NetBSD/sys/arch/next68k/dev/esp.c
2014-03-29 19:20:14 +00:00

1943 lines
51 KiB
C

/* $NetBSD: esp.c,v 1.63 2014/03/29 19:20:14 christos Exp $ */
/*-
* Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum and by Jason R. Thorpe of the Numerical Aerospace
* Simulation Facility, NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1994 Peter Galbavy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Peter Galbavy
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Based on aic6360 by Jarle Greipsland
*
* Acknowledgements: Many of the algorithms used in this driver are
* inspired by the work of Julian Elischer (julian@tfs.com) and
* Charles Hannum (mycroft@duality.gnu.ai.mit.edu). Thanks a million!
*/
/*
* Grabbed from the sparc port at revision 1.73 for the NeXT.
* Darrin B. Jewell <dbj@NetBSD.org> Sat Jul 4 15:41:32 1998
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: esp.c,v 1.63 2014/03/29 19:20:14 christos Exp $");
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <uvm/uvm_extern.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/scsipi/scsi_message.h>
#include <machine/bus.h>
#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <dev/ic/ncr53c9xreg.h>
#include <dev/ic/ncr53c9xvar.h>
#include <next68k/next68k/isr.h>
#include <next68k/dev/intiovar.h>
#include <next68k/dev/nextdmareg.h>
#include <next68k/dev/nextdmavar.h>
#include <next68k/dev/espreg.h>
#include <next68k/dev/espvar.h>
#ifdef DEBUG
#undef ESP_DEBUG
#endif
#ifdef ESP_DEBUG
int esp_debug = 0;
#define DPRINTF(x) if (esp_debug) printf x;
#define NDTRACEIF(x) if (10) do {x;} while (0)
#else
#define DPRINTF(x)
#define NDTRACEIF(x)
#endif
#define PRINTF(x) printf x;
int espmatch_intio(device_t, cfdata_t, void *);
void espattach_intio(device_t, device_t, void *);
/* DMA callbacks */
bus_dmamap_t esp_dmacb_continue(void *);
void esp_dmacb_completed(bus_dmamap_t, void *);
void esp_dmacb_shutdown(void *);
static void findchannel_defer(device_t);
#ifdef ESP_DEBUG
char esp_dma_dump[5*1024] = "";
struct ncr53c9x_softc *esp_debug_sc = 0;
void esp_dma_store(struct ncr53c9x_softc *);
void esp_dma_print(struct ncr53c9x_softc *);
int esp_dma_nest = 0;
int esptraceshow;
#endif
/* Linkup to the rest of the kernel */
CFATTACH_DECL_NEW(esp, sizeof(struct esp_softc),
espmatch_intio, espattach_intio, NULL, NULL);
static int attached = 0;
/*
* Functions and the switch for the MI code.
*/
uint8_t esp_read_reg(struct ncr53c9x_softc *, int);
void esp_write_reg(struct ncr53c9x_softc *, int, uint8_t);
int esp_dma_isintr(struct ncr53c9x_softc *);
void esp_dma_reset(struct ncr53c9x_softc *);
int esp_dma_intr(struct ncr53c9x_softc *);
int esp_dma_setup(struct ncr53c9x_softc *, uint8_t **, size_t *, int,
size_t *);
void esp_dma_go(struct ncr53c9x_softc *);
void esp_dma_stop(struct ncr53c9x_softc *);
int esp_dma_isactive(struct ncr53c9x_softc *);
struct ncr53c9x_glue esp_glue = {
esp_read_reg,
esp_write_reg,
esp_dma_isintr,
esp_dma_reset,
esp_dma_intr,
esp_dma_setup,
esp_dma_go,
esp_dma_stop,
esp_dma_isactive,
NULL, /* gl_clear_latched_intr */
};
#ifdef ESP_DEBUG
#define XCHR(x) hexdigits[(x) & 0xf]
static void
esp_hex_dump(unsigned char *pkt, size_t len)
{
size_t i, j;
printf("00000000 ");
for(i = 0; i < len; i++) {
printf("%c%c ", XCHR(pkt[i]>>4), XCHR(pkt[i]));
if ((i + 1) % 16 == 8) {
printf(" ");
}
if ((i + 1) % 16 == 0) {
printf(" %c", '|');
for(j = 0; j < 16; j++) {
printf("%c", pkt[i-15+j]>=32 && pkt[i-15+j]<127?pkt[i-15+j]:'.');
}
printf("%c\n%c%c%c%c%c%c%c%c ", '|',
XCHR((i+1)>>28),XCHR((i+1)>>24),XCHR((i+1)>>20),XCHR((i+1)>>16),
XCHR((i+1)>>12), XCHR((i+1)>>8), XCHR((i+1)>>4), XCHR(i+1));
}
}
printf("\n");
}
#endif
int
espmatch_intio(device_t parent, cfdata_t cf, void *aux)
{
struct intio_attach_args *ia = aux;
if (attached)
return 0;
ia->ia_addr = (void *)NEXT_P_SCSI;
return 1;
}
static void
findchannel_defer(device_t self)
{
struct esp_softc *esc = device_private(self);
struct ncr53c9x_softc *sc = &esc->sc_ncr53c9x;
int error;
if (!esc->sc_dma) {
aprint_normal("%s", device_xname(sc->sc_dev));
esc->sc_dma = nextdma_findchannel("scsi");
if (!esc->sc_dma)
panic("%s: can't find DMA channel",
device_xname(sc->sc_dev));
}
nextdma_setconf(esc->sc_dma, shutdown_cb, &esp_dmacb_shutdown);
nextdma_setconf(esc->sc_dma, continue_cb, &esp_dmacb_continue);
nextdma_setconf(esc->sc_dma, completed_cb, &esp_dmacb_completed);
nextdma_setconf(esc->sc_dma, cb_arg, sc);
error = bus_dmamap_create(esc->sc_dma->sc_dmat,
sc->sc_maxxfer,
sc->sc_maxxfer / PAGE_SIZE + 1,
sc->sc_maxxfer,
0, BUS_DMA_ALLOCNOW, &esc->sc_main_dmamap);
if (error) {
panic("%s: can't create main i/o DMA map, error = %d",
device_xname(sc->sc_dev), error);
}
error = bus_dmamap_create(esc->sc_dma->sc_dmat,
ESP_DMA_TAILBUFSIZE, 1, ESP_DMA_TAILBUFSIZE,
0, BUS_DMA_ALLOCNOW, &esc->sc_tail_dmamap);
if (error) {
panic("%s: can't create tail i/o DMA map, error = %d",
device_xname(sc->sc_dev), error);
}
#if 0
/* Turn on target selection using the `DMA' method */
sc->sc_features |= NCR_F_DMASELECT;
#endif
/* Do the common parts of attachment. */
sc->sc_adapter.adapt_minphys = minphys;
sc->sc_adapter.adapt_request = ncr53c9x_scsipi_request;
ncr53c9x_attach(sc);
/* Establish interrupt channel */
isrlink_autovec(ncr53c9x_intr, sc, NEXT_I_IPL(NEXT_I_SCSI), 0, NULL);
INTR_ENABLE(NEXT_I_SCSI);
/* register interrupt stats */
evcnt_attach_dynamic(&sc->sc_intrcnt, EVCNT_TYPE_INTR, NULL,
device_xname(sc->sc_dev), "intr");
aprint_normal_dev(sc->sc_dev, "using DMA channel %s\n",
device_xname(esc->sc_dma->sc_dev));
}
void
espattach_intio(device_t parent, device_t self, void *aux)
{
struct esp_softc *esc = device_private(self);
struct ncr53c9x_softc *sc = &esc->sc_ncr53c9x;
struct intio_attach_args *ia = aux;
sc->sc_dev = self;
#ifdef ESP_DEBUG
esp_debug_sc = sc;
#endif
esc->sc_bst = ia->ia_bst;
if (bus_space_map(esc->sc_bst, NEXT_P_SCSI,
ESP_DEVICE_SIZE, 0, &esc->sc_bsh)) {
aprint_normal("\n");
panic("%s: can't map ncr53c90 registers",
device_xname(self));
}
sc->sc_id = 7;
sc->sc_freq = 20; /* MHz */
/*
* Set up glue for MI code early; we use some of it here.
