NetBSD/sys/arch/arm/include/cpufunc.h
2002-08-14 23:24:46 +00:00

495 lines
15 KiB
C

/* $NetBSD: cpufunc.h,v 1.26 2002/08/14 23:24:46 thorpej Exp $ */
/*
* Copyright (c) 1997 Mark Brinicombe.
* Copyright (c) 1997 Causality Limited
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Causality Limited.
* 4. The name of Causality Limited may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY CAUSALITY LIMITED ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL CAUSALITY LIMITED BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RiscBSD kernel project
*
* cpufunc.h
*
* Prototypes for cpu, mmu and tlb related functions.
*/
#ifndef _ARM32_CPUFUNC_H_
#define _ARM32_CPUFUNC_H_
#ifdef _KERNEL
#include <sys/types.h>
#include <arm/cpuconf.h>
struct cpu_functions {
/* CPU functions */
u_int (*cf_id) __P((void));
void (*cf_cpwait) __P((void));
/* MMU functions */
u_int (*cf_control) __P((u_int bic, u_int eor));
void (*cf_domains) __P((u_int domains));
void (*cf_setttb) __P((u_int ttb));
u_int (*cf_faultstatus) __P((void));
u_int (*cf_faultaddress) __P((void));
/* TLB functions */
void (*cf_tlb_flushID) __P((void));
void (*cf_tlb_flushID_SE) __P((u_int va));
void (*cf_tlb_flushI) __P((void));
void (*cf_tlb_flushI_SE) __P((u_int va));
void (*cf_tlb_flushD) __P((void));
void (*cf_tlb_flushD_SE) __P((u_int va));
/*
* Cache operations:
*
* We define the following primitives:
*
* icache_sync_all Synchronize I-cache
* icache_sync_range Synchronize I-cache range
*
* dcache_wbinv_all Write-back and Invalidate D-cache
* dcache_wbinv_range Write-back and Invalidate D-cache range
* dcache_inv_range Invalidate D-cache range
* dcache_wb_range Write-back D-cache range
*
* idcache_wbinv_all Write-back and Invalidate D-cache,
* Invalidate I-cache
* idcache_wbinv_range Write-back and Invalidate D-cache,
* Invalidate I-cache range
*
* Note that the ARM term for "write-back" is "clean". We use
* the term "write-back" since it's a more common way to describe
* the operation.
*
* There are some rules that must be followed:
*
* I-cache Synch (all or range):
* The goal is to synchronize the instruction stream,
* so you may beed to write-back dirty D-cache blocks
* first. If a range is requested, and you can't
* synchronize just a range, you have to hit the whole
* thing.
*
* D-cache Write-Back and Invalidate range:
* If you can't WB-Inv a range, you must WB-Inv the
* entire D-cache.
*
* D-cache Invalidate:
* If you can't Inv the D-cache, you must Write-Back
* and Invalidate. Code that uses this operation
* MUST NOT assume that the D-cache will not be written
* back to memory.
*
* D-cache Write-Back:
* If you can't Write-back without doing an Inv,
* that's fine. Then treat this as a WB-Inv.
* Skipping the invalidate is merely an optimization.
*
* All operations:
* Valid virtual addresses must be passed to each
* cache operation.
