NetBSD/sys/kern/kern_rndq.c

1639 lines
39 KiB
C

/* $NetBSD: kern_rndq.c,v 1.74 2016/01/01 16:09:00 tls Exp $ */
/*-
* Copyright (c) 1997-2013 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Michael Graff <explorer@flame.org> and Thor Lancelot Simon.
* This code uses ideas and algorithms from the Linux driver written by
* Ted Ts'o.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_rndq.c,v 1.74 2016/01/01 16:09:00 tls Exp $");
#include <sys/param.h>
#include <sys/atomic.h>
#include <sys/callout.h>
#include <sys/fcntl.h>
#include <sys/intr.h>
#include <sys/ioctl.h>
#include <sys/kauth.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/rnd.h>
#include <sys/rndpool.h>
#include <sys/rndsink.h>
#include <sys/rndsource.h>
#include <sys/rngtest.h>
#include <sys/systm.h>
#include <dev/rnd_private.h>
#ifdef COMPAT_50
#include <compat/sys/rnd.h>
#endif
#if defined(__HAVE_CPU_COUNTER)
#include <machine/cpu_counter.h>
#endif
#ifdef RND_DEBUG
#define DPRINTF(l,x) if (rnd_debug & (l)) rnd_printf x
int rnd_debug = 0;
#else
#define DPRINTF(l,x)
#endif
/*
* list devices attached
*/
#if 0
#define RND_VERBOSE
#endif
#ifdef RND_VERBOSE
#define rnd_printf_verbose(fmt, ...) rnd_printf(fmt, ##__VA_ARGS__)
#else
#define rnd_printf_verbose(fmt, ...) ((void)0)
#endif
#ifdef RND_VERBOSE
static unsigned int deltacnt;
#endif
/*
* This is a little bit of state information attached to each device that we
* collect entropy from. This is simply a collection buffer, and when it
* is full it will be "detached" from the source and added to the entropy
* pool after entropy is distilled as much as possible.
*/
#define RND_SAMPLE_COUNT 64 /* collect N samples, then compress */
typedef struct _rnd_sample_t {
SIMPLEQ_ENTRY(_rnd_sample_t) next;
krndsource_t *source;
int cursor;
int entropy;
uint32_t ts[RND_SAMPLE_COUNT];
uint32_t values[RND_SAMPLE_COUNT];
} rnd_sample_t;
SIMPLEQ_HEAD(rnd_sampleq, _rnd_sample_t);
/*
* The sample queue. Samples are put into the queue and processed in a
* softint in order to limit the latency of adding a sample.
*/
static struct {
kmutex_t lock;
struct rnd_sampleq q;
} rnd_samples __cacheline_aligned;
/*
* Memory pool for sample buffers
*/
static pool_cache_t rnd_mempc __read_mostly;
/*
* Global entropy pool and sources.
*/
static struct {
kmutex_t lock;
rndpool_t pool;
LIST_HEAD(, krndsource) sources;
kcondvar_t cv;
} rnd_global __cacheline_aligned;
/*
* This source is used to easily "remove" queue entries when the source
* which actually generated the events is going away.
*/
static krndsource_t rnd_source_no_collect = {
/* LIST_ENTRY list */
.name = { 'N', 'o', 'C', 'o', 'l', 'l', 'e', 'c', 't',
0, 0, 0, 0, 0, 0, 0 },
.total = 0,
.type = RND_TYPE_UNKNOWN,
.flags = (RND_FLAG_NO_COLLECT |
RND_FLAG_NO_ESTIMATE),
.state = NULL,
.test_cnt = 0,
.test = NULL
};
krndsource_t rnd_printf_source, rnd_autoconf_source;
static void *rnd_process __read_mostly;
static void *rnd_wakeup __read_mostly;
static inline uint32_t rnd_counter(void);
static void rnd_intr(void *);
static void rnd_wake(void *);
static void rnd_process_events(void);
static void rnd_add_data_ts(krndsource_t *, const void *const,
uint32_t, uint32_t, uint32_t);
static inline void rnd_schedule_process(void);
int rnd_ready = 0;
int rnd_initial_entropy = 0;
static int rnd_printing = 0;
#ifdef DIAGNOSTIC
static int rnd_tested = 0;
static rngtest_t rnd_rt;
static uint8_t rnd_testbits[sizeof(rnd_rt.rt_b)];
#endif
static rndsave_t *boot_rsp;
static inline void
rnd_printf(const char *fmt, ...)
{
va_list ap;
membar_consumer();
if (rnd_printing) {
return;
}
rnd_printing = 1;
membar_producer();
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
rnd_printing = 0;
}
void
rnd_init_softint(void)
{
rnd_process = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
rnd_intr, NULL);
rnd_wakeup = softint_establish(SOFTINT_CLOCK|SOFTINT_MPSAFE,
rnd_wake, NULL);
rnd_schedule_process();
}
/*
* Generate a 32-bit counter.
*/
static inline uint32_t
rnd_counter(void)
{
struct bintime bt;
uint32_t ret;
#if defined(__HAVE_CPU_COUNTER)
if (cpu_hascounter())
return cpu_counter32();
#endif
if (!rnd_ready)
/* Too early to call nanotime. */
return 0;
binuptime(&bt);
ret = bt.sec;
ret ^= bt.sec >> 32;
ret ^= bt.frac;
ret ^= bt.frac >> 32;
return ret;
}
/*
* We may be called from low IPL -- protect our softint.
*/
static inline void
rnd_schedule_softint(void *softint)
{
kpreempt_disable();
softint_schedule(softint);
kpreempt_enable();
}
static inline void
rnd_schedule_process(void)
{
if (__predict_true(rnd_process)) {
rnd_schedule_softint(rnd_process);
return;
}
rnd_process_events();
}
static inline void
rnd_schedule_wakeup(void)
{
if (__predict_true(rnd_wakeup)) {
rnd_schedule_softint(rnd_wakeup);
return;
}
rndsinks_distribute();
}
/*
* Tell any sources with "feed me" callbacks that we are hungry.