*/
sc->sc_glue = &esp_glue;
/*
* XXX More of this should be in ncr53c9x_attach(), but
* XXX should we really poke around the chip that much in
* XXX the MI code? Think about this more...
*/
/*
* It is necessary to try to load the 2nd config register here,
* to find out what rev the esp chip is, else the ncr53c9x_reset
* will not set up the defaults correctly.
*/
sc->sc_cfg1 = sc->sc_id | NCRCFG1_PARENB;
sc->sc_cfg2 = NCRCFG2_SCSI2 | NCRCFG2_RPE;
sc->sc_cfg3 = NCRCFG3_CDB;
NCR_WRITE_REG(sc, NCR_CFG2, sc->sc_cfg2);
if ((NCR_READ_REG(sc, NCR_CFG2) & ~NCRCFG2_RSVD) !=
(NCRCFG2_SCSI2 | NCRCFG2_RPE)) {
sc->sc_rev = NCR_VARIANT_ESP100;
} else {
sc->sc_cfg2 = NCRCFG2_SCSI2;
NCR_WRITE_REG(sc, NCR_CFG2, sc->sc_cfg2);
sc->sc_cfg3 = 0;
NCR_WRITE_REG(sc, NCR_CFG3, sc->sc_cfg3);
sc->sc_cfg3 = (NCRCFG3_CDB | NCRCFG3_FCLK);
NCR_WRITE_REG(sc, NCR_CFG3, sc->sc_cfg3);
if (NCR_READ_REG(sc, NCR_CFG3) !=
(NCRCFG3_CDB | NCRCFG3_FCLK)) {
sc->sc_rev = NCR_VARIANT_ESP100A;
} else {
/* NCRCFG2_FE enables > 64K transfers */
sc->sc_cfg2 |= NCRCFG2_FE;
sc->sc_cfg3 = 0;
NCR_WRITE_REG(sc, NCR_CFG3, sc->sc_cfg3);
sc->sc_rev = NCR_VARIANT_ESP200;
}
}
/*
* XXX minsync and maxxfer _should_ be set up in MI code,
* XXX but it appears to have some dependency on what sort
* XXX of DMA we're hooked up to, etc.
*/
/*
* This is the value used to start sync negotiations
* Note that the NCR register "SYNCTP" is programmed
* in "clocks per byte", and has a minimum value of 4.
* The SCSI period used in negotiation is one-fourth
* of the time (in nanoseconds) needed to transfer one byte.
* Since the chip's clock is given in MHz, we have the following
* formula: 4 * period = (1000 / freq) * 4
*/
sc->sc_minsync = /* 1000 / sc->sc_freq */ 0;
/*
* Alas, we must now modify the value a bit, because it's
* only valid when can switch on FASTCLK and FASTSCSI bits
* in config register 3...
*/
switch (sc->sc_rev) {
case NCR_VARIANT_ESP100:
sc->sc_maxxfer = 64 * 1024;
sc->sc_minsync = 0; /* No synch on old chip? */
break;
case NCR_VARIANT_ESP100A:
sc->sc_maxxfer = 64 * 1024;
/* Min clocks/byte is 5 */
sc->sc_minsync = /* ncr53c9x_cpb2stp(sc, 5) */ 0;
break;
case NCR_VARIANT_ESP200:
sc->sc_maxxfer = 16 * 1024 * 1024;
/* XXX - do actually set FAST* bits */
break;
}
/* @@@ Some ESP_DCTL bits probably need setting */
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_16MHZ | ESPDCTL_INTENB | ESPDCTL_RESET);
DELAY(10);
DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
NCR_WRITE_REG(sc, ESP_DCTL, ESPDCTL_16MHZ | ESPDCTL_INTENB);
DELAY(10);
DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
esc->sc_dma = nextdma_findchannel ("scsi");
if (esc->sc_dma) {
findchannel_defer(self);
} else {
aprint_normal("\n");
config_defer(self, findchannel_defer);
}
attached = 1;
}
/*
* Glue functions.
*/
uint8_t
esp_read_reg(struct ncr53c9x_softc *sc, int reg)
{
struct esp_softc *esc = (struct esp_softc *)sc;
return bus_space_read_1(esc->sc_bst, esc->sc_bsh, reg);
}
void
esp_write_reg(struct ncr53c9x_softc *sc, int reg, uint8_t val)
{
struct esp_softc *esc = (struct esp_softc *)sc;
bus_space_write_1(esc->sc_bst, esc->sc_bsh, reg, val);
}
volatile uint32_t save1;
#define xADDR 0x0211a000
int doze(volatile int);
int
doze(volatile int c)
{
/* static int tmp1; */
uint32_t tmp1;
volatile uint8_t tmp2;
volatile uint8_t *reg = (volatile uint8_t *)IIOV(xADDR);
if (c > 244)
return 0;
if (c == 0)
return 0;
/* ((*(volatile u_long *)IIOV(NEXT_P_INTRMASK))&=(~NEXT_I_BIT(x))) */
(*reg) = 0;
(*reg) = 0;
do {
save1 = (*reg);
tmp2 = *(reg + 3);
tmp1 = tmp2;
} while (tmp1 <= c);
return 0;
}
int
esp_dma_isintr(struct ncr53c9x_softc *sc)
{
struct esp_softc *esc = (struct esp_softc *)sc;
if (INTR_OCCURRED(NEXT_I_SCSI)) {
NDTRACEIF (ndtrace_addc('i'));
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_16MHZ | ESPDCTL_INTENB |
(esc->sc_datain ? ESPDCTL_DMARD : 0));
return 1;
} else {
return 0;
}
}
#define nd_bsr4(reg) \
bus_space_read_4(nsc->sc_bst, nsc->sc_bsh, (reg))
#define nd_bsw4(reg,val) \
bus_space_write_4(nsc->sc_bst, nsc->sc_bsh, (reg), (val))
int
esp_dma_intr(struct ncr53c9x_softc *sc)
{
struct esp_softc *esc = (struct esp_softc *)sc;
struct nextdma_softc *nsc = esc->sc_dma;
struct nextdma_status *stat = &nsc->sc_stat;
int r = (INTR_OCCURRED(NEXT_I_SCSI));
int flushcount;
r = 1;
NDTRACEIF (ndtrace_addc('I'));
if (r) {
/* printf ("esp_dma_isintr start\n"); */
{
int s = spldma();
void *ndmap = stat->nd_map;
int ndidx = stat->nd_idx;
splx(s);
flushcount = 0;
#ifdef ESP_DEBUG
/* esp_dma_nest++; */
if (esp_debug) {
char sbuf[256];
snprintb(sbuf, sizeof(sbuf), NEXT_INTR_BITS,
(*(volatile u_long *)IIOV(NEXT_P_INTRSTAT)));
printf("esp_dma_isintr = 0x%s\n", sbuf);
}
#endif
while (!nextdma_finished(nsc)) {
/* esp_dma_isactive(sc)) { */
NDTRACEIF (ndtrace_addc('w'));
NDTRACEIF (
ndtrace_printf("f%dm%dl%dw",
NCR_READ_REG(sc, NCR_FFLAG) &
NCRFIFO_FF,
NCR_READ_REG((sc), NCR_TCM),
NCR_READ_REG((sc), NCR_TCL));
);
if (NCR_READ_REG(sc, NCR_FFLAG) & NCRFIFO_FF)
flushcount = 5;
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_16MHZ | ESPDCTL_INTENB |
ESPDCTL_DMAMOD |
(esc->sc_datain ? ESPDCTL_DMARD : 0));
s = spldma();
while (ndmap == stat->nd_map &&
ndidx == stat->nd_idx &&
(nd_bsr4 (DD_CSR) & 0x08000000) == 0&&
++flushcount < 5) {
splx(s);
NDTRACEIF (ndtrace_addc('F'));
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_FLUSH | ESPDCTL_16MHZ |
ESPDCTL_INTENB | ESPDCTL_DMAMOD |
(esc->sc_datain ?
ESPDCTL_DMARD : 0));
doze(0x32);
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_16MHZ | ESPDCTL_INTENB |
ESPDCTL_DMAMOD |
(esc->sc_datain ?
