NetBSD/sys/dev/acpi/acpi_cpu_cstate.c

777 lines
16 KiB
C

/* $NetBSD: acpi_cpu_cstate.c,v 1.59 2012/02/25 17:22:52 jruoho Exp $ */
/*-
* Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen@iki.fi>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_cpu_cstate.c,v 1.59 2012/02/25 17:22:52 jruoho Exp $");
#include <sys/param.h>
#include <sys/cpu.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/mutex.h>
#include <sys/timetc.h>
#include <dev/acpi/acpireg.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/acpi_cpu.h>
#include <dev/acpi/acpi_timer.h>
#include <machine/acpi_machdep.h>
#define _COMPONENT ACPI_BUS_COMPONENT
ACPI_MODULE_NAME ("acpi_cpu_cstate")
static ACPI_STATUS acpicpu_cstate_cst(struct acpicpu_softc *);
static ACPI_STATUS acpicpu_cstate_cst_add(struct acpicpu_softc *,
ACPI_OBJECT *);
static void acpicpu_cstate_cst_bios(void);
static void acpicpu_cstate_memset(struct acpicpu_softc *);
static ACPI_STATUS acpicpu_cstate_dep(struct acpicpu_softc *);
static void acpicpu_cstate_fadt(struct acpicpu_softc *);
static void acpicpu_cstate_quirks(struct acpicpu_softc *);
static int acpicpu_cstate_latency(struct acpicpu_softc *);
static bool acpicpu_cstate_bm_check(void);
static void acpicpu_cstate_idle_enter(struct acpicpu_softc *,int);
extern struct acpicpu_softc **acpicpu_sc;
/*
* XXX: The local APIC timer (as well as TSC) is typically stopped in C3.
* For now, we cannot but disable C3. But there appears to be timer-
* related interrupt issues also in C2. The only entirely safe option
* at the moment is to use C1.
*/
#ifdef ACPICPU_ENABLE_C3
static int cs_state_max = ACPI_STATE_C3;
#else
static int cs_state_max = ACPI_STATE_C1;
#endif
void
acpicpu_cstate_attach(device_t self)
{
struct acpicpu_softc *sc = device_private(self);
ACPI_STATUS rv;
/*
* Either use the preferred _CST or resort to FADT.
*/
rv = acpicpu_cstate_cst(sc);
switch (rv) {
case AE_OK:
acpicpu_cstate_cst_bios();
break;
default:
sc->sc_flags |= ACPICPU_FLAG_C_FADT;
acpicpu_cstate_fadt(sc);
break;
}
/*
* Query the optional _CSD.
*/
rv = acpicpu_cstate_dep(sc);
if (ACPI_SUCCESS(rv))
sc->sc_flags |= ACPICPU_FLAG_C_DEP;
sc->sc_flags |= ACPICPU_FLAG_C;
acpicpu_cstate_quirks(sc);
}
void
acpicpu_cstate_detach(device_t self)
{
struct acpicpu_softc *sc = device_private(self);
if ((sc->sc_flags & ACPICPU_FLAG_C) == 0)
return;
(void)acpicpu_md_cstate_stop();
sc->sc_flags &= ~ACPICPU_FLAG_C;
}
void
acpicpu_cstate_start(device_t self)
{
struct acpicpu_softc *sc = device_private(self);
(void)acpicpu_md_cstate_start(sc);
}
void
acpicpu_cstate_suspend(void *aux)
{
/* Nothing. */
}
void
acpicpu_cstate_resume(void *aux)
{
acpicpu_cstate_callback(aux);
}
void
acpicpu_cstate_callback(void *aux)
{
struct acpicpu_softc *sc;
device_t self = aux;
sc = device_private(self);
if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) != 0)
return;
mutex_enter(&sc->sc_mtx);
(void)acpicpu_cstate_cst(sc);
mutex_exit(&sc->sc_mtx);
}
static ACPI_STATUS
acpicpu_cstate_cst(struct acpicpu_softc *sc)
{
struct acpicpu_cstate *cs = sc->sc_cstate;
ACPI_OBJECT *elm, *obj;
ACPI_BUFFER buf;
ACPI_STATUS rv;
uint32_t i, n;
uint8_t count;
rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CST", &buf);
if (ACPI_FAILURE(rv))
return rv;
obj = buf.Pointer;
if (obj->Type != ACPI_TYPE_PACKAGE) {
rv = AE_TYPE;
goto out;
}
if (obj->Package.Count < 2) {
rv = AE_LIMIT;
goto out;
}
elm = obj->Package.Elements;
if (elm[0].Type != ACPI_TYPE_INTEGER) {
rv = AE_TYPE;
goto out;
}
n = elm[0].Integer.Value;
if (n != obj->Package.Count - 1) {
rv = AE_BAD_VALUE;
goto out;
}
if (n > ACPI_C_STATES_MAX) {
rv = AE_LIMIT;
goto out;
}
acpicpu_cstate_memset(sc);
/*
* All x86 processors should support C1 (a.k.a. HALT).