*/
void
rnd_getmore(size_t byteswanted)
{
krndsource_t *rs, *next;
mutex_spin_enter(&rnd_global.lock);
LIST_FOREACH_SAFE(rs, &rnd_global.sources, list, next) {
/* Skip if there's no callback. */
if (!ISSET(rs->flags, RND_FLAG_HASCB))
continue;
KASSERT(rs->get != NULL);
/* Skip if there are too many users right now. */
if (rs->refcnt == UINT_MAX)
continue;
/*
* Hold a reference while we release rnd_global.lock to
* call the callback. The callback may in turn call
* rnd_add_data, which acquires rnd_global.lock.
*/
rs->refcnt++;
mutex_spin_exit(&rnd_global.lock);
rs->get(byteswanted, rs->getarg);
mutex_spin_enter(&rnd_global.lock);
if (--rs->refcnt == 0)
cv_broadcast(&rnd_global.cv);
/* Dribble some goo to the console. */
rnd_printf_verbose("rnd: entropy estimate %zu bits\n",
rndpool_get_entropy_count(&rnd_global.pool));
rnd_printf_verbose("rnd: asking source %s for %zu bytes\n",
rs->name, byteswanted);
}
mutex_spin_exit(&rnd_global.lock);
}
/*
* Use the timing/value of the event to estimate the entropy gathered.
* If all the differentials (first, second, and third) are non-zero, return
* non-zero. If any of these are zero, return zero.
*/
static inline uint32_t
rnd_delta_estimate(rnd_delta_t *d, uint32_t v, int32_t delta)
{
int32_t delta2, delta3;
d->insamples++;
/*
* Calculate the second and third order differentials
*/
delta2 = d->dx - delta;
if (delta2 < 0)
delta2 = -delta2;
delta3 = d->d2x - delta2;
if (delta3 < 0)
delta3 = -delta3;
d->x = v;
d->dx = delta;
d->d2x = delta2;
/*
* If any delta is 0, we got no entropy. If all are non-zero, we
* might have something.
*/
if (delta == 0 || delta2 == 0 || delta3 == 0)
return 0;
d->outbits++;
return 1;
}
/*
* Delta estimator for 32-bit timeestamps. Must handle wrap.
*/
static inline uint32_t
rnd_dt_estimate(krndsource_t *rs, uint32_t t)
{
int32_t delta;
uint32_t ret;
rnd_delta_t *d = &rs->time_delta;
if (t < d->x) {
delta = UINT32_MAX - d->x + t;
} else {
delta = d->x - t;
}
if (delta < 0) {
delta = -delta;
}
ret = rnd_delta_estimate(d, t, delta);
KASSERT(d->x == t);
KASSERT(d->dx == delta);
#ifdef RND_VERBOSE
if (deltacnt++ % 1151 == 0) {
rnd_printf_verbose("rnd_dt_estimate: %s x = %lld, dx = %lld, "
"d2x = %lld\n", rs->name,
(int)d->x, (int)d->dx, (int)d->d2x);
}
#endif
return ret;
}
/*
* Delta estimator for 32 or bit values. "Wrap" isn't.
*/
static inline uint32_t
rnd_dv_estimate(krndsource_t *rs, uint32_t v)
{
int32_t delta;
uint32_t ret;
rnd_delta_t *d = &rs->value_delta;
delta = d->x - v;
if (delta < 0) {
delta = -delta;
}
ret = rnd_delta_estimate(d, v, (uint32_t)delta);
KASSERT(d->x == v);
KASSERT(d->dx == delta);
#ifdef RND_VERBOSE
if (deltacnt++ % 1151 == 0) {
rnd_printf_verbose("rnd_dv_estimate: %s x = %lld, dx = %lld, "
" d2x = %lld\n", rs->name,
(long long int)d->x,
(long long int)d->dx,
(long long int)d->d2x);
}
#endif
return ret;
}
#if defined(__HAVE_CPU_COUNTER)
static struct {
kmutex_t lock;
int iter;
struct callout callout;
krndsource_t source;
} rnd_skew __cacheline_aligned;
static void rnd_skew_intr(void *);
static void
rnd_skew_enable(krndsource_t *rs, bool enabled)
{
if (enabled) {
rnd_skew_intr(rs);
} else {
callout_stop(&rnd_skew.callout);
}
}
static void
rnd_skew_get(size_t bytes, void *priv)
{
krndsource_t *skewsrcp = priv;
KASSERT(skewsrcp == &rnd_skew.source);
if (RND_ENABLED(skewsrcp)) {
/* Measure 100 times */
rnd_skew.iter = 100;
callout_schedule(&rnd_skew.callout, 1);
}
}
static void
rnd_skew_intr(void *arg)
{
/*
* Even on systems with seemingly stable clocks, the
* delta-time entropy estimator seems to think we get 1 bit here
* about every 2 calls.
*
*/
mutex_spin_enter(&rnd_skew.lock);
if (RND_ENABLED(&rnd_skew.source)) {
int next_ticks = 1;
if (rnd_skew.iter & 1) {
rnd_add_uint32(&rnd_skew.source, rnd_counter());
next_ticks = hz / 10;
}
if (--rnd_skew.iter > 0) {
callout_schedule(&rnd_skew.callout, next_ticks);
}
}
mutex_spin_exit(&rnd_skew.lock);
}
#endif
/*
* Entropy was just added to the pool. If we crossed the threshold for
* the first time, set rnd_initial_entropy = 1.