ESPDCTL_DMARD : 0));
doze(0x32);
s = spldma();
}
NDTRACEIF (ndtrace_addc('0' + flushcount));
if (flushcount > 4) {
int next;
int onext = 0;
splx(s);
DPRINTF(("DMA reset\n"));
while (((next = nd_bsr4 (DD_NEXT)) !=
(nd_bsr4(DD_LIMIT) & 0x7FFFFFFF)) &&
onext != next) {
onext = next;
DELAY(50);
}
NDTRACEIF (ndtrace_addc('R'));
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_16MHZ | ESPDCTL_INTENB);
NDTRACEIF (
ndtrace_printf(
"ff:%d tcm:%d tcl:%d ",
NCR_READ_REG(sc, NCR_FFLAG)
& NCRFIFO_FF,
NCR_READ_REG((sc), NCR_TCM),
NCR_READ_REG((sc),
NCR_TCL));
);
s = spldma();
nextdma_reset (nsc);
splx(s);
goto out;
}
splx(s);
#ifdef DIAGNOSTIC
if (flushcount > 4) {
NDTRACEIF (ndtrace_addc('+'));
printf("%s: unexpected flushcount"
" %d on %s\n",
device_xname(sc->sc_dev),
flushcount,
esc->sc_datain ? "read" : "write");
}
#endif
if (!nextdma_finished(nsc)) {
/* esp_dma_isactive(sc)) { */
NDTRACEIF (ndtrace_addc('1'));
}
flushcount = 0;
s = spldma();
ndmap = stat->nd_map;
ndidx = stat->nd_idx;
splx(s);
}
out:
;
#ifdef ESP_DEBUG
/* esp_dma_nest--; */
#endif
}
doze(0x32);
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_16MHZ | ESPDCTL_INTENB |
(esc->sc_datain ? ESPDCTL_DMARD : 0));
NDTRACEIF (ndtrace_addc('b'));
while (esc->sc_datain != -1)
DELAY(50);
if (esc->sc_dmaaddr) {
bus_size_t xfer_len = 0;
int resid;
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_16MHZ | ESPDCTL_INTENB);
if (stat->nd_exception == 0) {
resid = NCR_READ_REG((sc), NCR_TCL) +
(NCR_READ_REG((sc), NCR_TCM) << 8);
if (resid) {
resid += (NCR_READ_REG(sc, NCR_FFLAG) &
NCRFIFO_FF);
#ifdef ESP_DEBUG
if (NCR_READ_REG(sc, NCR_FFLAG) &
NCRFIFO_FF)
if ((NCR_READ_REG(sc,
NCR_FFLAG) & NCRFIFO_FF) !=
16 ||
NCR_READ_REG((sc),
NCR_TCL) != 240)
esptraceshow++;
#endif
}
xfer_len = esc->sc_dmasize - resid;
} else {
#define ncr53c9x_sched_msgout(m) \
do { \
NCR_MISC(("ncr53c9x_sched_msgout %x %d", m, __LINE__)); \
NCRCMD(sc, NCRCMD_SETATN); \
sc->sc_flags |= NCR_ATN; \
sc->sc_msgpriq |= (m); \
} while (0)
int i;
xfer_len = 0;
if (esc->sc_begin)
xfer_len += esc->sc_begin_size;
if (esc->sc_main_dmamap)
xfer_len +=
esc->sc_main_dmamap->dm_xfer_len;
if (esc->sc_tail_dmamap)
xfer_len +=
esc->sc_tail_dmamap->dm_xfer_len;
resid = 0;
printf ("X\n");
for (i = 0; i < 16; i++) {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_FLUSH | ESPDCTL_16MHZ |
ESPDCTL_INTENB |
(esc->sc_datain ?
ESPDCTL_DMARD : 0));
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_16MHZ | ESPDCTL_INTENB |
(esc->sc_datain ?
ESPDCTL_DMARD : 0));
}
#if 0
printf ("ff:%02x tcm:%d tcl:%d esp_dstat:%02x"
" stat:%02x step: %02x intr:%02x"
" new stat:%02X\n",
NCR_READ_REG(sc, NCR_FFLAG),
NCR_READ_REG((sc), NCR_TCM),
NCR_READ_REG((sc), NCR_TCL),
NCR_READ_REG(sc, ESP_DSTAT),
sc->sc_espstat, sc->sc_espstep,
sc->sc_espintr,
NCR_READ_REG(sc, NCR_STAT));
printf("sc->sc_state: %x sc->sc_phase: %x"
" sc->sc_espstep:%x sc->sc_prevphase:%x"
" sc->sc_flags:%x\n",
sc->sc_state, sc->sc_phase, sc->sc_espstep,
sc->sc_prevphase, sc->sc_flags);
#endif
/* sc->sc_flags &= ~NCR_ICCS; */
sc->sc_nexus->flags |= ECB_ABORT;
if (sc->sc_phase == MESSAGE_IN_PHASE) {
/* ncr53c9x_sched_msgout(SEND_ABORT); */
ncr53c9x_abort(sc, sc->sc_nexus);
} else if (sc->sc_phase != STATUS_PHASE) {
printf("ATTENTION!!! "
"not message/status phase: %d\n",
sc->sc_phase);
}
}
NDTRACEIF(
ndtrace_printf("f%dm%dl%ds%dx%dr%dS",
NCR_READ_REG(sc, NCR_FFLAG) & NCRFIFO_FF,
NCR_READ_REG((sc), NCR_TCM),
NCR_READ_REG((sc), NCR_TCL),
esc->sc_dmasize, (int)xfer_len, resid);
);
*esc->sc_dmaaddr += xfer_len;
*esc->sc_dmalen -= xfer_len;
esc->sc_dmaaddr = 0;
esc->sc_dmalen = 0;
esc->sc_dmasize = 0;
}
NDTRACEIF (ndtrace_addc('B'));
sc->sc_espstat = NCR_READ_REG(sc, NCR_STAT) |
(sc->sc_espstat & NCRSTAT_INT);
DPRINTF(("esp dctl is 0x%02x\n", NCR_READ_REG(sc, ESP_DCTL)));
/* printf ("esp_dma_isintr DONE\n"); */
}
return r;
}
void
esp_dma_reset(struct ncr53c9x_softc *sc)
{
struct esp_softc *esc = (struct esp_softc *)sc;
DPRINTF(("esp DMA reset\n"));
#ifdef ESP_DEBUG
if (esp_debug) {
char sbuf[256];
snprintb(sbuf, sizeof(sbuf), NEXT_INTR_BITS,
(*(volatile u_long *)IIOV(NEXT_P_INTRSTAT)));
printf(" *intrstat = 0x%s\n", sbuf);
snprintb(sbuf, sizeof(sbuf), NEXT_INTR_BITS,
(*(volatile u_long *)IIOV(NEXT_P_INTRMASK)));
printf(" *intrmask = 0x%s\n", sbuf);
}
#endif
#if 0
/* Clear the DMAMOD bit in the DCTL register: */
NCR_WRITE_REG(sc, ESP_DCTL, ESPDCTL_16MHZ | ESPDCTL_INTENB);
DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
#endif
nextdma_reset(esc->sc_dma);
nextdma_init(esc->sc_dma);
esc->sc_datain = -1;
esc->sc_dmaaddr = 0;
esc->sc_dmalen = 0;
esc->sc_dmasize = 0;
esc->sc_loaded = 0;
esc->sc_begin = 0;
esc->sc_begin_size = 0;
if (esc->sc_main_dmamap->dm_mapsize) {
bus_dmamap_unload(esc->sc_dma->sc_dmat, esc->sc_main_dmamap);
}
esc->sc_main = 0;
esc->sc_main_size = 0;
if (esc->sc_tail_dmamap->dm_mapsize) {
bus_dmamap_unload(esc->sc_dma->sc_dmat, esc->sc_tail_dmamap);
}
esc->sc_tail = 0;
esc->sc_tail_size = 0;
}
/* it appears that:
* addr and len arguments to this need to be kept up to date
* with the status of the transfter.
* the dmasize of this is the actual length of the transfer
* request, which is guaranteed to be less than maxxfer.