*/
void (*cf_icache_sync_all) __P((void));
void (*cf_icache_sync_range) __P((vaddr_t, vsize_t));
void (*cf_dcache_wbinv_all) __P((void));
void (*cf_dcache_wbinv_range) __P((vaddr_t, vsize_t));
void (*cf_dcache_inv_range) __P((vaddr_t, vsize_t));
void (*cf_dcache_wb_range) __P((vaddr_t, vsize_t));
void (*cf_idcache_wbinv_all) __P((void));
void (*cf_idcache_wbinv_range) __P((vaddr_t, vsize_t));
/* Other functions */
void (*cf_flush_prefetchbuf) __P((void));
void (*cf_drain_writebuf) __P((void));
void (*cf_flush_brnchtgt_C) __P((void));
void (*cf_flush_brnchtgt_E) __P((u_int va));
void (*cf_sleep) __P((int mode));
/* Soft functions */
int (*cf_dataabt_fixup) __P((void *arg));
int (*cf_prefetchabt_fixup) __P((void *arg));
void (*cf_context_switch) __P((void));
void (*cf_setup) __P((char *string));
};
extern struct cpu_functions cpufuncs;
extern u_int cputype;
#define cpu_id() cpufuncs.cf_id()
#define cpu_cpwait() cpufuncs.cf_cpwait()
#define cpu_control(c, e) cpufuncs.cf_control(c, e)
#define cpu_domains(d) cpufuncs.cf_domains(d)
#define cpu_setttb(t) cpufuncs.cf_setttb(t)
#define cpu_faultstatus() cpufuncs.cf_faultstatus()
#define cpu_faultaddress() cpufuncs.cf_faultaddress()
#define cpu_tlb_flushID() cpufuncs.cf_tlb_flushID()
#define cpu_tlb_flushID_SE(e) cpufuncs.cf_tlb_flushID_SE(e)
#define cpu_tlb_flushI() cpufuncs.cf_tlb_flushI()
#define cpu_tlb_flushI_SE(e) cpufuncs.cf_tlb_flushI_SE(e)
#define cpu_tlb_flushD() cpufuncs.cf_tlb_flushD()
#define cpu_tlb_flushD_SE(e) cpufuncs.cf_tlb_flushD_SE(e)
#define cpu_icache_sync_all() cpufuncs.cf_icache_sync_all()
#define cpu_icache_sync_range(a, s) cpufuncs.cf_icache_sync_range((a), (s))
#define cpu_dcache_wbinv_all() cpufuncs.cf_dcache_wbinv_all()
#define cpu_dcache_wbinv_range(a, s) cpufuncs.cf_dcache_wbinv_range((a), (s))
#define cpu_dcache_inv_range(a, s) cpufuncs.cf_dcache_inv_range((a), (s))
#define cpu_dcache_wb_range(a, s) cpufuncs.cf_dcache_wb_range((a), (s))
#define cpu_idcache_wbinv_all() cpufuncs.cf_idcache_wbinv_all()
#define cpu_idcache_wbinv_range(a, s) cpufuncs.cf_idcache_wbinv_range((a), (s))
#define cpu_flush_prefetchbuf() cpufuncs.cf_flush_prefetchbuf()
#define cpu_drain_writebuf() cpufuncs.cf_drain_writebuf()
#define cpu_flush_brnchtgt_C() cpufuncs.cf_flush_brnchtgt_C()
#define cpu_flush_brnchtgt_E(e) cpufuncs.cf_flush_brnchtgt_E(e)
#define cpu_sleep(m) cpufuncs.cf_sleep(m)
#define cpu_dataabt_fixup(a) cpufuncs.cf_dataabt_fixup(a)
#define cpu_prefetchabt_fixup(a) cpufuncs.cf_prefetchabt_fixup(a)
#define ABORT_FIXUP_OK 0 /* fixup succeeded */
#define ABORT_FIXUP_FAILED 1 /* fixup failed */
#define ABORT_FIXUP_RETURN 2 /* abort handler should return */
#define cpu_setup(a) cpufuncs.cf_setup(a)
int set_cpufuncs __P((void));
#define ARCHITECTURE_NOT_PRESENT 1 /* known but not configured */
#define ARCHITECTURE_NOT_SUPPORTED 2 /* not known */
void cpufunc_nullop __P((void));
int cpufunc_null_fixup __P((void *));
int early_abort_fixup __P((void *));
int late_abort_fixup __P((void *));
u_int cpufunc_id __P((void));
u_int cpufunc_control __P((u_int clear, u_int bic));
void cpufunc_domains __P((u_int domains));
u_int cpufunc_faultstatus __P((void));
u_int cpufunc_faultaddress __P((void));
#ifdef CPU_ARM3
u_int arm3_control __P((u_int clear, u_int bic));
void arm3_cache_flush __P((void));
#endif /* CPU_ARM3 */
#if defined(CPU_ARM6) || defined(CPU_ARM7)
void arm67_setttb __P((u_int ttb));
void arm67_tlb_flush __P((void));
void arm67_tlb_purge __P((u_int va));
void arm67_cache_flush __P((void));
void arm67_context_switch __P((void));
#endif /* CPU_ARM6 || CPU_ARM7 */
#ifdef CPU_ARM6
void arm6_setup __P((char *string));
#endif /* CPU_ARM6 */