*/
static void
rnd_entropy_added(void)
{
uint32_t pool_entropy;
KASSERT(mutex_owned(&rnd_global.lock));
if (__predict_true(rnd_initial_entropy))
return;
pool_entropy = rndpool_get_entropy_count(&rnd_global.pool);
if (pool_entropy > RND_ENTROPY_THRESHOLD * NBBY) {
rnd_printf_verbose("rnd: have initial entropy (%zu)\n",
pool_entropy);
rnd_initial_entropy = 1;
}
}
/*
* initialize the global random pool for our use.
* rnd_init() must be called very early on in the boot process, so
* the pool is ready for other devices to attach as sources.
*/
void
rnd_init(void)
{
uint32_t c;
if (rnd_ready)
return;
/*
* take a counter early, hoping that there's some variance in
* the following operations
*/
c = rnd_counter();
rndsinks_init();
/* Initialize the sample queue. */
mutex_init(&rnd_samples.lock, MUTEX_DEFAULT, IPL_VM);
SIMPLEQ_INIT(&rnd_samples.q);
/* Initialize the global pool and sources list. */
mutex_init(&rnd_global.lock, MUTEX_DEFAULT, IPL_VM);
rndpool_init(&rnd_global.pool);
LIST_INIT(&rnd_global.sources);
cv_init(&rnd_global.cv, "rndsrc");
rnd_mempc = pool_cache_init(sizeof(rnd_sample_t), 0, 0, 0,
"rndsample", NULL, IPL_VM,
NULL, NULL, NULL);
/*
* Set resource limit. The rnd_process_events() function
* is called every tick and process the sample queue.
* Without limitation, if a lot of rnd_add_*() are called,
* all kernel memory may be eaten up.
*/
pool_cache_sethardlimit(rnd_mempc, RND_POOLBITS, NULL, 0);
/*
* Mix *something*, *anything* into the pool to help it get started.
* However, it's not safe for rnd_counter() to call microtime() yet,
* so on some platforms we might just end up with zeros anyway.
* XXX more things to add would be nice.
*/
if (c) {
mutex_spin_enter(&rnd_global.lock);
rndpool_add_data(&rnd_global.pool, &c, sizeof(c), 1);
c = rnd_counter();
rndpool_add_data(&rnd_global.pool, &c, sizeof(c), 1);
mutex_spin_exit(&rnd_global.lock);
}
/*
* If we have a cycle counter, take its error with respect
* to the callout mechanism as a source of entropy, ala
* TrueRand.
*
*/
#if defined(__HAVE_CPU_COUNTER)
/* IPL_VM because taken while rnd_global.lock is held. */
mutex_init(&rnd_skew.lock, MUTEX_DEFAULT, IPL_VM);
callout_init(&rnd_skew.callout, CALLOUT_MPSAFE);
callout_setfunc(&rnd_skew.callout, rnd_skew_intr, NULL);
rndsource_setcb(&rnd_skew.source, rnd_skew_get, &rnd_skew.source);
rndsource_setenable(&rnd_skew.source, rnd_skew_enable);
rnd_attach_source(&rnd_skew.source, "callout", RND_TYPE_SKEW,
RND_FLAG_COLLECT_VALUE|RND_FLAG_ESTIMATE_VALUE|
RND_FLAG_HASCB|RND_FLAG_HASENABLE);
rnd_skew.iter = 100;
rnd_skew_intr(NULL);
#endif
rnd_printf_verbose("rnd: initialised (%u)%s", RND_POOLBITS,
c ? " with counter\n" : "\n");
if (boot_rsp != NULL) {
mutex_spin_enter(&rnd_global.lock);
rndpool_add_data(&rnd_global.pool, boot_rsp->data,
sizeof(boot_rsp->data),
MIN(boot_rsp->entropy, RND_POOLBITS / 2));
rnd_entropy_added();
mutex_spin_exit(&rnd_global.lock);
rnd_printf("rnd: seeded with %d bits\n",
MIN(boot_rsp->entropy, RND_POOLBITS / 2));
memset(boot_rsp, 0, sizeof(*boot_rsp));
}
rnd_attach_source(&rnd_printf_source, "printf", RND_TYPE_UNKNOWN,
RND_FLAG_NO_ESTIMATE);
rnd_attach_source(&rnd_autoconf_source, "autoconf",
RND_TYPE_UNKNOWN,
RND_FLAG_COLLECT_TIME|RND_FLAG_ESTIMATE_TIME);
rnd_ready = 1;
}
static rnd_sample_t *
rnd_sample_allocate(krndsource_t *source)
{
rnd_sample_t *c;
c = pool_cache_get(rnd_mempc, PR_WAITOK);
if (c == NULL)
return NULL;
c->source = source;
c->cursor = 0;
c->entropy = 0;
return c;
}
/*
* Don't wait on allocation. To be used in an interrupt context.
*/
static rnd_sample_t *
rnd_sample_allocate_isr(krndsource_t *source)
{
rnd_sample_t *c;
c = pool_cache_get(rnd_mempc, PR_NOWAIT);
if (c == NULL)
return NULL;
c->source = source;
c->cursor = 0;
c->entropy = 0;
return c;
}
static void
rnd_sample_free(rnd_sample_t *c)
{
memset(c, 0, sizeof(*c));
pool_cache_put(rnd_mempc, c);
}
/*
* Add a source to our list of sources.