* (len may be > maxxfer)
*/
int
esp_dma_setup(struct ncr53c9x_softc *sc, uint8_t **addr, size_t *len,
int datain, size_t *dmasize)
{
struct esp_softc *esc = (struct esp_softc *)sc;
NDTRACEIF (ndtrace_addc('h'));
#ifdef DIAGNOSTIC
#ifdef ESP_DEBUG
/* if this is a read DMA, pre-fill the buffer with 0xdeadbeef
* to identify bogus reads
*/
if (datain) {
int *v = (int *)(*addr);
int i;
for (i = 0; i < ((*len) / 4); i++)
v[i] = 0xdeadbeef;
v = (int *)(&(esc->sc_tailbuf[0]));
for (i = 0; i < ((sizeof(esc->sc_tailbuf) / 4)); i++)
v[i] = 0xdeafbeef;
} else {
int *v;
int i;
v = (int *)(&(esc->sc_tailbuf[0]));
for (i = 0; i < ((sizeof(esc->sc_tailbuf) / 4)); i++)
v[i] = 0xfeeb1eed;
}
#endif
#endif
DPRINTF(("esp_dma_setup(%p,0x%08x,0x%08x)\n", *addr, *len, *dmasize));
#if 0
#ifdef DIAGNOSTIC /* @@@ this is ok sometimes. verify that we handle it ok
* and then remove this check
*/
if (*len != *dmasize) {
panic("esp dmalen 0x%lx != size 0x%lx", *len, *dmasize);
}
#endif
#endif
#ifdef DIAGNOSTIC
if ((esc->sc_datain != -1) ||
(esc->sc_main_dmamap->dm_mapsize != 0) ||
(esc->sc_tail_dmamap->dm_mapsize != 0) ||
(esc->sc_dmasize != 0)) {
panic("%s: map already loaded in esp_dma_setup"
"\tdatain = %d\n\tmain_mapsize=%ld\n"
"\tail_mapsize=%ld\n\tdmasize = %d",
device_xname(sc->sc_dev), esc->sc_datain,
esc->sc_main_dmamap->dm_mapsize,
esc->sc_tail_dmamap->dm_mapsize,
esc->sc_dmasize);
}
#endif
/* we are sometimes asked to DMA zero bytes, that's easy */
if (*dmasize <= 0) {
return 0;
}
if (*dmasize > ESP_MAX_DMASIZE)
*dmasize = ESP_MAX_DMASIZE;
/* Save these in case we have to abort DMA */
esc->sc_datain = datain;
esc->sc_dmaaddr = addr;
esc->sc_dmalen = len;
esc->sc_dmasize = *dmasize;
esc->sc_loaded = 0;
#define DMA_SCSI_ALIGNMENT 16
#define DMA_SCSI_ALIGN(type, addr) \
((type)(((unsigned int)(addr) + DMA_SCSI_ALIGNMENT - 1) \
&~(DMA_SCSI_ALIGNMENT-1)))
#define DMA_SCSI_ALIGNED(addr) \
(((unsigned int)(addr) & (DMA_SCSI_ALIGNMENT - 1))==0)
{
size_t slop_bgn_size; /* # bytes to be fifo'd at beginning */
size_t slop_end_size; /* # bytes to be transferred in tail buffer */
{
u_long bgn = (u_long)(*esc->sc_dmaaddr);
u_long end = bgn + esc->sc_dmasize;
slop_bgn_size =
DMA_SCSI_ALIGNMENT - (bgn % DMA_SCSI_ALIGNMENT);
if (slop_bgn_size == DMA_SCSI_ALIGNMENT)
slop_bgn_size = 0;
slop_end_size = end % DMA_ENDALIGNMENT;
}
/* Force a minimum slop end size. This ensures that write
* requests will overrun, as required to get completion
* interrupts.
* In addition, since the tail buffer is guaranteed to be mapped
* in a single DMA segment, the overrun won't accidentally
* end up in its own segment.
*/
if (!esc->sc_datain) {
#if 0
slop_end_size += ESP_DMA_MAXTAIL;
#else
slop_end_size += 0x10;
#endif
}
/* Check to make sure we haven't counted extra slop
* as would happen for a very short DMA buffer, also
* for short buffers, just stuff the entire thing in the tail
*/
if ((slop_bgn_size+slop_end_size >= esc->sc_dmasize)
#if 0
|| (esc->sc_dmasize <= ESP_DMA_MAXTAIL)
#endif
) {
slop_bgn_size = 0;
slop_end_size = esc->sc_dmasize;
}
/* initialize the fifo buffer */
if (slop_bgn_size) {
esc->sc_begin = *esc->sc_dmaaddr;
esc->sc_begin_size = slop_bgn_size;
} else {
esc->sc_begin = 0;
esc->sc_begin_size = 0;
}
#if 01
/* Load the normal DMA map */
{
esc->sc_main = *esc->sc_dmaaddr;
esc->sc_main += slop_bgn_size;
esc->sc_main_size =
(esc->sc_dmasize) - (slop_end_size+slop_bgn_size);
if (esc->sc_main_size) {
int error;
if (!esc->sc_datain ||
DMA_ENDALIGNED(esc->sc_main_size +
slop_end_size)) {
KASSERT(DMA_SCSI_ALIGNMENT ==
DMA_ENDALIGNMENT);
KASSERT(DMA_BEGINALIGNMENT ==
DMA_ENDALIGNMENT);
esc->sc_main_size += slop_end_size;
slop_end_size = 0;
if (!esc->sc_datain) {
esc->sc_main_size =
DMA_ENDALIGN(uint8_t *,
esc->sc_main +
esc->sc_main_size) -
esc->sc_main;
}
}
error = bus_dmamap_load(esc->sc_dma->sc_dmat,
esc->sc_main_dmamap,
esc->sc_main, esc->sc_main_size,
NULL, BUS_DMA_NOWAIT);
if (error) {
#ifdef ESP_DEBUG
printf("%s: esc->sc_main_dmamap->"
"_dm_size = %ld\n",
device_xname(sc->sc_dev),
esc->sc_main_dmamap->_dm_size);
printf("%s: esc->sc_main_dmamap->"
"_dm_segcnt = %d\n",
device_xname(sc->sc_dev),
esc->sc_main_dmamap->_dm_segcnt);
#ifdef notdef
printf("%s: esc->sc_main_dmamap->"
"_dm_maxsegsz = %ld\n",
device_xname(sc->sc_dev),
esc->sc_main_dmamap->_dm_maxsegsz);
#endif
printf("%s: esc->sc_main_dmamap->"
"_dm_boundary = %ld\n",
device_xname(sc->sc_dev),
esc->sc_main_dmamap->_dm_boundary);
esp_dma_print(sc);
#endif
panic("%s: can't load main DMA map."
" error = %d, addr=%p, size=0x%08x",
device_xname(sc->sc_dev),
error, esc->sc_main,
esc->sc_main_size);
}
if (!esc->sc_datain) {
/*
* patch the DMA map for write overrun
*/
esc->sc_main_dmamap->dm_mapsize +=
ESP_DMA_OVERRUN;
esc->sc_main_dmamap->dm_segs[
esc->sc_main_dmamap->dm_nsegs -
1].ds_len +=
ESP_DMA_OVERRUN;
}
#if 0
bus_dmamap_sync(esc->sc_dma->sc_dmat,
esc->sc_main_dmamap,
0, esc->sc_main_dmamap->dm_mapsize,
(esc->sc_datain ? BUS_DMASYNC_PREREAD :
BUS_DMASYNC_PREWRITE));
esc->sc_main_dmamap->dm_xfer_len = 0;
#endif
} else {
esc->sc_main = 0;
}
}
/* Load the tail DMA map */
if (slop_end_size) {
esc->sc_tail = DMA_ENDALIGN(uint8_t *,
esc->sc_tailbuf + slop_end_size) - slop_end_size;
/*
* If the beginning of the tail is not correctly
* aligned, we have no choice but to align the start,
* which might then unalign the end.
*/
esc->sc_tail = DMA_SCSI_ALIGN(uint8_t *, esc->sc_tail);
/*
* So therefore, we change the tail size to be
* end aligned again.
*/
esc->sc_tail_size = DMA_ENDALIGN(uint8_t *,
esc->sc_tail + slop_end_size) - esc->sc_tail;
/* @@@ next DMA overrun lossage */
if (!esc->sc_datain) {
esc->sc_tail_size += ESP_DMA_OVERRUN;
}
{
int error;
error = bus_dmamap_load(esc->sc_dma->sc_dmat,
esc->sc_tail_dmamap,
esc->sc_tail, esc->sc_tail_size,
NULL, BUS_DMA_NOWAIT);
if (error) {
panic("%s: can't load tail DMA map."
