug & (x)) y
#define DPRINTF(x,y) IFDEBUG(x, printf y)
#define DPRINTF_FOLLOW(y) DPRINTF(CGDB_FOLLOW, y)
static void hexprint(const char *, void *, int);
#else
#define IFDEBUG(x,y)
#define DPRINTF(x,y)
#define DPRINTF_FOLLOW(y)
#endif
#ifdef DIAGNOSTIC
#define DIAGPANIC(x) panic x
#define DIAGCONDPANIC(x,y) if (x) panic y
#else
#define DIAGPANIC(x)
#define DIAGCONDPANIC(x,y)
#endif
/* Global variables */
struct cgd_softc *cgd_softc;
int numcgd = 0;
/* Utility Functions */
#define CGDUNIT(x) DISKUNIT(x)
#define GETCGD_SOFTC(_cs, x) if (!((_cs) = getcgd_softc(x))) return ENXIO
static struct cgd_softc *
getcgd_softc(dev_t dev)
{
int unit = CGDUNIT(dev);
DPRINTF_FOLLOW(("getcgd_softc(0x%x): unit = %d\n", dev, unit));
if (unit >= numcgd)
return NULL;
return &cgd_softc[unit];
}
/* The code */
static void
cgdsoftc_init(struct cgd_softc *cs, int num)
{
char sbuf[DK_XNAME_SIZE];
memset(cs, 0x0, sizeof(*cs));
snprintf(sbuf, DK_XNAME_SIZE, "cgd%d", num);
simple_lock_init(&cs->sc_slock);
dk_sc_init(&cs->sc_dksc, cs, sbuf);
disk_init(&cs->sc_dksc.sc_dkdev, cs->sc_dksc.sc_xname, &cgddkdriver);
}
void
cgdattach(int num)
{
int i;
DPRINTF_FOLLOW(("cgdattach(%d)\n", num));
if (num <= 0) {
DIAGPANIC(("cgdattach: count <= 0"));
return;
}
cgd_softc = (void *)malloc(num * sizeof(*cgd_softc), M_DEVBUF, M_NOWAIT);
if (!cgd_softc) {
printf("WARNING: unable to malloc(9) memory for crypt disks\n");
DIAGPANIC(("cgdattach: cannot malloc(9) enough memory"));
return;
}
numcgd = num;
for (i=0; i<num; i++)
cgdsoftc_init(&cgd_softc[i], i);
}
static int
cgdopen(dev_t dev, int flags, int fmt, struct lwp *l)
{
struct cgd_softc *cs;
DPRINTF_FOLLOW(("cgdopen(%d, %d)\n", dev, flags));
GETCGD_SOFTC(cs, dev);
return dk_open(di, &cs->sc_dksc, dev, flags, fmt, l);
}
static int
cgdclose(dev_t dev, int flags, int fmt, struct lwp *l)
{
struct cgd_softc *cs;
DPRINTF_FOLLOW(("cgdclose(%d, %d)\n", dev, flags));
GETCGD_SOFTC(cs, dev);
return dk_close(di, &cs->sc_dksc, dev, flags, fmt, l);
}
static void
cgdstrategy(struct buf *bp)
{
struct cgd_softc *cs = getcgd_softc(bp->b_dev);
DPRINTF_FOLLOW(("cgdstrategy(%p): b_bcount = %ld\n", bp,
(long)bp->b_bcount));
/* XXXrcd: Should we test for (cs != NULL)? */
dk_strategy(di, &cs->sc_dksc, bp);
return;
}
static int
cgdsize(dev_t dev)
{
struct cgd_softc *cs = getcgd_softc(dev);
DPRINTF_FOLLOW(("cgdsize(%d)\n", dev));
if (!cs)
return -1;
return dk_size(di, &cs->sc_dksc, dev);
}
/*
* cgd_{get,put}data are functions that deal with getting a buffer
* for the new encrypted data. We have a buffer per device so that
* we can ensure that we can always have a transaction in flight.
* We use this buffer first so that we have one less piece of
* malloc'ed data at any given point.