*/
void
rnd_attach_source(krndsource_t *rs, const char *name, uint32_t type,
uint32_t flags)
{
uint32_t ts;
ts = rnd_counter();
strlcpy(rs->name, name, sizeof(rs->name));
memset(&rs->time_delta, 0, sizeof(rs->time_delta));
rs->time_delta.x = ts;
memset(&rs->value_delta, 0, sizeof(rs->value_delta));
rs->total = 0;
/*
* Some source setup, by type
*/
rs->test = NULL;
rs->test_cnt = -1;
if (flags == 0) {
flags = RND_FLAG_DEFAULT;
}
switch (type) {
case RND_TYPE_NET: /* Don't collect by default */
flags |= (RND_FLAG_NO_COLLECT | RND_FLAG_NO_ESTIMATE);
break;
case RND_TYPE_RNG: /* Space for statistical testing */
rs->test = kmem_alloc(sizeof(rngtest_t), KM_NOSLEEP);
rs->test_cnt = 0;
/* FALLTHRU */
case RND_TYPE_VM: /* Process samples in bulk always */
flags |= RND_FLAG_FAST;
break;
default:
break;
}
rs->type = type;
rs->flags = flags;
rs->refcnt = 1;
rs->state = rnd_sample_allocate(rs);
mutex_spin_enter(&rnd_global.lock);
LIST_INSERT_HEAD(&rnd_global.sources, rs, list);
#ifdef RND_VERBOSE
rnd_printf_verbose("rnd: %s attached as an entropy source (",
rs->name);
if (!(flags & RND_FLAG_NO_COLLECT)) {
rnd_printf_verbose("collecting");
if (flags & RND_FLAG_NO_ESTIMATE)
rnd_printf_verbose(" without estimation");
} else {
rnd_printf_verbose("off");
}
rnd_printf_verbose(")\n");
#endif
/*
* Again, put some more initial junk in the pool.
* FreeBSD claim to have an analysis that show 4 bits of
* entropy per source-attach timestamp. I am skeptical,
* but we count 1 bit per source here.
*/
rndpool_add_data(&rnd_global.pool, &ts, sizeof(ts), 1);
mutex_spin_exit(&rnd_global.lock);
}
/*
* Remove a source from our list of sources.
*/
void
rnd_detach_source(krndsource_t *source)
{
rnd_sample_t *sample;
mutex_spin_enter(&rnd_global.lock);
LIST_REMOVE(source, list);
if (0 < --source->refcnt) {
do {
cv_wait(&rnd_global.cv, &rnd_global.lock);
} while (0 < source->refcnt);
}
mutex_spin_exit(&rnd_global.lock);
/*
* If there are samples queued up "remove" them from the sample queue
* by setting the source to the no-collect pseudosource.
*/
mutex_spin_enter(&rnd_samples.lock);
sample = SIMPLEQ_FIRST(&rnd_samples.q);
while (sample != NULL) {
if (sample->source == source)
sample->source = &rnd_source_no_collect;
sample = SIMPLEQ_NEXT(sample, next);
}
mutex_spin_exit(&rnd_samples.lock);
if (source->state) {
rnd_sample_free(source->state);
source->state = NULL;
}
if (source->test) {
kmem_free(source->test, sizeof(rngtest_t));
}
rnd_printf_verbose("rnd: %s detached as an entropy source\n",
source->name);
}
static inline uint32_t
rnd_estimate(krndsource_t *rs, uint32_t ts, uint32_t val)
{
uint32_t entropy = 0, dt_est, dv_est;
dt_est = rnd_dt_estimate(rs, ts);
dv_est = rnd_dv_estimate(rs, val);
if (!(rs->flags & RND_FLAG_NO_ESTIMATE)) {
if (rs->flags & RND_FLAG_ESTIMATE_TIME) {
entropy += dt_est;
}
if (rs->flags & RND_FLAG_ESTIMATE_VALUE) {
entropy += dv_est;
}
}
return entropy;
}
/*
* Add a 32-bit value to the entropy pool. The rs parameter should point to
* the source-specific source structure.
*/
void
_rnd_add_uint32(krndsource_t *rs, uint32_t val)
{
uint32_t ts;
uint32_t entropy = 0;
if (rs->flags & RND_FLAG_NO_COLLECT)
return;
/*
* Sample the counter as soon as possible to avoid
* entropy overestimation.
*/
ts = rnd_counter();
/*
* Calculate estimates - we may not use them, but if we do
* not calculate them, the estimators' history becomes invalid.
*/
entropy = rnd_estimate(rs, ts, val);
rnd_add_data_ts(rs, &val, sizeof(val), entropy, ts);
}
void
_rnd_add_uint64(krndsource_t *rs, uint64_t val)
{
uint32_t ts;
uint32_t entropy = 0;
if (rs->flags & RND_FLAG_NO_COLLECT)
return;
/*
* Sample the counter as soon as possible to avoid
* entropy overestimation.
*/
ts = rnd_counter();
/*
* Calculate estimates - we may not use them, but if we do
* not calculate them, the estimators' history becomes invalid.
*/
entropy = rnd_estimate(rs, ts, (uint32_t)(val & (uint64_t)0xffffffff));
rnd_add_data_ts(rs, &val, sizeof(val), entropy, ts);
}
void
rnd_add_data(krndsource_t *rs, const void *const data, uint32_t len,
uint32_t entropy)
{
/*
* This interface is meant for feeding data which is,
* itself, random. Don't estimate entropy based on
* timestamp, just directly add the data.
*/
if (__predict_false(rs == NULL)) {
mutex_spin_enter(&rnd_global.lock);
rndpool_add_data(&rnd_global.pool, data, len, entropy);
mutex_spin_exit(&rnd_global.lock);
} else {
rnd_add_data_ts(rs, data, len, entropy, rnd_counter());
}
}
static void
rnd_add_data_ts(krndsource_t *rs, const void *const data, uint32_t len,
uint32_t entropy, uint32_t ts)
{
rnd_sample_t *state = NULL;
const uint8_t *p = data;
uint32_t dint;
int todo, done, filled = 0;
int sample_count;
struct rnd_sampleq tmp_samples = SIMPLEQ_HEAD_INITIALIZER(tmp_samples);
if (rs &&
(rs->flags & RND_FLAG_NO_COLLECT ||
__predict_false(!(rs->flags &
(RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE))))) {
return;
}
todo = len / sizeof(dint);
/*
* Let's try to be efficient: if we are warm, and a source
* is adding entropy at a rate of at least 1 bit every 10 seconds,
* mark it as "fast" and add its samples in bulk.