" error = %d, addr=%p, size=0x%08x",
device_xname(sc->sc_dev), error,
esc->sc_tail,esc->sc_tail_size);
}
#if 0
bus_dmamap_sync(esc->sc_dma->sc_dmat,
esc->sc_tail_dmamap, 0,
esc->sc_tail_dmamap->dm_mapsize,
(esc->sc_datain ? BUS_DMASYNC_PREREAD :
BUS_DMASYNC_PREWRITE));
esc->sc_tail_dmamap->dm_xfer_len = 0;
#endif
}
}
#else
esc->sc_begin = *esc->sc_dmaaddr;
slop_bgn_size = DMA_SCSI_ALIGNMENT -
((u_long)esc->sc_begin % DMA_SCSI_ALIGNMENT);
if (slop_bgn_size == DMA_SCSI_ALIGNMENT)
slop_bgn_size = 0;
slop_end_size = esc->sc_dmasize - slop_bgn_size;
if (slop_bgn_size < esc->sc_dmasize) {
int error;
esc->sc_tail = 0;
esc->sc_tail_size = 0;
esc->sc_begin_size = slop_bgn_size;
esc->sc_main = *esc->sc_dmaaddr;
esc->sc_main += slop_bgn_size;
esc->sc_main_size = DMA_ENDALIGN(uint8_t *,
esc->sc_main + esc->sc_dmasize - slop_bgn_size) -
esc->sc_main;
if (!esc->sc_datain) {
esc->sc_main_size += ESP_DMA_OVERRUN;
}
error = bus_dmamap_load(esc->sc_dma->sc_dmat,
esc->sc_main_dmamap,
esc->sc_main, esc->sc_main_size,
NULL, BUS_DMA_NOWAIT);
if (error) {
panic("%s: can't load main DMA map."
" error = %d, addr=%p, size=0x%08x",
device_xname(sc->sc_dev), error,
esc->sc_main,esc->sc_main_size);
}
} else {
esc->sc_begin = 0;
esc->sc_begin_size = 0;
esc->sc_main = 0;
esc->sc_main_size = 0;
#if 0
esc->sc_tail = DMA_ENDALIGN(uint8_t *,
esc->sc_tailbuf + slop_bgn_size) - slop_bgn_size;
/*
* If the beginning of the tail is not correctly
* aligned, we have no choice but to align the start,
* which might then unalign the end.
*/
#endif
esc->sc_tail = DMA_SCSI_ALIGN(void *, esc->sc_tailbuf);
/*
* So therefore, we change the tail size to be
* end aligned again.
*/
esc->sc_tail_size = DMA_ENDALIGN(uint8_t *,
esc->sc_tail + esc->sc_dmasize) - esc->sc_tail;
/* @@@ next DMA overrun lossage */
if (!esc->sc_datain) {
esc->sc_tail_size += ESP_DMA_OVERRUN;
}
{
int error;
error = bus_dmamap_load(esc->sc_dma->sc_dmat,
esc->sc_tail_dmamap,
esc->sc_tail, esc->sc_tail_size,
NULL, BUS_DMA_NOWAIT);
if (error) {
panic("%s: can't load tail DMA map."
" error = %d, addr=%p, size=0x%08x",
device_xname(sc->sc_dev), error,
esc->sc_tail, esc->sc_tail_size);
}
}
}
#endif
DPRINTF(("%s: setup: %8p %d %8p %d %8p %d %8p %d\n",
device_xname(sc->sc_dev),
*esc->sc_dmaaddr, esc->sc_dmasize,
esc->sc_begin, esc->sc_begin_size,
esc->sc_main, esc->sc_main_size,
esc->sc_tail, esc->sc_tail_size));
}
return 0;
}
#ifdef ESP_DEBUG
/* For debugging */
void
esp_dma_store(struct ncr53c9x_softc *sc)
{
struct esp_softc *esc = (struct esp_softc *)sc;
char *p = esp_dma_dump;
size_t l = 0;
size_t len = sizeof(esp_dma_dump);
l += snprintf(p + l, len - l, "%s: sc_datain=%d\n",
device_xname(sc->sc_dev), esc->sc_datain);
if (l > len)
return;
l += snprintf(p + l, len - l, "%s: sc_loaded=0x%08x\n",
device_xname(sc->sc_dev), esc->sc_loaded);
if (l > len)
return;
if (esc->sc_dmaaddr) {
l += snprintf(p + l, len - l, "%s: sc_dmaaddr=%p\n",
device_xname(sc->sc_dev), *esc->sc_dmaaddr);
} else {
l += snprintf(p + l, len - l, "%s: sc_dmaaddr=NULL\n",
device_xname(sc->sc_dev));
}
if (l > len)
return;
if (esc->sc_dmalen) {
l += snprintf(p + l, len - l, "%s: sc_dmalen=0x%08x\n",
device_xname(sc->sc_dev), *esc->sc_dmalen);
} else {
l += snprintf(p + l, len - l, "%s: sc_dmalen=NULL\n",
device_xname(sc->sc_dev));
}
if (l > len)
return;
l += snprintf(p + l, len - l, "%s: sc_dmasize=0x%08x\n",
device_xname(sc->sc_dev), esc->sc_dmasize);
if (l > len)
return;
l += snprintf(p + l, len - l, "%s: sc_begin = %p, sc_begin_size = 0x%08x\n",
device_xname(sc->sc_dev), esc->sc_begin, esc->sc_begin_size);
if (l > len)
return;
l += snprintf(p + l, len - l, "%s: sc_main = %p, sc_main_size = 0x%08x\n",
device_xname(sc->sc_dev), esc->sc_main, esc->sc_main_size);
if (l > len)
return;
/* if (esc->sc_main) */ {
int i;
bus_dmamap_t map = esc->sc_main_dmamap;
l += snprintf(p + l, len - l, "%s: sc_main_dmamap."
" mapsize = 0x%08lx, nsegs = %d\n",
device_xname(sc->sc_dev), map->dm_mapsize, map->dm_nsegs);
if (l > len)
return;
for(i = 0; i < map->dm_nsegs; i++) {
l += snprintf(p + l, len - l, "%s:"
" map->dm_segs[%d].ds_addr = 0x%08lx,"
" len = 0x%08lx\n",
device_xname(sc->sc_dev),
i, map->dm_segs[i].ds_addr,
map->dm_segs[i].ds_len);
if (l > len)
return;
}
}
l += snprintf(p + l, len - l, "%s: sc_tail = %p, sc_tail_size = 0x%08x\n",
device_xname(sc->sc_dev), esc->sc_tail, esc->sc_tail_size);
if (l > len)
return;
/* if (esc->sc_tail) */ {
int i;
bus_dmamap_t map = esc->sc_tail_dmamap;
l += snprintf(p + l, len - l, "%s: sc_tail_dmamap."