*/
cs[ACPI_STATE_C1].cs_method = ACPICPU_C_STATE_HALT;
CTASSERT(ACPI_STATE_C0 == 0 && ACPI_STATE_C1 == 1);
CTASSERT(ACPI_STATE_C2 == 2 && ACPI_STATE_C3 == 3);
for (count = 0, i = 1; i <= n; i++) {
elm = &obj->Package.Elements[i];
rv = acpicpu_cstate_cst_add(sc, elm);
if (ACPI_SUCCESS(rv))
count++;
}
rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
out:
if (buf.Pointer != NULL)
ACPI_FREE(buf.Pointer);
return rv;
}
static ACPI_STATUS
acpicpu_cstate_cst_add(struct acpicpu_softc *sc, ACPI_OBJECT *elm)
{
struct acpicpu_cstate *cs = sc->sc_cstate;
struct acpicpu_cstate state;
struct acpicpu_reg *reg;
ACPI_STATUS rv = AE_OK;
ACPI_OBJECT *obj;
uint32_t type;
(void)memset(&state, 0, sizeof(*cs));
if (elm->Type != ACPI_TYPE_PACKAGE) {
rv = AE_TYPE;
goto out;
}
if (elm->Package.Count != 4) {
rv = AE_LIMIT;
goto out;
}
/*
* Type.
*/
obj = &elm->Package.Elements[1];
if (obj->Type != ACPI_TYPE_INTEGER) {
rv = AE_TYPE;
goto out;
}
type = obj->Integer.Value;
if (type < ACPI_STATE_C1 || type > ACPI_STATE_C3) {
rv = AE_TYPE;
goto out;
}
/*
* Latency.
*/
obj = &elm->Package.Elements[2];
if (obj->Type != ACPI_TYPE_INTEGER) {
rv = AE_TYPE;
goto out;
}
state.cs_latency = obj->Integer.Value;
/*
* Power.
*/
obj = &elm->Package.Elements[3];
if (obj->Type != ACPI_TYPE_INTEGER) {
rv = AE_TYPE;
goto out;
}
state.cs_power = obj->Integer.Value;
/*
* Register.
*/
obj = &elm->Package.Elements[0];
if (obj->Type != ACPI_TYPE_BUFFER) {
rv = AE_TYPE;
goto out;
}
CTASSERT(sizeof(struct acpicpu_reg) == 15);
if (obj->Buffer.Length < sizeof(struct acpicpu_reg)) {
rv = AE_LIMIT;
goto out;
}
reg = (struct acpicpu_reg *)obj->Buffer.Pointer;
switch (reg->reg_spaceid) {
case ACPI_ADR_SPACE_SYSTEM_IO:
state.cs_method = ACPICPU_C_STATE_SYSIO;
if (reg->reg_addr == 0) {
rv = AE_AML_ILLEGAL_ADDRESS;
goto out;
}
if (reg->reg_bitwidth != 8) {
rv = AE_AML_BAD_RESOURCE_LENGTH;
goto out;
}
state.cs_addr = reg->reg_addr;
break;
case ACPI_ADR_SPACE_FIXED_HARDWARE:
state.cs_method = ACPICPU_C_STATE_FFH;
switch (type) {
case ACPI_STATE_C1:
/*
* If ACPI wants native access (FFH), but the
* MD code does not support MONITOR/MWAIT, use
* HLT for C1 and error out for higher C-states.