*/
if (__predict_true(rs->flags & RND_FLAG_FAST) ||
(todo >= RND_SAMPLE_COUNT)) {
sample_count = RND_SAMPLE_COUNT;
} else {
if (!(rs->flags & RND_FLAG_HASCB) &&
!cold && rnd_initial_entropy) {
struct timeval upt;
getmicrouptime(&upt);
if ((upt.tv_sec > 0 && rs->total > upt.tv_sec * 10) ||
(upt.tv_sec > 10 && rs->total > upt.tv_sec) ||
(upt.tv_sec > 100 &&
rs->total > upt.tv_sec / 10)) {
rnd_printf_verbose("rnd: source %s is fast"
" (%d samples at once,"
" %d bits in %lld seconds), "
"processing samples in bulk.\n",
rs->name, todo, rs->total,
(long long int)upt.tv_sec);
rs->flags |= RND_FLAG_FAST;
}
}
sample_count = 2;
}
/*
* Loop over data packaging it into sample buffers.
* If a sample buffer allocation fails, drop all data.
*/
for (done = 0; done < todo ; done++) {
state = rs->state;
if (state == NULL) {
state = rnd_sample_allocate_isr(rs);
if (__predict_false(state == NULL)) {
break;
}
rs->state = state;
}
state->ts[state->cursor] = ts;
(void)memcpy(&dint, &p[done*4], 4);
state->values[state->cursor] = dint;
state->cursor++;
if (state->cursor == sample_count) {
SIMPLEQ_INSERT_HEAD(&tmp_samples, state, next);
filled++;
rs->state = NULL;
}
}
if (__predict_false(state == NULL)) {
while ((state = SIMPLEQ_FIRST(&tmp_samples))) {
SIMPLEQ_REMOVE_HEAD(&tmp_samples, next);
rnd_sample_free(state);
}
return;
}
/*
* Claim all the entropy on the last one we send to
* the pool, so we don't rely on it being evenly distributed
* in the supplied data.
*
* XXX The rndpool code must accept samples with more
* XXX claimed entropy than bits for this to work right.
*/
state->entropy += entropy;
rs->total += entropy;
/*
* If we didn't finish any sample buffers, we're done.
*/
if (!filled) {
return;
}
mutex_spin_enter(&rnd_samples.lock);
while ((state = SIMPLEQ_FIRST(&tmp_samples))) {
SIMPLEQ_REMOVE_HEAD(&tmp_samples, next);
SIMPLEQ_INSERT_HEAD(&rnd_samples.q, state, next);
}
mutex_spin_exit(&rnd_samples.lock);
/* Cause processing of queued samples */
rnd_schedule_process();
}
static int
rnd_hwrng_test(rnd_sample_t *sample)
{
krndsource_t *source = sample->source;
size_t cmplen;
uint8_t *v1, *v2;
size_t resid, totest;
KASSERT(source->type == RND_TYPE_RNG);
/*
* Continuous-output test: compare two halves of the
* sample buffer to each other. The sample buffer (64 ints,
* so either 256 or 512 bytes on any modern machine) should be
* much larger than a typical hardware RNG output, so this seems
* a reasonable way to do it without retaining extra data.
*/
cmplen = sizeof(sample->values) / 2;
v1 = (uint8_t *)sample->values;
v2 = (uint8_t *)sample->values + cmplen;
if (__predict_false(!memcmp(v1, v2, cmplen))) {
rnd_printf("rnd: source \"%s\""
" failed continuous-output test.\n",
source->name);
return 1;
}
/*
* FIPS 140 statistical RNG test. We must accumulate 20,000 bits.
*/
if (__predict_true(source->test_cnt == -1)) {
/* already passed the test */
return 0;
}
resid = FIPS140_RNG_TEST_BYTES - source->test_cnt;
totest = MIN(RND_SAMPLE_COUNT * 4, resid);
memcpy(source->test->rt_b + source->test_cnt, sample->values, totest);
resid -= totest;
source->test_cnt += totest;
if (resid == 0) {
strlcpy(source->test->rt_name, source->name,
sizeof(source->test->rt_name));
if (rngtest(source->test)) {
rnd_printf("rnd: source \"%s\""
" failed statistical test.",
source->name);
return 1;
}
source->test_cnt = -1;
memset(source->test, 0, sizeof(*source->test));
}
return 0;
}
/*
* Process the events in the ring buffer. Called by rnd_timeout or
* by the add routines directly if the callout has never fired (that
* is, if we are "cold" -- just booted).
*
*/
static void
rnd_process_events(void)
{
rnd_sample_t *sample = NULL;
krndsource_t *source;
static krndsource_t *last_source;
uint32_t entropy;
size_t pool_entropy;
int wake = 0;
struct rnd_sampleq dq_samples = SIMPLEQ_HEAD_INITIALIZER(dq_samples);
struct rnd_sampleq df_samples = SIMPLEQ_HEAD_INITIALIZER(df_samples);
/*
* Drain to the on-stack queue and drop the lock.
*/
mutex_spin_enter(&rnd_samples.lock);
while ((sample = SIMPLEQ_FIRST(&rnd_samples.q))) {
SIMPLEQ_REMOVE_HEAD(&rnd_samples.q, next);
/*
* We repeat this check here, since it is possible
* the source was disabled before we were called, but
* after the entry was queued.
*/
if (__predict_false(!(sample->source->flags &
(RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE)))) {
SIMPLEQ_INSERT_TAIL(&df_samples, sample, next);
} else {
SIMPLEQ_INSERT_TAIL(&dq_samples, sample, next);
}
}
mutex_spin_exit(&rnd_samples.lock);
/* Don't thrash the rndpool mtx either. Hold, add all samples. */
mutex_spin_enter(&rnd_global.lock);
pool_entropy = rndpool_get_entropy_count(&rnd_global.pool);
while ((sample = SIMPLEQ_FIRST(&dq_samples))) {
int sample_count;
SIMPLEQ_REMOVE_HEAD(&dq_samples, next);
source = sample->source;
entropy = sample->entropy;
sample_count = sample->cursor;
/*
* Don't provide a side channel for timing attacks on
* low-rate sources: require mixing with some other
* source before we schedule a wakeup.