" mapsize = 0x%08lx, nsegs = %d\n",
device_xname(sc->sc_dev), map->dm_mapsize, map->dm_nsegs);
if (l > len)
return;
for (i = 0; i < map->dm_nsegs; i++) {
l += snprintf(p + l, len - l, "%s:"
" map->dm_segs[%d].ds_addr = 0x%08lx,"
" len = 0x%08lx\n",
device_xname(sc->sc_dev),
i, map->dm_segs[i].ds_addr,
map->dm_segs[i].ds_len);
if (l > len)
return;
}
}
}
void
esp_dma_print(struct ncr53c9x_softc *sc)
{
esp_dma_store(sc);
printf("%s", esp_dma_dump);
}
#endif
void
esp_dma_go(struct ncr53c9x_softc *sc)
{
struct esp_softc *esc = (struct esp_softc *)sc;
struct nextdma_softc *nsc = esc->sc_dma;
struct nextdma_status *stat = &nsc->sc_stat;
/* int s = spldma(); */
#ifdef ESP_DEBUG
if (!ndtrace_empty()) {
if (esptraceshow) {
printf("esp ndtrace: %s\n", ndtrace_get());
esptraceshow = 0;
} else {
DPRINTF(("X"));
}
ndtrace_reset();
}
#endif
DPRINTF(("%s: esp_dma_go(datain = %d)\n",
device_xname(sc->sc_dev), esc->sc_datain));
#ifdef ESP_DEBUG
if (esp_debug)
esp_dma_print(sc);
else
esp_dma_store(sc);
#endif
#ifdef ESP_DEBUG
{
int n = NCR_READ_REG(sc, NCR_FFLAG);
DPRINTF(("%s: fifo size = %d, seq = 0x%x\n",
device_xname(sc->sc_dev),
n & NCRFIFO_FF, (n & NCRFIFO_SS) >> 5));
}
#endif
/* zero length DMA transfers are boring */
if (esc->sc_dmasize == 0) {
/* splx(s); */
return;
}
#if defined(DIAGNOSTIC)
if ((esc->sc_begin_size == 0) &&
(esc->sc_main_dmamap->dm_mapsize == 0) &&
(esc->sc_tail_dmamap->dm_mapsize == 0)) {
#ifdef ESP_DEBUG
esp_dma_print(sc);
#endif
panic("%s: No DMA requested!", device_xname(sc->sc_dev));
}
#endif
/* Stuff the fifo with the begin buffer */
if (esc->sc_datain) {
int i;
DPRINTF(("%s: FIFO read of %d bytes:",
device_xname(sc->sc_dev), esc->sc_begin_size));
for (i = 0; i < esc->sc_begin_size; i++) {
esc->sc_begin[i] = NCR_READ_REG(sc, NCR_FIFO);
DPRINTF((" %02x", esc->sc_begin[i] & 0xff));
}
DPRINTF(("\n"));
} else {
int i;
DPRINTF(("%s: FIFO write of %d bytes:",
device_xname(sc->sc_dev), esc->sc_begin_size));
for (i = 0; i < esc->sc_begin_size; i++) {
NCR_WRITE_REG(sc, NCR_FIFO, esc->sc_begin[i]);
DPRINTF((" %02x",esc->sc_begin[i] & 0xff));
}
DPRINTF(("\n"));
}
if (esc->sc_main_dmamap->dm_mapsize) {
bus_dmamap_sync(esc->sc_dma->sc_dmat, esc->sc_main_dmamap,
0, esc->sc_main_dmamap->dm_mapsize,
(esc->sc_datain ?
BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
esc->sc_main_dmamap->dm_xfer_len = 0;
}
if (esc->sc_tail_dmamap->dm_mapsize) {
/* if we are a DMA write cycle, copy the end slop */
if (!esc->sc_datain) {
memcpy(esc->sc_tail, *esc->sc_dmaaddr +
esc->sc_begin_size+esc->sc_main_size,
esc->sc_dmasize -
(esc->sc_begin_size + esc->sc_main_size));
}
bus_dmamap_sync(esc->sc_dma->sc_dmat, esc->sc_tail_dmamap,
0, esc->sc_tail_dmamap->dm_mapsize,
(esc->sc_datain ?
BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
esc->sc_tail_dmamap->dm_xfer_len = 0;
}
stat->nd_exception = 0;
nextdma_start(nsc, (esc->sc_datain ? DMACSR_SETREAD : DMACSR_SETWRITE));
if (esc->sc_datain) {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_16MHZ | ESPDCTL_INTENB | ESPDCTL_DMAMOD |
ESPDCTL_DMARD);
} else {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_16MHZ | ESPDCTL_INTENB | ESPDCTL_DMAMOD);
}
DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
NDTRACEIF(
if (esc->sc_begin_size) {
ndtrace_addc('1');
ndtrace_addc('A' + esc->sc_begin_size);
}
);
NDTRACEIF(
if (esc->sc_main_size) {
ndtrace_addc('2');
ndtrace_addc('0' + esc->sc_main_dmamap->dm_nsegs);
}
);
NDTRACEIF(
if (esc->sc_tail_size) {
ndtrace_addc('3');
ndtrace_addc('A' + esc->sc_tail_size);
}
);
/* splx(s); */
}
void
esp_dma_stop(struct ncr53c9x_softc *sc)
{
struct esp_softc *esc = (struct esp_softc *)sc;
nextdma_print(esc->sc_dma);
#ifdef ESP_DEBUG
esp_dma_print(sc);
#endif
#if 1
panic("%s: stop not yet implemented", device_xname(sc->sc_dev));
#endif
}
int
esp_dma_isactive(struct ncr53c9x_softc *sc)
{
struct esp_softc *esc = (struct esp_softc *)sc;
int r;
r = (esc->sc_dmaaddr != NULL); /* !nextdma_finished(esc->sc_dma); */
DPRINTF(("esp_dma_isactive = %d\n",r));
return r;
}
/****************************************************************/
int esp_dma_int(void *);
int esp_dma_int(void *arg)
{
void nextdma_rotate(struct nextdma_softc *);
void nextdma_setup_curr_regs(struct nextdma_softc *);
void nextdma_setup_cont_regs(struct nextdma_softc *);
struct ncr53c9x_softc *sc = (struct ncr53c9x_softc *)arg;
struct esp_softc *esc = (struct esp_softc *)sc;
struct nextdma_softc *nsc = esc->sc_dma;
struct nextdma_status *stat = &nsc->sc_stat;
unsigned int state;
NDTRACEIF (ndtrace_addc('E'));
state = nd_bsr4 (DD_CSR);
#if 1
NDTRACEIF (
if (state & DMACSR_COMPLETE)
ndtrace_addc('c');
if (state & DMACSR_ENABLE)
ndtrace_addc('e');
if (state & DMACSR_BUSEXC)
ndtrace_addc('b');
if (state & DMACSR_READ)
ndtrace_addc('r');
if (state & DMACSR_SUPDATE)
ndtrace_addc('s');
);
NDTRACEIF (ndtrace_addc('E'));
#ifdef ESP_DEBUG
if (0)
if ((state & DMACSR_BUSEXC) && (state & DMACSR_ENABLE))
esptraceshow++;
if (0)
if ((state & DMACSR_SUPDATE))
esptraceshow++;
#endif
#endif
if ((stat->nd_exception == 0) &&
(state & DMACSR_COMPLETE) &&
(state & DMACSR_ENABLE)) {
stat->nd_map->dm_xfer_len +=
stat->nd_map->dm_segs[stat->nd_idx].ds_len;
}
if ((stat->nd_idx + 1) == stat->nd_map->dm_nsegs) {
if (nsc->sc_conf.nd_completed_cb)
(*nsc->sc_conf.nd_completed_cb)(stat->nd_map,
nsc->sc_conf.nd_cb_arg);
}
nextdma_rotate(nsc);
if ((state & DMACSR_COMPLETE) && (state & DMACSR_ENABLE)) {
#if 0
int l = nd_bsr4 (DD_LIMIT) & 0x7FFFFFFF;
int s = nd_bsr4 (DD_STOP);
#endif
/* nextdma_setup_cont_regs(nsc); */
if (stat->nd_map_cont) {
nd_bsw4(DD_START, stat->nd_map_cont->dm_segs[
stat->nd_idx_cont].ds_addr);
nd_bsw4(DD_STOP, (stat->nd_map_cont->dm_segs[
stat->nd_idx_cont].ds_addr +
stat->nd_map_cont->dm_segs[
stat->nd_idx_cont].ds_len));
}
nd_bsw4 (DD_CSR, DMACSR_CLRCOMPLETE |
(state & DMACSR_READ ? DMACSR_SETREAD : DMACSR_SETWRITE) |
(stat->nd_map_cont ? DMACSR_SETSUPDATE : 0));
#if 0
#ifdef ESP_DEBUG
if (state & DMACSR_BUSEXC) {
ndtrace_printf("CE/BUSEXC: %08lX %08X %08X\n",
(stat->nd_map->dm_segs[stat->nd_idx].ds_addr +
stat->nd_map->dm_segs[stat->nd_idx].ds_len),
l, s);
}
#endif
#endif
} else {
#if 0
if (state & DMACSR_BUSEXC) {
while (nd_bsr4(DD_NEXT) !=
(nd_bsr4(DD_LIMIT) & 0x7FFFFFFF))
printf("Y"); /* DELAY(50); */
state = nd_bsr4(DD_CSR);
}
#endif
if (!(state & DMACSR_SUPDATE)) {
nextdma_rotate(nsc);
} else {
nd_bsw4(DD_CSR, DMACSR_CLRCOMPLETE |
DMACSR_INITBUF | DMACSR_RESET |
(state & DMACSR_READ ?