*/
if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0)
state.cs_method = ACPICPU_C_STATE_HALT;
break;
case ACPI_STATE_C3: /* FALLTHROUGH */
state.cs_flags = ACPICPU_FLAG_C_BM_STS;
default:
if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0) {
rv = AE_SUPPORT;
goto out;
}
}
if (sc->sc_cap != 0) {
/*
* The _CST FFH GAS encoding may contain
* additional hints on Intel processors.
* Use these to determine whether we can
* avoid the bus master activity check.
*/
if ((reg->reg_accesssize & ACPICPU_PDC_GAS_BM) == 0)
state.cs_flags &= ~ACPICPU_FLAG_C_BM_STS;
}
break;
default:
rv = AE_AML_INVALID_SPACE_ID;
goto out;
}
cs[type].cs_addr = state.cs_addr;
cs[type].cs_power = state.cs_power;
cs[type].cs_flags = state.cs_flags;
cs[type].cs_method = state.cs_method;
cs[type].cs_latency = state.cs_latency;
out:
if (ACPI_FAILURE(rv))
aprint_error_dev(sc->sc_dev, "failed to add "
"C-state: %s\n", AcpiFormatException(rv));
return rv;
}
static void
acpicpu_cstate_cst_bios(void)
{
const uint8_t val = AcpiGbl_FADT.CstControl;
const uint32_t addr = AcpiGbl_FADT.SmiCommand;
if (addr == 0 || val == 0)
return;
(void)AcpiOsWritePort(addr, val, 8);
}
static void
acpicpu_cstate_memset(struct acpicpu_softc *sc)
{
uint8_t i = 0;
while (i < __arraycount(sc->sc_cstate)) {
sc->sc_cstate[i].cs_addr = 0;
sc->sc_cstate[i].cs_power = 0;
sc->sc_cstate[i].cs_flags = 0;
sc->sc_cstate[i].cs_method = 0;
sc->sc_cstate[i].cs_latency = 0;
i++;
}
}
static ACPI_STATUS
acpicpu_cstate_dep(struct acpicpu_softc *sc)
{
ACPI_OBJECT *elm, *obj;
ACPI_BUFFER buf;
ACPI_STATUS rv;
uint32_t val;
uint8_t i, n;
rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CSD", &buf);
if (ACPI_FAILURE(rv))
goto out;
obj = buf.Pointer;
if (obj->Type != ACPI_TYPE_PACKAGE) {
rv = AE_TYPE;
goto out;
}
if (obj->Package.Count != 1) {
rv = AE_LIMIT;
goto out;
}
elm = &obj->Package.Elements[0];
if (obj->Type != ACPI_TYPE_PACKAGE) {
rv = AE_TYPE;
goto out;
}
n = elm->Package.Count;
if (n != 6) {
rv = AE_LIMIT;
goto out;
}
elm = elm->Package.Elements;
for (i = 0; i < n; i++) {
if (elm[i].Type != ACPI_TYPE_INTEGER) {
rv = AE_TYPE;
goto out;
}
if (elm[i].Integer.Value > UINT32_MAX) {
rv = AE_AML_NUMERIC_OVERFLOW;
goto out;
}
}
val = elm[1].Integer.Value;
if (val != 0)
aprint_debug_dev(sc->sc_dev, "invalid revision in _CSD\n");
val = elm[3].Integer.Value;
if (val < ACPICPU_DEP_SW_ALL || val > ACPICPU_DEP_HW_ALL) {
rv = AE_AML_BAD_RESOURCE_VALUE;
goto out;
}
val = elm[4].Integer.Value;
if (val > sc->sc_ncpus) {
rv = AE_BAD_VALUE;
goto out;
}
sc->sc_cstate_dep.dep_domain = elm[2].Integer.Value;
sc->sc_cstate_dep.dep_type = elm[3].Integer.Value;
sc->sc_cstate_dep.dep_ncpus = elm[4].Integer.Value;
sc->sc_cstate_dep.dep_index = elm[5].Integer.Value;
out:
if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND)
aprint_debug_dev(sc->sc_dev, "failed to evaluate "
"_CSD: %s\n", AcpiFormatException(rv));
if (buf.Pointer != NULL)
ACPI_FREE(buf.Pointer);
return rv;
}
static void
acpicpu_cstate_fadt(struct acpicpu_softc *sc)
{
struct acpicpu_cstate *cs = sc->sc_cstate;
acpicpu_cstate_memset(sc);
/*
* All x86 processors should support C1 (a.k.a. HALT).