*/
static void *
cgd_getdata(struct dk_softc *dksc, unsigned long size)
{
struct cgd_softc *cs =dksc->sc_osc;
void * data = NULL;
simple_lock(&cs->sc_slock);
if (cs->sc_data_used == 0) {
cs->sc_data_used = 1;
data = cs->sc_data;
}
simple_unlock(&cs->sc_slock);
if (data)
return data;
return malloc(size, M_DEVBUF, M_NOWAIT);
}
static void
cgd_putdata(struct dk_softc *dksc, void *data)
{
struct cgd_softc *cs =dksc->sc_osc;
if (data == cs->sc_data) {
simple_lock(&cs->sc_slock);
cs->sc_data_used = 0;
simple_unlock(&cs->sc_slock);
} else {
free(data, M_DEVBUF);
}
}
static int
cgdstart(struct dk_softc *dksc, struct buf *bp)
{
struct cgd_softc *cs = dksc->sc_osc;
struct buf *nbp;
void * addr;
void * newaddr;
daddr_t bn;
struct vnode *vp;
DPRINTF_FOLLOW(("cgdstart(%p, %p)\n", dksc, bp));
disk_busy(&dksc->sc_dkdev); /* XXX: put in dksubr.c */
bn = bp->b_rawblkno;
/*
* We attempt to allocate all of our resources up front, so that
* we can fail quickly if they are unavailable.
*/
nbp = getiobuf(cs->sc_tvn, false);
if (nbp == NULL) {
disk_unbusy(&dksc->sc_dkdev, 0, (bp->b_flags & B_READ));
return -1;
}
/*
* If we are writing, then we need to encrypt the outgoing
* block into a new block of memory. If we fail, then we
* return an error and let the dksubr framework deal with it.
*/
newaddr = addr = bp->b_data;
if ((bp->b_flags & B_READ) == 0) {
newaddr = cgd_getdata(dksc, bp->b_bcount);
if (!newaddr) {
putiobuf(nbp);
disk_unbusy(&dksc->sc_dkdev, 0, (bp->b_flags & B_READ));
return -1;
}
cgd_cipher(cs, newaddr, addr, bp->b_bcount, bn,
DEV_BSIZE, CGD_CIPHER_ENCRYPT);
}
nbp->b_data = newaddr;
nbp->b_flags = bp->b_flags;
nbp->b_oflags = bp->b_oflags;
nbp->b_cflags = bp->b_cflags;
nbp->b_iodone = cgdiodone;
nbp->b_proc = bp->b_proc;
nbp->b_blkno = bn;
nbp->b_bcount = bp->b_bcount;
nbp->b_private = bp;
BIO_COPYPRIO(nbp, bp);
if ((nbp->b_flags & B_READ) == 0) {
vp = nbp->b_vp;
mutex_enter(&vp->v_interlock);
vp->v_numoutput++;
mutex_exit(&vp->v_interlock);
}
VOP_STRATEGY(cs->sc_tvn, nbp);
return 0;
}
/* expected to be called at splbio() */
static void
cgdiodone(struct buf *nbp)
{
struct buf *obp = nbp->b_private;
struct cgd_softc *cs = getcgd_softc(obp->b_dev);
struct dk_softc *dksc = &cs->sc_dksc;
KDASSERT(cs);
DPRINTF_FOLLOW(("cgdiodone(%p)\n", nbp));
DPRINTF(CGDB_IO, ("cgdiodone: bp %p bcount %d resid %d\n",
obp, obp->b_bcount, obp->b_resid));
DPRINTF(CGDB_IO, (" dev 0x%x, nbp %p bn %" PRId64 " addr %p bcnt %d\n",
nbp->b_dev, nbp, nbp->b_blkno, nbp->b_data,
nbp->b_bcount));
if (nbp->b_error != 0) {
obp->b_error = nbp->b_error;
printf("%s: error %d\n", dksc->sc_xname, obp->b_error);
}
/* Perform the decryption if we are reading.
*
* Note: use the blocknumber from nbp, since it is what
* we used to encrypt the blocks.