*/
if (!wake &&
(source != last_source || source->flags & RND_FLAG_FAST)) {
wake++;
}
last_source = source;
/*
* If the source has been disabled, ignore samples from
* it.
*/
if (source->flags & RND_FLAG_NO_COLLECT)
goto skip;
/*
* Hardware generators are great but sometimes they
* have...hardware issues. Don't use any data from
* them unless it passes some tests.
*/
if (source->type == RND_TYPE_RNG) {
if (__predict_false(rnd_hwrng_test(sample))) {
source->flags |= RND_FLAG_NO_COLLECT;
rnd_printf("rnd: disabling source \"%s\".\n",
source->name);
goto skip;
}
}
if (source->flags & RND_FLAG_COLLECT_VALUE) {
rndpool_add_data(&rnd_global.pool, sample->values,
sample_count * sizeof(sample->values[1]),
0);
}
if (source->flags & RND_FLAG_COLLECT_TIME) {
rndpool_add_data(&rnd_global.pool, sample->ts,
sample_count * sizeof(sample->ts[1]),
0);
}
pool_entropy += entropy;
source->total += sample->entropy;
skip: SIMPLEQ_INSERT_TAIL(&df_samples, sample, next);
}
rndpool_set_entropy_count(&rnd_global.pool, pool_entropy);
rnd_entropy_added();
mutex_spin_exit(&rnd_global.lock);
/*
* If we filled the pool past the threshold, wake anyone
* waiting for entropy. Otherwise, ask all the entropy sources
* for more.
*/
if (pool_entropy > RND_ENTROPY_THRESHOLD * 8) {
wake++;
} else {
rnd_getmore(howmany((RND_POOLBITS - pool_entropy), NBBY));
rnd_printf_verbose("rnd: empty, asking for %d bytes\n",
(int)(howmany((RND_POOLBITS - pool_entropy), NBBY)));
}
/* Now we hold no locks: clean up. */
while ((sample = SIMPLEQ_FIRST(&df_samples))) {
SIMPLEQ_REMOVE_HEAD(&df_samples, next);
rnd_sample_free(sample);
}
/*
* Wake up any potential readers waiting.
*/
if (wake) {
rnd_schedule_wakeup();
}
}
static void
rnd_intr(void *arg)
{
rnd_process_events();
}
static void
rnd_wake(void *arg)
{
rndsinks_distribute();
}
static uint32_t
rnd_extract_data(void *p, uint32_t len, uint32_t flags)
{
static int timed_in;
int entropy_count;
uint32_t retval;
mutex_spin_enter(&rnd_global.lock);
if (__predict_false(!timed_in)) {
if (boottime.tv_sec) {
rndpool_add_data(&rnd_global.pool, &boottime,
sizeof(boottime), 0);
}
timed_in++;
}
if (__predict_false(!rnd_initial_entropy)) {
uint32_t c;
rnd_printf_verbose("rnd: WARNING! initial entropy low (%u).\n",
rndpool_get_entropy_count(&rnd_global.pool));
/* Try once again to put something in the pool */
c = rnd_counter();
rndpool_add_data(&rnd_global.pool, &c, sizeof(c), 1);
}
#ifdef DIAGNOSTIC
while (!rnd_tested) {
entropy_count = rndpool_get_entropy_count(&rnd_global.pool);
rnd_printf_verbose("rnd: starting statistical RNG test,"
" entropy = %d.\n",
entropy_count);
if (rndpool_extract_data(&rnd_global.pool, rnd_rt.rt_b,
sizeof(rnd_rt.rt_b), RND_EXTRACT_ANY)
!= sizeof(rnd_rt.rt_b)) {
panic("rnd: could not get bits for statistical test");
}
/*
* Stash the tested bits so we can put them back in the
* pool, restoring the entropy count. DO NOT rely on
* rngtest to maintain the bits pristine -- we could end
* up adding back non-random data claiming it were pure
* entropy.
*/
memcpy(rnd_testbits, rnd_rt.rt_b, sizeof(rnd_rt.rt_b));
strlcpy(rnd_rt.rt_name, "entropy pool",
sizeof(rnd_rt.rt_name));
if (rngtest(&rnd_rt)) {
/*
* The probabiliity of a Type I error is 3/10000,
* but note this can only happen at boot time.
* The relevant standard says to reset the module,
* but developers objected...
*/
rnd_printf("rnd: WARNING, ENTROPY POOL FAILED "
"STATISTICAL TEST!\n");
continue;
}
memset(&rnd_rt, 0, sizeof(rnd_rt));
rndpool_add_data(&rnd_global.pool, rnd_testbits,
sizeof(rnd_testbits), entropy_count);
memset(rnd_testbits, 0, sizeof(rnd_testbits));
rnd_printf_verbose("rnd: statistical RNG test done,"
" entropy = %d.\n",
rndpool_get_entropy_count(&rnd_global.pool));
rnd_tested++;
}
#endif
entropy_count = rndpool_get_entropy_count(&rnd_global.pool);
retval = rndpool_extract_data(&rnd_global.pool, p, len, flags);
mutex_spin_exit(&rnd_global.lock);
if (entropy_count < (RND_ENTROPY_THRESHOLD * 2 + len) * NBBY) {
rnd_printf_verbose("rnd: empty, asking for %d bytes\n",
(int)(howmany((RND_POOLBITS - entropy_count), NBBY)));
rnd_getmore(howmany((RND_POOLBITS - entropy_count), NBBY));
}
return retval;
}
/*
* Fill the buffer with as much entropy as we can. Return true if it
* has full entropy and false if not.
