NetBSD/sys/arch/mvme68k/dev/zs.c
1998-01-12 19:51:03 +00:00

588 lines
13 KiB
C

/* $NetBSD: zs.c,v 1.14 1998/01/12 19:51:14 thorpej Exp $ */
/*-
* Copyright (c) 1996 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Gordon W. Ross.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Zilog Z8530 Dual UART driver (machine-dependent part)
*
* Runs two serial lines per chip using slave drivers.
* Plain tty/async lines use the zs_async slave.
*
* Modified for NetBSD/mvme68k by Jason R. Thorpe <thorpej@NetBSD.ORG>
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/tty.h>
#include <sys/time.h>
#include <sys/syslog.h>
#include <dev/cons.h>
#include <dev/ic/z8530reg.h>
#include <machine/z8530var.h>
#include <machine/cpu.h>
#include <mvme68k/dev/zsvar.h>
/*
* Some warts needed by z8530tty.c -
* The default parity REALLY needs to be the same as the PROM uses,
* or you can not see messages done with printf during boot-up...
*/
int zs_def_cflag = (CREAD | CS8 | HUPCL);
/* XXX Shouldn't hardcode the minor number... */
int zs_major = 12;
static u_long zs_sir; /* software interrupt cookie */
/* Flags from zscnprobe() */
static int zs_hwflags[NZSC][2];
/* Default speed for each channel */
static int zs_defspeed[NZSC][2] = {
{ 9600, /* port 1 */
9600 }, /* port 2 */
{ 9600, /* port 3 */
9600 }, /* port 4 */
};
static struct zs_chanstate zs_conschan_store;
static struct zs_chanstate *zs_conschan;
u_char zs_init_reg[16] = {
0, /* 0: CMD (reset, etc.) */
0, /* 1: No interrupts yet. */
0x18 + ZSHARD_PRI, /* IVECT */
ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
0, /* 6: TXSYNC/SYNCLO */
0, /* 7: RXSYNC/SYNCHI */
0, /* 8: alias for data port */
ZSWR9_MASTER_IE,
0, /*10: Misc. TX/RX control bits */
ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
14, /*12: BAUDLO (default=9600) */
0, /*13: BAUDHI (default=9600) */
ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
};
/****************************************************************
* Autoconfig
****************************************************************/
/* Definition of the driver for autoconfig. */
static int zsc_print __P((void *, const char *name));
static int zs_get_speed __P((struct zs_chanstate *));
extern struct cfdriver zsc_cd;
/*
* Configure children of an SCC.
*/
void
zs_config(zsc, chan_addr)
struct zsc_softc *zsc;
struct zschan *(*chan_addr) __P((int, int));
{
struct zsc_attach_args zsc_args;
volatile struct zschan *zc;
struct zs_chanstate *cs;
int zsc_unit, channel, s;
zsc_unit = zsc->zsc_dev.dv_unit;
printf(": Zilog 8530 SCC\n");
/*
* Initialize software state for each channel.
*/
for (channel = 0; channel < 2; channel++) {
zsc_args.channel = channel;
zsc_args.hwflags = zs_hwflags[zsc_unit][channel];
cs = &zsc->zsc_cs_store[channel];
zsc->zsc_cs[channel] = cs;
/*
* If we're the console, copy the channel state, and
* adjust the console channel pointer.
*/
if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
bcopy(zs_conschan, cs, sizeof(struct zs_chanstate));
zs_conschan = cs;
} else {
zc = (*chan_addr)(zsc_unit, channel);
cs->cs_reg_csr = &zc->zc_csr;
cs->cs_reg_data = &zc->zc_data;
bcopy(zs_init_reg, cs->cs_creg, 16);
bcopy(zs_init_reg, cs->cs_preg, 16);
cs->cs_defspeed = zs_defspeed[zsc_unit][channel];
}
cs->cs_defcflag = zs_def_cflag;
/* Make these correspond to cs_defcflag (-crtscts) */
cs->cs_rr0_dcd = ZSRR0_DCD;
cs->cs_rr0_cts = 0;
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
cs->cs_wr5_rts = 0;
cs->cs_channel = channel;
cs->cs_private = NULL;
cs->cs_ops = &zsops_null;
cs->cs_brg_clk = PCLK / 16;
/*
* Clear the master interrupt enable.
* The INTENA is common to both channels,
* so just do it on the A channel.
*/
if (channel == 0) {
zs_write_reg(cs, 9, 0);
}
/*
* Look for a child driver for this channel.
* The child attach will setup the hardware.
