NetBSD/sys/dev/pci/viaenv.c
2002-10-02 16:51:16 +00:00

374 lines
12 KiB
C

/* $NetBSD: viaenv.c,v 1.9 2002/10/02 16:51:59 thorpej Exp $ */
/*
* Copyright (c) 2000 Johan Danielsson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of author nor the names of any contributors may
* be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/* driver for the hardware monitoring part of the VIA VT82C686A */
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: viaenv.c,v 1.9 2002/10/02 16:51:59 thorpej Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ioctl.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/viapmvar.h>
#include <dev/sysmon/sysmonvar.h>
#ifdef VIAENV_DEBUG
unsigned int viaenv_debug = 0;
#define DPRINTF(X) do { if(viaenv_debug) printf X ; } while(0)
#else
#define DPRINTF(X)
#endif
#define VIANUMSENSORS 10 /* three temp, two fan, five voltage */
struct viaenv_softc {
struct device sc_dev;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
int sc_fan_div[2]; /* fan RPM divisor */
struct envsys_tre_data sc_data[VIANUMSENSORS];
struct envsys_basic_info sc_info[VIANUMSENSORS];
struct simplelock sc_slock;
struct timeval sc_lastread;
struct sysmon_envsys sc_sysmon;
};
const struct envsys_range viaenv_ranges[] = {
{ 0, 2, ENVSYS_STEMP },
{ 3, 4, ENVSYS_SFANRPM },
{ 0, 1, ENVSYS_SVOLTS_AC }, /* none */
{ 5, 11, ENVSYS_SVOLTS_DC },
{ 1, 0, ENVSYS_SOHMS }, /* none */
{ 1, 0, ENVSYS_SWATTS }, /* none */
{ 1, 0, ENVSYS_SAMPS }, /* none */
};
int viaenv_gtredata(struct sysmon_envsys *, struct envsys_tre_data *);
int viaenv_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
static int
viaenv_match(struct device * parent, struct cfdata * match, void *aux);
static void
viaenv_attach(struct device * parent, struct device * self, void *aux);
CFATTACH_DECL(viaenv, sizeof(struct viaenv_softc),
viaenv_match, viaenv_attach, NULL, NULL);
static int
viaenv_match(struct device * parent, struct cfdata * match, void *aux)
{
struct viapm_attach_args *va = aux;
if (va->va_type == VIAPM_HWMON)
return 1;
return 0;
}
/*
* XXX there doesn't seem to exist much hard documentation on how to
* convert the raw values to usable units, this code is more or less
* stolen from the Linux driver, but changed to suit our conditions
*/
/*
* lookup-table to translate raw values to uK, this is the same table
* used by the Linux driver (modulo units); there is a fifth degree
* polynomial that supposedly been used to generate this table, but I
* haven't been able to figure out how -- it doesn't give the same values
*/
static const long val_to_temp[] = {
20225, 20435, 20645, 20855, 21045, 21245, 21425, 21615, 21785, 21955,
22125, 22285, 22445, 22605, 22755, 22895, 23035, 23175, 23315, 23445,
23565, 23695, 23815, 23925, 24045, 24155, 24265, 24365, 24465, 24565,
24665, 24765, 24855, 24945, 25025, 25115, 25195, 25275, 25355, 25435,
25515, 25585, 25655, 25725, 25795, 25865, 25925, 25995, 26055, 26115,
26175, 26235, 26295, 26355, 26405, 26465, 26515, 26575, 26625, 26675,
26725, 26775, 26825, 26875, 26925, 26975, 27025, 27065, 27115, 27165,
27205, 27255, 27295, 27345, 27385, 27435, 27475, 27515, 27565, 27605,
27645, 27685, 27735, 27775, 27815, 27855, 27905, 27945, 27985, 28025,
28065, 28105, 28155, 28195, 28235, 28275, 28315, 28355, 28405, 28445,
28485, 28525, 28565, 28615, 28655, 28695, 28735, 28775, 28825, 28865,