*/
cs[ACPI_STATE_C1].cs_method = ACPICPU_C_STATE_HALT;
if ((AcpiGbl_FADT.Flags & ACPI_FADT_C1_SUPPORTED) == 0)
aprint_debug_dev(sc->sc_dev, "HALT not supported?\n");
if (sc->sc_object.ao_pblkaddr == 0)
return;
if (sc->sc_ncpus > 1) {
if ((AcpiGbl_FADT.Flags & ACPI_FADT_C2_MP_SUPPORTED) == 0)
return;
}
cs[ACPI_STATE_C2].cs_method = ACPICPU_C_STATE_SYSIO;
cs[ACPI_STATE_C3].cs_method = ACPICPU_C_STATE_SYSIO;
cs[ACPI_STATE_C2].cs_latency = AcpiGbl_FADT.C2Latency;
cs[ACPI_STATE_C3].cs_latency = AcpiGbl_FADT.C3Latency;
cs[ACPI_STATE_C2].cs_addr = sc->sc_object.ao_pblkaddr + 4;
cs[ACPI_STATE_C3].cs_addr = sc->sc_object.ao_pblkaddr + 5;
/*
* The P_BLK length should always be 6. If it
* is not, reduce functionality accordingly.
*/
if (sc->sc_object.ao_pblklen < 5)
cs[ACPI_STATE_C2].cs_method = 0;
if (sc->sc_object.ao_pblklen < 6)
cs[ACPI_STATE_C3].cs_method = 0;
/*
* Sanity check the latency levels in FADT. Values above
* the thresholds may be used to inform that C2 and C3 are
* not supported -- AMD family 11h is an example;
*
* Advanced Micro Devices: BIOS and Kernel Developer's
* Guide (BKDG) for AMD Family 11h Processors. Section
* 2.4.3, Revision 3.00, July, 2008.
*/
CTASSERT(ACPICPU_C_C2_LATENCY_MAX == 100);
CTASSERT(ACPICPU_C_C3_LATENCY_MAX == 1000);
if (AcpiGbl_FADT.C2Latency > ACPICPU_C_C2_LATENCY_MAX)
cs[ACPI_STATE_C2].cs_method = 0;
if (AcpiGbl_FADT.C3Latency > ACPICPU_C_C3_LATENCY_MAX)
cs[ACPI_STATE_C3].cs_method = 0;
}
static void
acpicpu_cstate_quirks(struct acpicpu_softc *sc)
{
const uint32_t reg = AcpiGbl_FADT.Pm2ControlBlock;
const uint32_t len = AcpiGbl_FADT.Pm2ControlLength;
/*
* Disable C3 for PIIX4.
*/
if ((sc->sc_flags & ACPICPU_FLAG_PIIX4) != 0) {
sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
return;
}
/*
* Check bus master arbitration. If ARB_DIS
* is not available, processor caches must be
* flushed before C3 (ACPI 4.0, section 8.2).
*/
if (reg != 0 && len != 0) {
sc->sc_flags |= ACPICPU_FLAG_C_ARB;
return;
}
/*
* Disable C3 entirely if WBINVD is not present.
*/
if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) == 0)
sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
else {
/*
* If WBINVD is present and functioning properly,
* flush all processor caches before entering C3.