*/
if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zsc_print)) {
/* No sub-driver. Just reset it. */
u_char reset = (channel == 0) ?
ZSWR9_A_RESET : ZSWR9_B_RESET;
s = splzs();
zs_write_reg(cs, 9, reset);
splx(s);
}
}
/*
* Allocate a software interrupt cookie. Note that the argument
* "zsc" is never actually used in the software interrupt
* handler.
*/
if (zs_sir == 0)
zs_sir = allocate_sir(zssoft, zsc);
}
static int
zsc_print(aux, name)
void *aux;
const char *name;
{
struct zsc_attach_args *args = aux;
if (name != NULL)
printf("%s: ", name);
if (args->channel != -1)
printf(" channel %d", args->channel);
return UNCONF;
}
static int zssoftpending;
/*
* Our ZS chips all share a common, autovectored interrupt,
* so we have to look at all of them on each interrupt.
*/
int
zshard(arg)
void *arg;
{
register struct zsc_softc *zsc;
register int unit, rval;
rval = 0;
for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
zsc = zsc_cd.cd_devs[unit];
if (zsc == NULL)
continue;
rval |= zsc_intr_hard(zsc);
if ((zsc->zsc_cs[0]->cs_softreq) ||
(zsc->zsc_cs[1]->cs_softreq))
{
/* zsc_req_softint(zsc); */
/* We are at splzs here, so no need to lock. */
if (zssoftpending == 0) {
zssoftpending = zs_sir;
setsoftint(zs_sir);
}
}
}
return (rval);
}
/*
* Similar scheme as for zshard (look at all of them)
*/
int
zssoft(arg)
void *arg;
{
register struct zsc_softc *zsc;
register int unit;
/* This is not the only ISR on this IPL. */
if (zssoftpending == 0)
return (0);
/*
* The soft intr. bit will be set by zshard only if
* the variable zssoftpending is zero.
*/
zssoftpending = 0;
for (unit = 0; unit < zsc_cd.cd_ndevs; ++unit) {
zsc = zsc_cd.cd_devs[unit];
if (zsc == NULL)
continue;
(void) zsc_intr_soft(zsc);
}
return (1);
}
/*
* Compute the current baud rate given a ZSCC channel.
*/
static int
zs_get_speed(cs)
struct zs_chanstate *cs;
{
int tconst;
tconst = zs_read_reg(cs, 12);
tconst |= zs_read_reg(cs, 13) << 8;
return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
}
/*
* MD functions for setting the baud rate and control modes.
*/
int
zs_set_speed(cs, bps)
struct zs_chanstate *cs;
int bps; /* bits per second */
{
int tconst, real_bps;
if (bps == 0)
return (0);
#ifdef DIAGNOSTIC
if (cs->cs_brg_clk == 0)
panic("zs_set_speed");
#endif
tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
if (tconst < 0)
return (EINVAL);
/* Convert back to make sure we can do it. */
real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
/* XXX - Allow some tolerance here? */
if (real_bps != bps)
return (EINVAL);
cs->cs_preg[12] = tconst;
cs->cs_preg[13] = tconst >> 8;
/* Caller will stuff the pending registers. */
return (0);
}
int
zs_set_modes(cs, cflag)
struct zs_chanstate *cs;
int cflag; /* bits per second */
{
int s;
/*
* Output hardware flow control on the chip is horrendous:
* if carrier detect drops, the receiver is disabled, and if
* CTS drops, the transmitter is stoped IN MID CHARACTER!
* Therefore, NEVER set the HFC bit, and instead use the
* status interrupt to detect CTS changes.
*/
s = splzs();
if ((cflag & (CLOCAL | MDMBUF)) != 0)
cs->cs_rr0_dcd = 0;
else
cs->cs_rr0_dcd = ZSRR0_DCD;
if ((cflag & CRTSCTS) != 0) {
cs->cs_wr5_dtr = ZSWR5_DTR;
cs->cs_wr5_rts = ZSWR5_RTS;
cs->cs_rr0_cts = ZSRR0_CTS;
} else if ((cflag & MDMBUF) != 0) {
cs->cs_wr5_dtr = 0;
cs->cs_wr5_rts = ZSWR5_DTR;
cs->cs_rr0_cts = ZSRR0_DCD;
} else {
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
cs->cs_wr5_rts = 0;
cs->cs_rr0_cts = 0;
}
splx(s);
/* Caller will stuff the pending registers. */
return (0);
}
/*
* Read or write the chip with suitable delays.