*/
bool
rnd_extract(void *buffer, size_t bytes)
{
const size_t extracted = rnd_extract_data(buffer, bytes,
RND_EXTRACT_GOOD);
if (extracted < bytes) {
rnd_getmore(bytes - extracted);
(void)rnd_extract_data((uint8_t *)buffer + extracted,
bytes - extracted, RND_EXTRACT_ANY);
return false;
}
return true;
}
/*
* If we have as much entropy as is requested, fill the buffer with it
* and return true. Otherwise, leave the buffer alone and return
* false.
*/
CTASSERT(RND_ENTROPY_THRESHOLD <= 0xffffffffUL);
CTASSERT(RNDSINK_MAX_BYTES <= (0xffffffffUL - RND_ENTROPY_THRESHOLD));
CTASSERT((RNDSINK_MAX_BYTES + RND_ENTROPY_THRESHOLD) <=
(0xffffffffUL / NBBY));
bool
rnd_tryextract(void *buffer, size_t bytes)
{
uint32_t bits_needed, bytes_requested;
KASSERT(bytes <= RNDSINK_MAX_BYTES);
bits_needed = ((bytes + RND_ENTROPY_THRESHOLD) * NBBY);
mutex_spin_enter(&rnd_global.lock);
if (bits_needed <= rndpool_get_entropy_count(&rnd_global.pool)) {
const uint32_t extracted __diagused =
rndpool_extract_data(&rnd_global.pool, buffer, bytes,
RND_EXTRACT_GOOD);
KASSERT(extracted == bytes);
bytes_requested = 0;
} else {
/* XXX Figure the threshold into this... */
bytes_requested = howmany((bits_needed -
rndpool_get_entropy_count(&rnd_global.pool)), NBBY);
KASSERT(0 < bytes_requested);
}
mutex_spin_exit(&rnd_global.lock);
if (0 < bytes_requested)
rnd_getmore(bytes_requested);
return bytes_requested == 0;
}
void
rnd_seed(void *base, size_t len)
{
SHA1_CTX s;
uint8_t digest[SHA1_DIGEST_LENGTH];
if (len != sizeof(*boot_rsp)) {
rnd_printf("rnd: bad seed length %d\n", (int)len);
return;
}
boot_rsp = (rndsave_t *)base;
SHA1Init(&s);
SHA1Update(&s, (uint8_t *)&boot_rsp->entropy,
sizeof(boot_rsp->entropy));
SHA1Update(&s, boot_rsp->data, sizeof(boot_rsp->data));
SHA1Final(digest, &s);
if (memcmp(digest, boot_rsp->digest, sizeof(digest))) {
rnd_printf("rnd: bad seed checksum\n");
return;
}
/*
* It's not really well-defined whether bootloader-supplied
* modules run before or after rnd_init(). Handle both cases.
*/
if (rnd_ready) {
rnd_printf_verbose("rnd: ready,"
" feeding in seed data directly.\n");
mutex_spin_enter(&rnd_global.lock);
rndpool_add_data(&rnd_global.pool, boot_rsp->data,
sizeof(boot_rsp->data),
MIN(boot_rsp->entropy, RND_POOLBITS / 2));
memset(boot_rsp, 0, sizeof(*boot_rsp));
mutex_spin_exit(&rnd_global.lock);
} else {
rnd_printf_verbose("rnd: not ready, deferring seed feed.\n");
}
}
static void
krndsource_to_rndsource(krndsource_t *kr, rndsource_t *r)
{
memset(r, 0, sizeof(*r));
strlcpy(r->name, kr->name, sizeof(r->name));
r->total = kr->total;
r->type = kr->type;
r->flags = kr->flags;
}
static void
krndsource_to_rndsource_est(krndsource_t *kr, rndsource_est_t *re)
{
memset(re, 0, sizeof(*re));
krndsource_to_rndsource(kr, &re->rt);
re->dt_samples = kr->time_delta.insamples;
re->dt_total = kr->time_delta.outbits;
re->dv_samples = kr->value_delta.insamples;
re->dv_total = kr->value_delta.outbits;
}
static void
krs_setflags(krndsource_t *kr, uint32_t flags, uint32_t mask)
{
uint32_t oflags = kr->flags;
kr->flags &= ~mask;
kr->flags |= (flags & mask);
if (oflags & RND_FLAG_HASENABLE &&
((oflags & RND_FLAG_NO_COLLECT) !=
(flags & RND_FLAG_NO_COLLECT))) {
kr->enable(kr, !(flags & RND_FLAG_NO_COLLECT));
}
}
int
rnd_system_ioctl(struct file *fp, u_long cmd, void *addr)
{
krndsource_t *kr;
rndstat_t *rst;
rndstat_name_t *rstnm;
rndstat_est_t *rset;
rndstat_est_name_t *rsetnm;
rndctl_t *rctl;
rnddata_t *rnddata;
uint32_t count, start;
int ret = 0;
int estimate_ok = 0, estimate = 0;
switch (cmd) {
case RNDGETENTCNT:
break;
case RNDGETPOOLSTAT:
case RNDGETSRCNUM:
case RNDGETSRCNAME:
case RNDGETESTNUM:
case RNDGETESTNAME:
ret = kauth_authorize_device(curlwp->l_cred,
KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
if (ret)
return ret;
break;
case RNDCTL:
ret = kauth_authorize_device(curlwp->l_cred,
KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
if (ret)
return ret;
break;
case RNDADDDATA:
ret = kauth_authorize_device(curlwp->l_cred,
KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
if (ret)
return ret;
estimate_ok = !kauth_authorize_device(curlwp->l_cred,
KAUTH_DEVICE_RND_ADDDATA_ESTIMATE, NULL, NULL, NULL, NULL);
break;
default:
#ifdef COMPAT_50
return compat_50_rnd_ioctl(fp, cmd, addr);
#else
return ENOTTY;
#endif
}
switch (cmd) {
case RNDGETENTCNT:
mutex_spin_enter(&rnd_global.lock);
*(uint32_t *)addr =
rndpool_get_entropy_count(&rnd_global.pool);
mutex_spin_exit(&rnd_global.lock);
break;
case RNDGETPOOLSTAT:
mutex_spin_enter(&rnd_global.lock);
rndpool_get_stats(&rnd_global.pool, addr,
sizeof(rndpoolstat_t));
mutex_spin_exit(&rnd_global.lock);
break;
case RNDGETSRCNUM:
rst = (rndstat_t *)addr;
if (rst->count == 0)
break;
if (rst->count > RND_MAXSTATCOUNT)
return EINVAL;
mutex_spin_enter(&rnd_global.lock);
/*
* Find the starting source by running through the
* list of sources.