28905, 28945, 28995, 29035, 29075, 29125, 29165, 29205, 29245, 29295,
29335, 29375, 29425, 29465, 29505, 29555, 29595, 29635, 29685, 29725,
29765, 29815, 29855, 29905, 29945, 29985, 30035, 30075, 30125, 30165,
30215, 30255, 30305, 30345, 30385, 30435, 30475, 30525, 30565, 30615,
30655, 30705, 30755, 30795, 30845, 30885, 30935, 30975, 31025, 31075,
31115, 31165, 31215, 31265, 31305, 31355, 31405, 31455, 31505, 31545,
31595, 31645, 31695, 31745, 31805, 31855, 31905, 31955, 32005, 32065,
32115, 32175, 32225, 32285, 32335, 32395, 32455, 32515, 32575, 32635,
32695, 32755, 32825, 32885, 32955, 33025, 33095, 33155, 33235, 33305,
33375, 33455, 33525, 33605, 33685, 33765, 33855, 33935, 34025, 34115,
34205, 34295, 34395, 34495, 34595, 34695, 34805, 34905, 35015, 35135,
35245, 35365, 35495, 35615, 35745, 35875, 36015, 36145, 36295, 36435,
36585, 36745, 36895, 37065, 37225, 37395, 37575, 37755, 37935, 38125,
38325, 38525, 38725, 38935, 39155, 39375, 39605, 39835, 40075, 40325,
40575, 40835, 41095, 41375, 41655, 41935,
};
/* use above table to convert values to temperatures in micro-Kelvins */
static int
val_to_uK(unsigned int val)
{
int i = val / 4;
int j = val % 4;
assert(i >= 0 && i <= 255);
if (j == 0 || i == 255)
return val_to_temp[i] * 10000;
/* is linear interpolation ok? */
return (val_to_temp[i] * (4 - j) +
val_to_temp[i + 1] * j) * 2500 /* really: / 4 * 10000 */ ;
}
static int
val_to_rpm(unsigned int val, int div)
{
if (val == 0)
return 0;
return 1350000 / val / div;
}
static long
val_to_uV(unsigned int val, int index)
{
static const long mult[] =
{1250000, 1250000, 1670000, 2600000, 6300000};
assert(index >= 0 && index <= 4);
return (25LL * val + 133) * mult[index] / 2628;
}
#define VIAENV_TSENS3 0x1f
#define VIAENV_TSENS1 0x20
#define VIAENV_TSENS2 0x21
#define VIAENV_VSENS1 0x22
#define VIAENV_VSENS2 0x23
#define VIAENV_VCORE 0x24
#define VIAENV_VSENS3 0x25
#define VIAENV_VSENS4 0x26
#define VIAENV_FAN1 0x29
#define VIAENV_FAN2 0x2a
#define VIAENV_FANCONF 0x47 /* fan configuration */
#define VIAENV_TLOW 0x49 /* temperature low order value */
#define VIAENV_TIRQ 0x4b /* temperature interrupt configuration */
static void
viaenv_refresh_sensor_data(struct viaenv_softc *sc)
{
static const struct timeval onepointfive = { 1, 500000 };
struct timeval t;
u_int8_t v, v2;
int i, s;
/* Read new values at most once every 1.5 seconds. */
timeradd(&sc->sc_lastread, &onepointfive, &t);
s = splclock();
i = timercmp(&mono_time, &t, >);
if (i)
sc->sc_lastread = mono_time;
splx(s);
if (i == 0)
return;
/* temperature */
v = bus_space_read_1(sc->sc_iot, sc->sc_ioh, VIAENV_TIRQ);
v2 = bus_space_read_1(sc->sc_iot, sc->sc_ioh, VIAENV_TSENS1);
DPRINTF(("TSENS1 = %d\n", (v2 << 2) | (v >> 6)));
sc->sc_data[0].cur.data_us = val_to_uK((v2 << 2) | (v >> 6));
sc->sc_data[0].validflags = ENVSYS_FVALID | ENVSYS_FCURVALID;
v = bus_space_read_1(sc->sc_iot, sc->sc_ioh, VIAENV_TLOW);
v2 = bus_space_read_1(sc->sc_iot, sc->sc_ioh, VIAENV_TSENS2);
DPRINTF(("TSENS2 = %d\n", (v2 << 2) | ((v >> 4) & 0x3)));
sc->sc_data[1].cur.data_us =
val_to_uK((v2 << 2) | ((v >> 4) & 0x3));
sc->sc_data[1].validflags = ENVSYS_FVALID | ENVSYS_FCURVALID;
v2 = bus_space_read_1(sc->sc_iot, sc->sc_ioh, VIAENV_TSENS3);
DPRINTF(("TSENS3 = %d\n", (v2 << 2) | (v >> 6)));
sc->sc_data[2].cur.data_us = val_to_uK((v2 << 2) | (v >> 6));
sc->sc_data[2].validflags = ENVSYS_FVALID | ENVSYS_FCURVALID;