*/
if (nbp->b_flags & B_READ)
cgd_cipher(cs, obp->b_data, obp->b_data, obp->b_bcount,
nbp->b_blkno, DEV_BSIZE, CGD_CIPHER_DECRYPT);
/* If we allocated memory, free it now... */
if (nbp->b_data != obp->b_data)
cgd_putdata(dksc, nbp->b_data);
putiobuf(nbp);
/* Request is complete for whatever reason */
obp->b_resid = 0;
if (obp->b_error != 0)
obp->b_resid = obp->b_bcount;
disk_unbusy(&dksc->sc_dkdev, obp->b_bcount - obp->b_resid,
(obp->b_flags & B_READ));
biodone(obp);
dk_iodone(di, dksc);
}
/* XXX: we should probably put these into dksubr.c, mostly */
static int
cgdread(dev_t dev, struct uio *uio, int flags)
{
struct cgd_softc *cs;
struct dk_softc *dksc;
DPRINTF_FOLLOW(("cgdread(%d, %p, %d)\n", dev, uio, flags));
GETCGD_SOFTC(cs, dev);
dksc = &cs->sc_dksc;
if ((dksc->sc_flags & DKF_INITED) == 0)
return ENXIO;
return physio(cgdstrategy, NULL, dev, B_READ, minphys, uio);
}
/* XXX: we should probably put these into dksubr.c, mostly */
static int
cgdwrite(dev_t dev, struct uio *uio, int flags)
{
struct cgd_softc *cs;
struct dk_softc *dksc;
DPRINTF_FOLLOW(("cgdwrite(%d, %p, %d)\n", dev, uio, flags));
GETCGD_SOFTC(cs, dev);
dksc = &cs->sc_dksc;
if ((dksc->sc_flags & DKF_INITED) == 0)
return ENXIO;
return physio(cgdstrategy, NULL, dev, B_WRITE, minphys, uio);
}
static int
cgdioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
{
struct cgd_softc *cs;
struct dk_softc *dksc;
struct disk *dk;
int ret;
int part = DISKPART(dev);
int pmask = 1 << part;
DPRINTF_FOLLOW(("cgdioctl(%d, %ld, %p, %d, %p)\n",
dev, cmd, data, flag, l));
GETCGD_SOFTC(cs, dev);
dksc = &cs->sc_dksc;
dk = &dksc->sc_dkdev;
switch (cmd) {
case CGDIOCSET:
case CGDIOCCLR:
if ((flag & FWRITE) == 0)
return EBADF;
}
switch (cmd) {
case CGDIOCSET:
if (dksc->sc_flags & DKF_INITED)
ret = EBUSY;
else
ret = cgd_ioctl_set(cs, data, l);
break;
case CGDIOCCLR:
if (!(dksc->sc_flags & DKF_INITED)) {
ret = ENXIO;
break;
}
if (DK_BUSY(&cs->sc_dksc, pmask)) {
ret = EBUSY;
break;
}
ret = cgd_ioctl_clr(cs, data, l);
break;
default:
ret = dk_ioctl(di, dksc, dev, cmd, data, flag, l);
break;
}
return ret;
}
static int
cgddump(dev_t dev, daddr_t blkno, void *va, size_t size)
{
struct cgd_softc *cs;
DPRINTF_FOLLOW(("cgddump(%d, %" PRId64 ", %p, %lu)\n", dev, blkno, va,
(unsigned long)size));
GETCGD_SOFTC(cs, dev);
return dk_dump(di, &cs->sc_dksc, dev, blkno, va, size);
}
/*
* XXXrcd:
* for now we hardcode the maximum key length.
*/
#define MAX_KEYSIZE 1024
static const struct {
const char *n;
int v;
int d;
} encblkno[] = {
{ "encblkno", CGD_CIPHER_CBC_ENCBLKNO8, 1 },
{ "encblkno8", CGD_CIPHER_CBC_ENCBLKNO8, 1 },
{ "encblkno1", CGD_CIPHER_CBC_ENCBLKNO1, 8 },
};
/* ARGSUSED */
static int
cgd_ioctl_set(struct cgd_softc *cs, void *data, struct lwp *l)
{
struct cgd_ioctl *ci = data;
struct vnode *vp;
int ret;
size_t i;
size_t keybytes; /* key length in bytes */
const char *cp;
char *inbuf;
cp = ci->ci_disk;
if ((ret = dk_lookup(cp, l, &vp, UIO_USERSPACE)) != 0)
return ret;
inbuf = malloc(MAX_KEYSIZE, M_TEMP, M_WAITOK);
if ((ret = cgdinit(cs, cp, vp, l)) != 0)
goto bail;
(void)memset(inbuf, 0, MAX_KEYSIZE);
ret = copyinstr(ci->ci_alg, inbuf, 256, NULL);
if (ret)
goto bail;
cs->sc_cfuncs = cryptfuncs_find(inbuf);
if (!cs->sc_cfuncs) {
ret = EINVAL;
goto bail;
}
(void)memset(inbuf, 0, MAX_KEYSIZE);
ret = copyinstr(ci->ci_ivmethod, inbuf, MAX_KEYSIZE, NULL);
if (ret)
goto bail;
for (i = 0; i < __arraycount(encblkno); i++)
if (strcmp(encblkno[i].n, inbuf) == 0)
break;
if (i == __arraycount(encblkno)) {
ret = EINVAL;
goto bail;
}
keybytes = ci->ci_keylen / 8 + 1;
if (keybytes > MAX_KEYSIZE) {
ret = EINVAL;
goto bail;
}
(void)memset(inbuf, 0, MAX_KEYSIZE);
ret = copyin(ci->ci_key, inbuf, keybytes);
if (ret)
goto bail;
cs->sc_cdata.cf_blocksize = ci->ci_blocksize;
cs->sc_cdata.cf_mode = encblkno[i].v;
cs->sc_cdata.cf_priv = cs->sc_cfuncs->cf_init(ci->ci_keylen, inbuf,
&cs->sc_cdata.cf_blocksize);
/*
* The blocksize is supposed to be in bytes. Unfortunately originally
* it was expressed in bits. For compatibility we maintain encblkno
* and encblkno8.