#ifdef CPU_ARM7
void arm7_setup __P((char *string));
#endif /* CPU_ARM7 */
#ifdef CPU_ARM7TDMI
int arm7_dataabt_fixup __P((void *arg));
void arm7tdmi_setup __P((char *string));
void arm7tdmi_setttb __P((u_int ttb));
void arm7tdmi_tlb_flushID __P((void));
void arm7tdmi_tlb_flushID_SE __P((u_int va));
void arm7tdmi_cache_flushID __P((void));
void arm7tdmi_context_switch __P((void));
#endif /* CPU_ARM7TDMI */
#ifdef CPU_ARM8
void arm8_setttb __P((u_int ttb));
void arm8_tlb_flushID __P((void));
void arm8_tlb_flushID_SE __P((u_int va));
void arm8_cache_flushID __P((void));
void arm8_cache_flushID_E __P((u_int entry));
void arm8_cache_cleanID __P((void));
void arm8_cache_cleanID_E __P((u_int entry));
void arm8_cache_purgeID __P((void));
void arm8_cache_purgeID_E __P((u_int entry));
void arm8_cache_syncI __P((void));
void arm8_cache_cleanID_rng __P((vaddr_t start, vsize_t end));
void arm8_cache_cleanD_rng __P((vaddr_t start, vsize_t end));
void arm8_cache_purgeID_rng __P((vaddr_t start, vsize_t end));
void arm8_cache_purgeD_rng __P((vaddr_t start, vsize_t end));
void arm8_cache_syncI_rng __P((vaddr_t start, vsize_t end));
void arm8_context_switch __P((void));
void arm8_setup __P((char *string));
u_int arm8_clock_config __P((u_int, u_int));
#endif
#ifdef CPU_SA110
void sa110_setup __P((char *string));
void sa110_context_switch __P((void));
#endif /* CPU_SA110 */
#if defined(CPU_SA1100) || defined(CPU_SA1110)
void sa11x0_drain_readbuf __P((void));
void sa11x0_context_switch __P((void));
void sa11x0_cpu_sleep __P((int mode));
void sa11x0_setup __P((char *string));
#endif
#if defined(CPU_SA110) || defined(CPU_SA1100) || defined(CPU_SA1110)
void sa1_setttb __P((u_int ttb));
void sa1_tlb_flushID_SE __P((u_int va));
void sa1_cache_flushID __P((void));
void sa1_cache_flushI __P((void));
void sa1_cache_flushD __P((void));
void sa1_cache_flushD_SE __P((u_int entry));
void sa1_cache_cleanID __P((void));
void sa1_cache_cleanD __P((void));
void sa1_cache_cleanD_E __P((u_int entry));
void sa1_cache_purgeID __P((void));
void sa1_cache_purgeID_E __P((u_int entry));
void sa1_cache_purgeD __P((void));
void sa1_cache_purgeD_E __P((u_int entry));
void sa1_cache_syncI __P((void));
void sa1_cache_cleanID_rng __P((vaddr_t start, vsize_t end));
void sa1_cache_cleanD_rng __P((vaddr_t start, vsize_t end));
void sa1_cache_purgeID_rng __P((vaddr_t start, vsize_t end));
void sa1_cache_purgeD_rng __P((vaddr_t start, vsize_t end));
void sa1_cache_syncI_rng __P((vaddr_t start, vsize_t end));
#endif
#ifdef CPU_ARM9
void arm9_setttb __P((u_int));
void arm9_tlb_flushID_SE __P((u_int va));
void arm9_cache_flushID __P((void));
void arm9_cache_flushID_SE __P((u_int));
void arm9_cache_flushI __P((void));
void arm9_cache_flushI_SE __P((u_int));
void arm9_cache_flushD __P((void));
void arm9_cache_flushD_SE __P((u_int));
void arm9_cache_cleanID __P((void));
void arm9_cache_syncI __P((void));
void arm9_cache_flushID_rng __P((vaddr_t, vsize_t));
void arm9_cache_flushD_rng __P((vaddr_t, vsize_t));
void arm9_cache_syncI_rng __P((vaddr_t, vsize_t));
void arm9_context_switch __P((void));
void arm9_setup __P((char *string));
#endif
#if defined(CPU_ARM9) || defined(CPU_SA110) || defined(CPU_SA1100) || \
defined(CPU_SA1110) || defined(CPU_XSCALE_80200) || \
defined(CPU_XSCALE_80321) || defined(CPU_XSCALE_PXA2X0)
void armv4_tlb_flushID __P((void));
void armv4_tlb_flushI __P((void));
void armv4_tlb_flushD __P((void));
void armv4_tlb_flushD_SE __P((u_int va));
void armv4_drain_writebuf __P((void));
#endif
#if defined(CPU_IXP12X0)
void ixp12x0_drain_readbuf __P((void));
void ixp12x0_context_switch __P((void));
void ixp12x0_setup __P((char *string));