*/
if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0)
sc->sc_flags &= ~ACPICPU_FLAG_C_BM;
else
sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
}
}
static int
acpicpu_cstate_latency(struct acpicpu_softc *sc)
{
static const uint32_t cs_factor = 3;
struct acpicpu_cstate *cs;
int i;
KASSERT(mutex_owned(&sc->sc_mtx) != 0);
for (i = cs_state_max; i > 0; i--) {
cs = &sc->sc_cstate[i];
if (__predict_false(cs->cs_method == 0))
continue;
/*
* Choose a state if we have previously slept
* longer than the worst case latency of the
* state times an arbitrary multiplier.
*/
if (sc->sc_cstate_sleep > cs->cs_latency * cs_factor)
return i;
}
return ACPI_STATE_C1;
}
/*
* The main idle loop.
*/
void
acpicpu_cstate_idle(void)
{
struct cpu_info *ci = curcpu();
struct acpicpu_softc *sc;
int state;
KASSERT(acpicpu_sc != NULL);
KASSERT(ci->ci_acpiid < maxcpus);
sc = acpicpu_sc[ci->ci_acpiid];
if (__predict_false(sc == NULL))
return;
KASSERT(ci->ci_ilevel == IPL_NONE);
KASSERT((sc->sc_flags & ACPICPU_FLAG_C) != 0);
if (__predict_false(sc->sc_cold != false))
return;
if (__predict_false(mutex_tryenter(&sc->sc_mtx) == 0))
return;
state = acpicpu_cstate_latency(sc);
mutex_exit(&sc->sc_mtx);
/*
* Apply AMD C1E quirk.
*/
if ((sc->sc_flags & ACPICPU_FLAG_C_C1E) != 0)
acpicpu_md_quirk_c1e();
/*
* Check for bus master activity. Note that particularly usb(4)
* causes high activity, which may prevent the use of C3 states.
*/
if ((sc->sc_cstate[state].cs_flags & ACPICPU_FLAG_C_BM_STS) != 0) {
if (acpicpu_cstate_bm_check() != false)
state--;
if (__predict_false(sc->sc_cstate[state].cs_method == 0))
state = ACPI_STATE_C1;
}
KASSERT(state != ACPI_STATE_C0);
if (state != ACPI_STATE_C3) {
acpicpu_cstate_idle_enter(sc, state);
return;
}
/*
* On all recent (Intel) CPUs caches are shared
* by CPUs and bus master control is required to
* keep these coherent while in C3. Flushing the
* CPU caches is only the last resort.
*/
if ((sc->sc_flags & ACPICPU_FLAG_C_BM) == 0)
ACPI_FLUSH_CPU_CACHE();
/*
* Allow the bus master to request that any given
* CPU should return immediately to C0 from C3.
*/
if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
(void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
/*
* It may be necessary to disable bus master arbitration
* to ensure that bus master cycles do not occur while
* sleeping in C3 (see ACPI 4.0, section 8.1.4).
*/
if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
(void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
acpicpu_cstate_idle_enter(sc, state);
/*
* Disable bus master wake and re-enable the arbiter.
*/
if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
(void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
(void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
}
static void
acpicpu_cstate_idle_enter(struct acpicpu_softc *sc, int state)
{
struct acpicpu_cstate *cs = &sc->sc_cstate[state];
uint32_t end, start, val;
start = acpitimer_read_fast(NULL);
switch (cs->cs_method) {
case ACPICPU_C_STATE_FFH:
case ACPICPU_C_STATE_HALT:
acpicpu_md_cstate_enter(cs->cs_method, state);
break;
case ACPICPU_C_STATE_SYSIO:
(void)AcpiOsReadPort(cs->cs_addr, &val, 8);
break;
}
cs->cs_evcnt.ev_count++;
end = acpitimer_read_fast(NULL);
sc->sc_cstate_sleep = hztoms(acpitimer_delta(end, start)) * 1000;
}
static bool
acpicpu_cstate_bm_check(void)
{
uint32_t val = 0;
ACPI_STATUS rv;
rv = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &val);
if (ACPI_FAILURE(rv) || val == 0)
return false;
(void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
return true;
}