DMACSR_SETREAD : DMACSR_SETWRITE));
nd_bsw4(DD_NEXT,
stat->nd_map->dm_segs[stat->nd_idx].ds_addr);
nd_bsw4(DD_LIMIT,
(stat->nd_map->dm_segs[stat->nd_idx].ds_addr +
stat->nd_map->dm_segs[stat->nd_idx].ds_len) |
0/* x80000000 */);
if (stat->nd_map_cont) {
nd_bsw4(DD_START,
stat->nd_map_cont->dm_segs[
stat->nd_idx_cont].ds_addr);
nd_bsw4(DD_STOP,
(stat->nd_map_cont->dm_segs[
stat->nd_idx_cont].ds_addr +
stat->nd_map_cont->dm_segs[
stat->nd_idx_cont].ds_len) |
0/* x80000000 */);
}
nd_bsw4(DD_CSR, DMACSR_SETENABLE | DMACSR_CLRCOMPLETE |
(state & DMACSR_READ ?
DMACSR_SETREAD : DMACSR_SETWRITE) |
(stat->nd_map_cont ? DMACSR_SETSUPDATE : 0));
#if 1
#ifdef ESP_DEBUG
ndtrace_printf("supdate ");
ndtrace_printf("%08X %08X %08X %08X ",
nd_bsr4(DD_NEXT),
nd_bsr4(DD_LIMIT) & 0x7FFFFFFF,
nd_bsr4 (DD_START),
nd_bsr4 (DD_STOP) & 0x7FFFFFFF);
#endif
#endif
stat->nd_exception++;
return 1;
/* NCR_WRITE_REG(sc, ESP_DCTL, ctl); */
goto restart;
}
if (stat->nd_map) {
#if 1
#ifdef ESP_DEBUG
ndtrace_printf("%08X %08X %08X %08X ",
nd_bsr4 (DD_NEXT),
nd_bsr4 (DD_LIMIT) & 0x7FFFFFFF,
nd_bsr4 (DD_START),
nd_bsr4 (DD_STOP) & 0x7FFFFFFF);
#endif
#endif
#if 0
nd_bsw4(DD_CSR, DMACSR_CLRCOMPLETE | DMACSR_RESET);
nd_bsw4(DD_CSR, 0);
#endif
#if 1
/* 6/2 */
nd_bsw4(DD_CSR, DMACSR_CLRCOMPLETE |
DMACSR_INITBUF | DMACSR_RESET |
(state & DMACSR_READ ?
DMACSR_SETREAD : DMACSR_SETWRITE));
/* nextdma_setup_curr_regs(nsc); */
nd_bsw4(DD_NEXT,
stat->nd_map->dm_segs[stat->nd_idx].ds_addr);
nd_bsw4(DD_LIMIT,
(stat->nd_map->dm_segs[stat->nd_idx].ds_addr +
stat->nd_map->dm_segs[stat->nd_idx].ds_len) |
0/* x80000000 */);
/* nextdma_setup_cont_regs(nsc); */
if (stat->nd_map_cont) {
nd_bsw4(DD_START,
stat->nd_map_cont->dm_segs[
stat->nd_idx_cont].ds_addr);
nd_bsw4(DD_STOP,
(stat->nd_map_cont->dm_segs[
stat->nd_idx_cont].ds_addr +
stat->nd_map_cont->dm_segs[
stat->nd_idx_cont].ds_len) |
0/* x80000000 */);
}
nd_bsw4(DD_CSR, DMACSR_SETENABLE |
(stat->nd_map_cont ? DMACSR_SETSUPDATE : 0) |
(state & DMACSR_READ ?
DMACSR_SETREAD : DMACSR_SETWRITE));
#ifdef ESP_DEBUG
/* esptraceshow++; */
#endif
stat->nd_exception++;
return 1;
#endif
/* NCR_WRITE_REG(sc, ESP_DCTL, ctl); */
goto restart;
restart:
#if 1
#ifdef ESP_DEBUG
ndtrace_printf("restart %08lX %08lX\n",
stat->nd_map->dm_segs[stat->nd_idx].ds_addr,
stat->nd_map->dm_segs[stat->nd_idx].ds_addr +
stat->nd_map->dm_segs[stat->nd_idx].ds_len);
if (stat->nd_map_cont) {
ndtrace_printf(" %08lX %08lX\n",
stat->nd_map_cont->dm_segs[
stat->nd_idx_cont].ds_addr,
stat->nd_map_cont->dm_segs[
stat->nd_idx_cont].ds_addr +
stat->nd_map_cont->dm_segs[
stat->nd_idx_cont].ds_len);
}
#endif
#endif
nextdma_print(nsc);
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_16MHZ | ESPDCTL_INTENB);
printf("ff:%02x tcm:%d tcl:%d esp_dstat:%02x"
" state:%02x step: %02x intr:%02x state:%08X\n",
NCR_READ_REG(sc, NCR_FFLAG),
NCR_READ_REG((sc), NCR_TCM),
NCR_READ_REG((sc), NCR_TCL),
NCR_READ_REG(sc, ESP_DSTAT),
NCR_READ_REG(sc, NCR_STAT),
NCR_READ_REG(sc, NCR_STEP),
NCR_READ_REG(sc, NCR_INTR), state);
#ifdef ESP_DEBUG
printf("ndtrace: %s\n", ndtrace_get());
#endif
panic("%s: busexc/supdate occurred."
" Please email this output to chris@pin.lu.",
device_xname(sc->sc_dev));
#ifdef ESP_DEBUG
esptraceshow++;
#endif
} else {
nd_bsw4(DD_CSR, DMACSR_CLRCOMPLETE | DMACSR_RESET);
if (nsc->sc_conf.nd_shutdown_cb)
(*nsc->sc_conf.nd_shutdown_cb)(nsc->sc_conf.nd_cb_arg);
}
}
return 1;
}
/* Internal DMA callback routines */
bus_dmamap_t
esp_dmacb_continue(void *arg)
{
struct ncr53c9x_softc *sc = arg;
struct esp_softc *esc = (struct esp_softc *)sc;
NDTRACEIF (ndtrace_addc('x'));
DPRINTF(("%s: DMA continue\n", device_xname(sc->sc_dev)));
#ifdef DIAGNOSTIC
if ((esc->sc_datain < 0) || (esc->sc_datain > 1)) {
panic("%s: map not loaded in DMA continue callback,"
" datain = %d",
device_xname(sc->sc_dev), esc->sc_datain);
}
#endif
if (((esc->sc_loaded & ESP_LOADED_MAIN) == 0) &&
(esc->sc_main_dmamap->dm_mapsize)) {
DPRINTF(("%s: Loading main map\n", device_xname(sc->sc_dev)));
#if 0
bus_dmamap_sync(esc->sc_dma->sc_dmat, esc->sc_main_dmamap,
0, esc->sc_main_dmamap->dm_mapsize,
(esc->sc_datain ?
BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
esc->sc_main_dmamap->dm_xfer_len = 0;
#endif
esc->sc_loaded |= ESP_LOADED_MAIN;
return esc->sc_main_dmamap;
}
if (((esc->sc_loaded & ESP_LOADED_TAIL) == 0) &&
(esc->sc_tail_dmamap->dm_mapsize)) {
DPRINTF(("%s: Loading tail map\n", device_xname(sc->sc_dev)));
#if 0
bus_dmamap_sync(esc->sc_dma->sc_dmat, esc->sc_tail_dmamap,
0, esc->sc_tail_dmamap->dm_mapsize,
(esc->sc_datain ?
BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
esc->sc_tail_dmamap->dm_xfer_len = 0;
#endif
esc->sc_loaded |= ESP_LOADED_TAIL;
return esc->sc_tail_dmamap;
}
DPRINTF(("%s: not loading map\n", device_xname(sc->sc_dev)));
return 0;
}
void
esp_dmacb_completed(bus_dmamap_t map, void *arg)
{
struct ncr53c9x_softc *sc = (struct ncr53c9x_softc *)arg;
struct esp_softc *esc = (struct esp_softc *)sc;
NDTRACEIF (ndtrace_addc('X'));
DPRINTF(("%s: DMA completed\n", device_xname(sc->sc_dev)));
#ifdef DIAGNOSTIC
if ((esc->sc_datain < 0) || (esc->sc_datain > 1)) {
panic("%s: invalid DMA direction in completed callback,"
" datain = %d",
device_xname(sc->sc_dev), esc->sc_datain);
}
#endif
#if defined(DIAGNOSTIC) && 0
{
int i;
for(i = 0; i < map->dm_nsegs; i++) {
if (map->dm_xfer_len != map->dm_mapsize) {
printf("%s: map->dm_mapsize = %d\n",
device_xname(sc->sc_dev), map->dm_mapsize);
printf("%s: map->dm_nsegs = %d\n",
device_xname(sc->sc_dev), map->dm_nsegs);
printf("%s: map->dm_xfer_len = %d\n",
device_xname(sc->sc_dev), map->dm_xfer_len);
for(i = 0; i < map->dm_nsegs; i++) {
printf("%s: map->dm_segs[%d].ds_addr ="
" 0x%08lx\n",
device_xname(sc->sc_dev), i,
map->dm_segs[i].ds_addr);
printf("%s: map->dm_segs[%d].ds_len ="
" %d\n",
device_xname(sc->sc_dev), i,
map->dm_segs[i].ds_len);
}
panic("%s: incomplete DMA transfer",
device_xname(sc->sc_dev));
}
}
}
#endif
if (map == esc->sc_main_dmamap) {
#ifdef DIAGNOSTIC
if ((esc->sc_loaded & ESP_UNLOADED_MAIN) ||
(esc->sc_loaded & ESP_LOADED_MAIN) == 0) {
panic("%s: unexpected completed call for main map",
device_xname(sc->sc_dev));
}
#endif
esc->sc_loaded |= ESP_UNLOADED_MAIN;
} else if (map == esc->sc_tail_dmamap) {
#ifdef DIAGNOSTIC
if ((esc->sc_loaded & ESP_UNLOADED_TAIL) ||
(esc->sc_loaded & ESP_LOADED_TAIL) == 0) {
panic("%s: unexpected completed call for tail map",
device_xname(sc->sc_dev));
}
#endif
esc->sc_loaded |= ESP_UNLOADED_TAIL;
}
#ifdef DIAGNOSTIC
else {
panic("%s: unexpected completed map", device_xname(sc->sc_dev));
}
#endif
#ifdef ESP_DEBUG
if (esp_debug) {
if (map == esc->sc_main_dmamap) {
printf("%s: completed main map\n",
device_xname(sc->sc_dev));
} else if (map == esc->sc_tail_dmamap) {
printf("%s: completed tail map\n",
device_xname(sc->sc_dev));
}
}
#endif
#if 0
if ((map == esc->sc_tail_dmamap) ||
((esc->sc_tail_size == 0) && (map == esc->sc_main_dmamap))) {
/*
* Clear the DMAMOD bit in the DCTL register to give control
* back to the scsi chip.
*/
if (esc->sc_datain) {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_16MHZ | ESPDCTL_INTENB | ESPDCTL_DMARD);
} else {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_16MHZ | ESPDCTL_INTENB);
}
DPRINTF(("esp dctl is 0x%02x\n", NCR_READ_REG(sc, ESP_DCTL)));
}
#endif
#if 0
bus_dmamap_sync(esc->sc_dma->sc_dmat, map,
0, map->dm_mapsize,
(esc->sc_datain ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
#endif
}
void
esp_dmacb_shutdown(void *arg)
{
struct ncr53c9x_softc *sc = (struct ncr53c9x_softc *)arg;
struct esp_softc *esc = (struct esp_softc *)sc;
NDTRACEIF (ndtrace_addc('S'));
DPRINTF(("%s: DMA shutdown\n", device_xname(sc->sc_dev)));
if (esc->sc_loaded == 0)
return;
#if 0
{
/* Clear the DMAMOD bit in the DCTL register to give control
* back to the scsi chip.
*/
if (esc->sc_datain) {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_16MHZ | ESPDCTL_INTENB | ESPDCTL_DMARD);
} else {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_16MHZ | ESPDCTL_INTENB);
}
DPRINTF(("esp dctl is 0x%02x\n", NCR_READ_REG(sc, ESP_DCTL)));
}
#endif
DPRINTF(("%s: esp_dma_nest == %d\n",
device_xname(sc->sc_dev), esp_dma_nest));
/* Stuff the end slop into fifo */
#ifdef ESP_DEBUG
if (esp_debug) {
int n = NCR_READ_REG(sc, NCR_FFLAG);
DPRINTF(("%s: fifo size = %d, seq = 0x%x\n",
device_xname(sc->sc_dev), n & NCRFIFO_FF,
(n & NCRFIFO_SS) >> 5));
}
#endif
if (esc->sc_main_dmamap->dm_mapsize) {
if (!esc->sc_datain) {
/* unpatch the DMA map for write overrun */
esc->sc_main_dmamap->dm_mapsize -= ESP_DMA_OVERRUN;
esc->sc_main_dmamap->dm_segs[
esc->sc_main_dmamap->dm_nsegs - 1].ds_len -=
ESP_DMA_OVERRUN;
}
bus_dmamap_sync(esc->sc_dma->sc_dmat, esc->sc_main_dmamap,
0, esc->sc_main_dmamap->dm_mapsize,
(esc->sc_datain ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
bus_dmamap_unload(esc->sc_dma->sc_dmat, esc->sc_main_dmamap);
NDTRACEIF (
ndtrace_printf("m%ld",
esc->sc_main_dmamap->dm_xfer_len);
);
}
if (esc->sc_tail_dmamap->dm_mapsize) {
bus_dmamap_sync(esc->sc_dma->sc_dmat, esc->sc_tail_dmamap,
0, esc->sc_tail_dmamap->dm_mapsize,
(esc->sc_datain ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
bus_dmamap_unload(esc->sc_dma->sc_dmat, esc->sc_tail_dmamap);
/* copy the tail DMA buffer data for read transfers */
if (esc->sc_datain) {
memcpy(*esc->sc_dmaaddr + esc->sc_begin_size +
esc->sc_main_size, esc->sc_tail,
esc->sc_dmasize -
(esc->sc_begin_size + esc->sc_main_size));
}
NDTRACEIF (
ndtrace_printf("t%ld",
esc->sc_tail_dmamap->dm_xfer_len);
);
}
#ifdef ESP_DEBUG
if (esp_debug) {
printf("%s: dma_shutdown: addr=%p,len=0x%08x,size=0x%08x\n",
device_xname(sc->sc_dev),
*esc->sc_dmaaddr, *esc->sc_dmalen, esc->sc_dmasize);
if (esp_debug > 10) {
esp_hex_dump(*(esc->sc_dmaaddr), esc->sc_dmasize);
printf("%s: tail=%p,tailbuf=%p,tail_size=0x%08x\n",
device_xname(sc->sc_dev),
esc->sc_tail, &(esc->sc_tailbuf[0]),
esc->sc_tail_size);
esp_hex_dump(&(esc->sc_tailbuf[0]),
sizeof(esc->sc_tailbuf));
}
}
#endif
esc->sc_main = 0;
esc->sc_main_size = 0;
esc->sc_tail = 0;
esc->sc_tail_size = 0;
esc->sc_datain = -1;
/* esc->sc_dmaaddr = 0; */
/* esc->sc_dmalen = 0; */
/* esc->sc_dmasize = 0; */
esc->sc_loaded = 0;
esc->sc_begin = 0;
esc->sc_begin_size = 0;
#ifdef ESP_DEBUG
if (esp_debug) {
char sbuf[256];
snprintb(sbuf, sizeof(sbuf), NEXT_INTR_BITS,
(*(volatile u_long *)IIOV(NEXT_P_INTRSTAT)));
printf(" *intrstat = 0x%s\n", sbuf);
snprintb(sbuf, sizeof(sbuf), NEXT_INTR_BITS,
(*(volatile u_long *)IIOV(NEXT_P_INTRMASK)));
printf(" *intrmask = 0x%s\n", sbuf);
}
#endif
}