*/
cs->sc_cdata.cf_blocksize /= encblkno[i].d;
(void)memset(inbuf, 0, MAX_KEYSIZE);
if (!cs->sc_cdata.cf_priv) {
printf("cgd: unable to initialize cipher\n");
ret = EINVAL; /* XXX is this the right error? */
goto bail;
}
free(inbuf, M_TEMP);
bufq_alloc(&cs->sc_dksc.sc_bufq, "fcfs", 0);
cs->sc_data = malloc(MAXPHYS, M_DEVBUF, M_WAITOK);
cs->sc_data_used = 0;
cs->sc_dksc.sc_flags |= DKF_INITED;
/* Attach the disk. */
disk_attach(&cs->sc_dksc.sc_dkdev);
/* Try and read the disklabel. */
dk_getdisklabel(di, &cs->sc_dksc, 0 /* XXX ? */);
/* Discover wedges on this disk. */
dkwedge_discover(&cs->sc_dksc.sc_dkdev);
return 0;
bail:
free(inbuf, M_TEMP);
(void)vn_close(vp, FREAD|FWRITE, l->l_cred);
return ret;
}
/* ARGSUSED */
static int
cgd_ioctl_clr(struct cgd_softc *cs, void *data, struct lwp *l)
{
int s;
/* Delete all of our wedges. */
dkwedge_delall(&cs->sc_dksc.sc_dkdev);
/* Kill off any queued buffers. */
s = splbio();
bufq_drain(cs->sc_dksc.sc_bufq);
splx(s);
bufq_free(cs->sc_dksc.sc_bufq);
(void)vn_close(cs->sc_tvn, FREAD|FWRITE, l->l_cred);
cs->sc_cfuncs->cf_destroy(cs->sc_cdata.cf_priv);
free(cs->sc_tpath, M_DEVBUF);
free(cs->sc_data, M_DEVBUF);
cs->sc_data_used = 0;
cs->sc_dksc.sc_flags &= ~DKF_INITED;
disk_detach(&cs->sc_dksc.sc_dkdev);
return 0;
}
static int
cgdinit(struct cgd_softc *cs, const char *cpath, struct vnode *vp,
struct lwp *l)
{
struct dk_geom *pdg;
struct partinfo dpart;
struct vattr va;
size_t size;
int maxsecsize = 0;
int ret;
char *tmppath;
cs->sc_dksc.sc_size = 0;
cs->sc_tvn = vp;
cs->sc_tpath = NULL;
tmppath = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
ret = copyinstr(cpath, tmppath, MAXPATHLEN, &cs->sc_tpathlen);
if (ret)
goto bail;
cs->sc_tpath = malloc(cs->sc_tpathlen, M_DEVBUF, M_WAITOK);
memcpy(cs->sc_tpath, tmppath, cs->sc_tpathlen);
if ((ret = VOP_GETATTR(vp, &va, l->l_cred)) != 0)
goto bail;
cs->sc_tdev = va.va_rdev;
ret = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred);
if (ret)
goto bail;
maxsecsize =
((dpart.disklab->d_secsize > maxsecsize) ?
dpart.disklab->d_secsize : maxsecsize);
size = dpart.part->p_size;
if (!size) {
ret = ENODEV;
goto bail;
}
cs->sc_dksc.sc_size = size;
/*
* XXX here we should probe the underlying device. If we
* are accessing a partition of type RAW_PART, then
* we should populate our initial geometry with the
* geometry that we discover from the device.
*/
pdg = &cs->sc_dksc.sc_geom;
pdg->pdg_secsize = DEV_BSIZE;
pdg->pdg_ntracks = 1;
pdg->pdg_nsectors = 1024 * (1024 / pdg->pdg_secsize);
pdg->pdg_ncylinders = cs->sc_dksc.sc_size / pdg->pdg_nsectors;
bail:
free(tmppath, M_TEMP);
if (ret && cs->sc_tpath)
free(cs->sc_tpath, M_DEVBUF);
return ret;
}
/*
* Our generic cipher entry point. This takes care of the
* IV mode and passes off the work to the specific cipher.