v = bus_space_read_1(sc->sc_iot, sc->sc_ioh, VIAENV_FANCONF);
sc->sc_fan_div[0] = 1 << ((v >> 4) & 0x3);
sc->sc_fan_div[1] = 1 << ((v >> 6) & 0x3);
/* fan */
for (i = 3; i <= 4; i++) {
v = bus_space_read_1(sc->sc_iot, sc->sc_ioh,
VIAENV_FAN1 + i - 3);
DPRINTF(("FAN%d = %d / %d\n", i - 3, v,
sc->sc_fan_div[i - 3]));
sc->sc_data[i].cur.data_us = val_to_rpm(v,
sc->sc_fan_div[i - 3]);
sc->sc_data[i].validflags =
ENVSYS_FVALID | ENVSYS_FCURVALID;
}
/* voltage */
for (i = 5; i <= 9; i++) {
v = bus_space_read_1(sc->sc_iot, sc->sc_ioh,
VIAENV_VSENS1 + i - 5);
DPRINTF(("V%d = %d\n", i - 5, v));
sc->sc_data[i].cur.data_us = val_to_uV(v, i - 5);
sc->sc_data[i].validflags =
ENVSYS_FVALID | ENVSYS_FCURVALID;
}
}
static void
viaenv_attach(struct device * parent, struct device * self, void *aux)
{
struct viapm_attach_args *va = aux;
struct viaenv_softc *sc = (struct viaenv_softc *) self;
pcireg_t iobase, control;
int i;
iobase = pci_conf_read(va->va_pc, va->va_tag, va->va_offset);
control = pci_conf_read(va->va_pc, va->va_tag, va->va_offset + 4);
if ((iobase & 0xff80) == 0 || (control & 1) == 0) {
printf(": disabled\n");
return;
}
sc->sc_iot = va->va_iot;
if (bus_space_map(sc->sc_iot, iobase & 0xff80, 128, 0, &sc->sc_ioh)) {
printf(": failed to map i/o\n");
return;
}
printf("\n");
simple_lock_init(&sc->sc_slock);
/* Initialize sensors */
for (i = 0; i < VIANUMSENSORS; ++i) {
sc->sc_data[i].sensor = sc->sc_info[i].sensor = i;
sc->sc_data[i].validflags = (ENVSYS_FVALID | ENVSYS_FCURVALID);
sc->sc_info[i].validflags = ENVSYS_FVALID;
sc->sc_data[i].warnflags = ENVSYS_WARN_OK;
}
for (i = 0; i <= 2; i++) {
sc->sc_data[i].units = sc->sc_info[i].units = ENVSYS_STEMP;
}
strcpy(sc->sc_info[0].desc, "TSENS1");
strcpy(sc->sc_info[1].desc, "TSENS2");
strcpy(sc->sc_info[2].desc, "TSENS3");
for (i = 3; i <= 4; i++) {
sc->sc_data[i].units = sc->sc_info[i].units = ENVSYS_SFANRPM;
}
strcpy(sc->sc_info[3].desc, "FAN1");
strcpy(sc->sc_info[4].desc, "FAN2");
for (i = 5; i <= 9; ++i) {
sc->sc_data[i].units = sc->sc_info[i].units =
ENVSYS_SVOLTS_DC;
sc->sc_info[i].rfact = 1; /* what is this used for? */
}
strcpy(sc->sc_info[5].desc, "VSENS1"); /* CPU core (2V) */
strcpy(sc->sc_info[6].desc, "VSENS2"); /* NB core? (2.5V) */
strcpy(sc->sc_info[7].desc, "Vcore"); /* Vcore (3.3V) */
strcpy(sc->sc_info[8].desc, "VSENS3"); /* VSENS3 (5V) */
strcpy(sc->sc_info[9].desc, "VSENS4"); /* VSENS4 (12V) */
/* Get initial set of sensor values. */
viaenv_refresh_sensor_data(sc);
/*
* Hook into the System Monitor.
*/
sc->sc_sysmon.sme_ranges = viaenv_ranges;
sc->sc_sysmon.sme_sensor_info = sc->sc_info;
sc->sc_sysmon.sme_sensor_data = sc->sc_data;
sc->sc_sysmon.sme_cookie = sc;
sc->sc_sysmon.sme_gtredata = viaenv_gtredata;
sc->sc_sysmon.sme_streinfo = viaenv_streinfo;
sc->sc_sysmon.sme_nsensors = VIANUMSENSORS;
sc->sc_sysmon.sme_envsys_version = 1000;
if (sysmon_envsys_register(&sc->sc_sysmon))
printf("%s: unable to register with sysmon\n",
sc->sc_dev.dv_xname);
}
int
viaenv_gtredata(struct sysmon_envsys *sme, struct envsys_tre_data *tred)
{
struct viaenv_softc *sc = sme->sme_cookie;
simple_lock(&sc->sc_slock);
viaenv_refresh_sensor_data(sc);
*tred = sc->sc_data[tred->sensor];
simple_unlock(&sc->sc_slock);
return (0);
}
int
viaenv_streinfo(struct sysmon_envsys *sme, struct envsys_basic_info *binfo)
{
/* XXX Not implemented */
binfo->validflags = 0;
return (0);
}