#endif
#if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
defined(CPU_XSCALE_PXA2X0)
void xscale_cpwait __P((void));
void xscale_cpu_sleep __P((int mode));
u_int xscale_control __P((u_int clear, u_int bic));
void xscale_setttb __P((u_int ttb));
void xscale_tlb_flushID_SE __P((u_int va));
void xscale_cache_flushID __P((void));
void xscale_cache_flushI __P((void));
void xscale_cache_flushD __P((void));
void xscale_cache_flushD_SE __P((u_int entry));
void xscale_cache_cleanID __P((void));
void xscale_cache_cleanD __P((void));
void xscale_cache_cleanD_E __P((u_int entry));
void xscale_cache_clean_minidata __P((void));
void xscale_cache_purgeID __P((void));
void xscale_cache_purgeID_E __P((u_int entry));
void xscale_cache_purgeD __P((void));
void xscale_cache_purgeD_E __P((u_int entry));
void xscale_cache_syncI __P((void));
void xscale_cache_cleanID_rng __P((vaddr_t start, vsize_t end));
void xscale_cache_cleanD_rng __P((vaddr_t start, vsize_t end));
void xscale_cache_purgeID_rng __P((vaddr_t start, vsize_t end));
void xscale_cache_purgeD_rng __P((vaddr_t start, vsize_t end));
void xscale_cache_syncI_rng __P((vaddr_t start, vsize_t end));
void xscale_cache_flushD_rng __P((vaddr_t start, vsize_t end));
void xscale_context_switch __P((void));
void xscale_setup __P((char *string));
#endif /* CPU_XSCALE_80200 || CPU_XSCALE_80321 || CPU_XSCALE_PXA2X0 */
#define tlb_flush cpu_tlb_flushID
#define setttb cpu_setttb
#define drain_writebuf cpu_drain_writebuf
/*
* Macros for manipulating CPU interrupts
*/
#ifdef __PROG32
static __inline u_int32_t __set_cpsr_c(u_int bic, u_int eor) __attribute__((__unused__));
static __inline u_int32_t
__set_cpsr_c(u_int bic, u_int eor)
{
u_int32_t tmp, ret;
__asm __volatile(
"mrs %0, cpsr\n" /* Get the CPSR */
"bic %1, %0, %2\n" /* Clear bits */
"eor %1, %1, %3\n" /* XOR bits */
"msr cpsr_c, %1\n" /* Set the control field of CPSR */
: "=&r" (ret), "=&r" (tmp)
: "r" (bic), "r" (eor));
return ret;
}
#define disable_interrupts(mask) \
(__set_cpsr_c((mask) & (I32_bit | F32_bit), \
(mask) & (I32_bit | F32_bit)))
#define enable_interrupts(mask) \
(__set_cpsr_c((mask) & (I32_bit | F32_bit), 0))
#define restore_interrupts(old_cpsr) \
(__set_cpsr_c((I32_bit | F32_bit), (old_cpsr) & (I32_bit | F32_bit)))
#else /* ! __PROG32 */
#define disable_interrupts(mask) \
(set_r15((mask) & (R15_IRQ_DISABLE | R15_FIQ_DISABLE), \
(mask) & (R15_IRQ_DISABLE | R15_FIQ_DISABLE)))
#define enable_interrupts(mask) \
(set_r15((mask) & (R15_IRQ_DISABLE | R15_FIQ_DISABLE), 0))
#define restore_interrupts(old_r15) \
(set_r15((R15_IRQ_DISABLE | R15_FIQ_DISABLE), \
(old_r15) & (R15_IRQ_DISABLE | R15_FIQ_DISABLE)))
#endif /* __PROG32 */
#ifdef __PROG32
/* Functions to manipulate the CPSR. */
u_int SetCPSR(u_int bic, u_int eor);
u_int GetCPSR(void);
#else
/* Functions to manipulate the processor control bits in r15. */
u_int set_r15(u_int bic, u_int eor);
u_int get_r15(void);
#endif /* __PROG32 */
/*
* Functions to manipulate cpu r13
* (in arm/arm32/setstack.S)
*/
void set_stackptr __P((u_int mode, u_int address));
u_int get_stackptr __P((u_int mode));
/*
* Miscellany
*/
int get_pc_str_offset __P((void));
/*
* CPU functions from locore.S
*/
void cpu_reset __P((void)) __attribute__((__noreturn__));
/*
* Cache info variables.
*/
/* PRIMARY CACHE VARIABLES */
int arm_picache_size;
int arm_picache_line_size;
int arm_picache_ways;
int arm_pdcache_size; /* and unified */
int arm_pdcache_line_size;
int arm_pdcache_ways;
int arm_pcache_type;
int arm_pcache_unified;
int arm_dcache_align;
int arm_dcache_align_mask;
#endif /* _KERNEL */
#endif /* _ARM32_CPUFUNC_H_ */
/* End of cpufunc.h */