* We implement here the IV method ``encrypted block
* number''.
*
* For the encryption case, we accomplish this by setting
* up a struct uio where the first iovec of the source is
* the blocknumber and the first iovec of the dest is a
* sink. We then call the cipher with an IV of zero, and
* the right thing happens.
*
* For the decryption case, we use the same basic mechanism
* for symmetry, but we encrypt the block number in the
* first iovec.
*
* We mainly do this to avoid requiring the definition of
* an ECB mode.
*
* XXXrcd: for now we rely on our own crypto framework defined
* in dev/cgd_crypto.c. This will change when we
* get a generic kernel crypto framework.
*/
static void
blkno2blkno_buf(char *sbuf, daddr_t blkno)
{
int i;
/* Set up the blkno in blkno_buf, here we do not care much
* about the final layout of the information as long as we
* can guarantee that each sector will have a different IV
* and that the endianness of the machine will not affect
* the representation that we have chosen.
*
* We choose this representation, because it does not rely
* on the size of buf (which is the blocksize of the cipher),
* but allows daddr_t to grow without breaking existing
* disks.
*
* Note that blkno2blkno_buf does not take a size as input,
* and hence must be called on a pre-zeroed buffer of length
* greater than or equal to sizeof(daddr_t).
*/
for (i=0; i < sizeof(daddr_t); i++) {
*sbuf++ = blkno & 0xff;
blkno >>= 8;
}
}
static void
cgd_cipher(struct cgd_softc *cs, void *dstv, void *srcv,
size_t len, daddr_t blkno, size_t secsize, int dir)
{
char *dst = dstv;
char *src = srcv;
cfunc_cipher *cipher = cs->sc_cfuncs->cf_cipher;
struct uio dstuio;
struct uio srcuio;
struct iovec dstiov[2];
struct iovec srciov[2];
size_t blocksize = cs->sc_cdata.cf_blocksize;
char sink[blocksize];
char zero_iv[blocksize];
char blkno_buf[blocksize];
DPRINTF_FOLLOW(("cgd_cipher() dir=%d\n", dir));
DIAGCONDPANIC(len % blocksize != 0,
("cgd_cipher: len %% blocksize != 0"));
/* ensure that sizeof(daddr_t) <= blocksize (for encblkno IVing) */
DIAGCONDPANIC(sizeof(daddr_t) > blocksize,
("cgd_cipher: sizeof(daddr_t) > blocksize"));
memset(zero_iv, 0x0, sizeof(zero_iv));
dstuio.uio_iov = dstiov;
dstuio.uio_iovcnt = 2;
srcuio.uio_iov = srciov;
srcuio.uio_iovcnt = 2;
dstiov[0].iov_base = sink;
dstiov[0].iov_len = blocksize;
srciov[0].iov_base = blkno_buf;
srciov[0].iov_len = blocksize;
dstiov[1].iov_len = secsize;
srciov[1].iov_len = secsize;
for (; len > 0; len -= secsize) {
dstiov[1].iov_base = dst;
srciov[1].iov_base = src;
memset(blkno_buf, 0x0, sizeof(blkno_buf));
blkno2blkno_buf(blkno_buf, blkno);
if (dir == CGD_CIPHER_DECRYPT) {
dstuio.uio_iovcnt = 1;
srcuio.uio_iovcnt = 1;
IFDEBUG(CGDB_CRYPTO, hexprint("step 0: blkno_buf",
blkno_buf, sizeof(blkno_buf)));
cipher(cs->sc_cdata.cf_priv, &dstuio, &srcuio,
zero_iv, CGD_CIPHER_ENCRYPT);
memcpy(blkno_buf, sink, blocksize);
dstuio.uio_iovcnt = 2;
srcuio.uio_iovcnt = 2;
}
IFDEBUG(CGDB_CRYPTO, hexprint("step 1: blkno_buf",
blkno_buf, sizeof(blkno_buf)));
cipher(cs->sc_cdata.cf_priv, &dstuio, &srcuio, zero_iv, dir);
IFDEBUG(CGDB_CRYPTO, hexprint("step 2: sink",
sink, sizeof(sink)));
dst += secsize;
src += secsize;
blkno++;
}
}
#ifdef DEBUG
static void
hexprint(const char *start, void *buf, int len)
{
char *c = buf;
DIAGCONDPANIC(len < 0, ("hexprint: called with len < 0"));
printf("%s: len=%06d 0x", start, len);
while (len--)
printf("%02x", (unsigned char) *c++);
}
#endif