*/
u_char
zs_read_reg(cs, reg)
struct zs_chanstate *cs;
u_char reg;
{
u_char val;
*cs->cs_reg_csr = reg;
ZS_DELAY();
val = *cs->cs_reg_csr;
ZS_DELAY();
return val;
}
void
zs_write_reg(cs, reg, val)
struct zs_chanstate *cs;
u_char reg, val;
{
*cs->cs_reg_csr = reg;
ZS_DELAY();
*cs->cs_reg_csr = val;
ZS_DELAY();
}
u_char zs_read_csr(cs)
struct zs_chanstate *cs;
{
register u_char val;
val = *cs->cs_reg_csr;
ZS_DELAY();
return val;
}
void zs_write_csr(cs, val)
struct zs_chanstate *cs;
u_char val;
{
*cs->cs_reg_csr = val;
ZS_DELAY();
}
u_char zs_read_data(cs)
struct zs_chanstate *cs;
{
register u_char val;
val = *cs->cs_reg_data;
ZS_DELAY();
return val;
}
void zs_write_data(cs, val)
struct zs_chanstate *cs;
u_char val;
{
*cs->cs_reg_data = val;
ZS_DELAY();
}
/****************************************************************
* Console support functions (MVME specific!)
****************************************************************/
/*
* Polled input char.
*/
int
zs_getc(arg)
void *arg;
{
register struct zs_chanstate *cs = arg;
register int s, c, rr0, stat;
s = splhigh();
top:
/* Wait for a character to arrive. */
do {
rr0 = *cs->cs_reg_csr;
ZS_DELAY();
} while ((rr0 & ZSRR0_RX_READY) == 0);
/* Read error register. */
stat = zs_read_reg(cs, 1) & (ZSRR1_FE | ZSRR1_DO | ZSRR1_PE);
if (stat) {
zs_write_csr(cs, ZSM_RESET_ERR);
goto top;
}
/* Read character. */
c = *cs->cs_reg_data;
ZS_DELAY();
splx(s);
return (c);
}
/*
* Polled output char.
*/
void
zs_putc(arg, c)
void *arg;
int c;
{
register struct zs_chanstate *cs = arg;
register int s, rr0;
s = splhigh();
/* Wait for transmitter to become ready. */
do {
rr0 = *cs->cs_reg_csr;
ZS_DELAY();
} while ((rr0 & ZSRR0_TX_READY) == 0);
*cs->cs_reg_data = c;
ZS_DELAY();
splx(s);
}
/*
* Common parts of console init.
*/
void
zs_cnconfig(zsc_unit, channel, zc)
int zsc_unit, channel;
struct zschan *zc;
{
struct zs_chanstate *cs;
/*
* Pointer to channel state. Later, the console channel
* state is copied into the softc, and the console channel
* pointer adjusted to point to the new copy.
*/
zs_conschan = cs = &zs_conschan_store;
zs_hwflags[zsc_unit][channel] = ZS_HWFLAG_CONSOLE;
/* Setup temporary chanstate. */
cs->cs_reg_csr = &zc->zc_csr;
cs->cs_reg_data = &zc->zc_data;
/* Initialize the pending registers. */
bcopy(zs_init_reg, cs->cs_preg, 16);
cs->cs_preg[5] |= (ZSWR5_DTR | ZSWR5_RTS);
/* XXX: Preserve BAUD rate from boot loader. */
/* XXX: Also, why reset the chip here? -gwr */
/* cs->cs_defspeed = zs_get_speed(cs); */
cs->cs_defspeed = 9600; /* XXX */
/* Clear the master interrupt enable. */
zs_write_reg(cs, 9, 0);
/* Reset the whole SCC chip. */
zs_write_reg(cs, 9, ZSWR9_HARD_RESET);
/* Copy "pending" to "current" and H/W. */
zs_loadchannelregs(cs);
}
/*
* Polled console input putchar.
*/
int
zscngetc(dev)
dev_t dev;
{
register struct zs_chanstate *cs = zs_conschan;
register int c;
c = zs_getc(cs);
return (c);
}
/*
* Polled console output putchar.
*/
void
zscnputc(dev, c)
dev_t dev;
int c;
{
register struct zs_chanstate *cs = zs_conschan;
zs_putc(cs, c);
}
/*
* Handle user request to enter kernel debugger.
*/
void
zs_abort(cs)
struct zs_chanstate *cs;
{
int rr0;
/* Wait for end of break to avoid PROM abort. */
/* XXX - Limit the wait? */
do {
rr0 = *cs->cs_reg_csr;
ZS_DELAY();
} while (rr0 & ZSRR0_BREAK);
mvme68k_abort("SERIAL LINE ABORT");
}