*/
kr = LIST_FIRST(&rnd_global.sources);
start = rst->start;
while (kr != NULL && start >= 1) {
kr = LIST_NEXT(kr, list);
start--;
}
/*
* Return up to as many structures as the user asked
* for. If we run out of sources, a count of zero
* will be returned, without an error.
*/
for (count = 0; count < rst->count && kr != NULL; count++) {
krndsource_to_rndsource(kr, &rst->source[count]);
kr = LIST_NEXT(kr, list);
}
rst->count = count;
mutex_spin_exit(&rnd_global.lock);
break;
case RNDGETESTNUM:
rset = (rndstat_est_t *)addr;
if (rset->count == 0)
break;
if (rset->count > RND_MAXSTATCOUNT)
return EINVAL;
mutex_spin_enter(&rnd_global.lock);
/*
* Find the starting source by running through the
* list of sources.
*/
kr = LIST_FIRST(&rnd_global.sources);
start = rset->start;
while (kr != NULL && start > 0) {
kr = LIST_NEXT(kr, list);
start--;
}
/*
* Return up to as many structures as the user asked
* for. If we run out of sources, a count of zero
* will be returned, without an error.
*/
for (count = 0; count < rset->count && kr != NULL; count++) {
krndsource_to_rndsource_est(kr, &rset->source[count]);
kr = LIST_NEXT(kr, list);
}
rset->count = count;
mutex_spin_exit(&rnd_global.lock);
break;
case RNDGETSRCNAME:
/*
* Scan through the list, trying to find the name.
*/
mutex_spin_enter(&rnd_global.lock);
rstnm = (rndstat_name_t *)addr;
kr = LIST_FIRST(&rnd_global.sources);
while (kr != NULL) {
if (strncmp(kr->name, rstnm->name,
MIN(sizeof(kr->name),
sizeof(rstnm->name))) == 0) {
krndsource_to_rndsource(kr, &rstnm->source);
mutex_spin_exit(&rnd_global.lock);
return 0;
}
kr = LIST_NEXT(kr, list);
}
mutex_spin_exit(&rnd_global.lock);
ret = ENOENT; /* name not found */
break;
case RNDGETESTNAME:
/*
* Scan through the list, trying to find the name.
*/
mutex_spin_enter(&rnd_global.lock);
rsetnm = (rndstat_est_name_t *)addr;
kr = LIST_FIRST(&rnd_global.sources);
while (kr != NULL) {
if (strncmp(kr->name, rsetnm->name,
MIN(sizeof(kr->name), sizeof(rsetnm->name)))
== 0) {
krndsource_to_rndsource_est(kr,
&rsetnm->source);
mutex_spin_exit(&rnd_global.lock);
return 0;
}
kr = LIST_NEXT(kr, list);
}
mutex_spin_exit(&rnd_global.lock);
ret = ENOENT; /* name not found */
break;
case RNDCTL:
/*
* Set flags to enable/disable entropy counting and/or
* collection.
*/
mutex_spin_enter(&rnd_global.lock);
rctl = (rndctl_t *)addr;
kr = LIST_FIRST(&rnd_global.sources);
/*
* Flags set apply to all sources of this type.
*/
if (rctl->type != 0xff) {
while (kr != NULL) {
if (kr->type == rctl->type) {
krs_setflags(kr, rctl->flags,
rctl->mask);
}
kr = LIST_NEXT(kr, list);
}
mutex_spin_exit(&rnd_global.lock);
return 0;
}
/*
* scan through the list, trying to find the name
*/
while (kr != NULL) {
if (strncmp(kr->name, rctl->name,
MIN(sizeof(kr->name), sizeof(rctl->name)))
== 0) {
krs_setflags(kr, rctl->flags, rctl->mask);
mutex_spin_exit(&rnd_global.lock);
return 0;
}
kr = LIST_NEXT(kr, list);
}
mutex_spin_exit(&rnd_global.lock);
ret = ENOENT; /* name not found */
break;
case RNDADDDATA:
/*
* Don't seed twice if our bootloader has
* seed loading support.
*/
if (!boot_rsp) {
rnddata = (rnddata_t *)addr;
if (rnddata->len > sizeof(rnddata->data))
return EINVAL;
if (estimate_ok) {
/*
* Do not accept absurd entropy estimates, and
* do not flood the pool with entropy such that
* new samples are discarded henceforth.
*/
estimate = MIN((rnddata->len * NBBY) / 2,
MIN(rnddata->entropy, RND_POOLBITS / 2));
} else {
estimate = 0;
}
mutex_spin_enter(&rnd_global.lock);
rndpool_add_data(&rnd_global.pool, rnddata->data,
rnddata->len, estimate);
rnd_entropy_added();
mutex_spin_exit(&rnd_global.lock);
rndsinks_distribute();
} else {
rnd_printf_verbose("rnd"
": already seeded by boot loader\n");
}
break;
default:
return ENOTTY;
}
return ret;
}