NetBSD/sys/netinet/in.c
ozaki-r 09973b35ac Separate nexthop caches from the routing table
By this change, nexthop caches (IP-MAC address pair) are not stored
in the routing table anymore. Instead nexthop caches are stored in
each network interface; we already have lltable/llentry data structure
for this purpose. This change also obsoletes the concept of cloning/cloned
routes. Cloned routes no longer exist while cloning routes still exist
with renamed to connected routes.

Noticeable changes are:
- Nexthop caches aren't listed in route show/netstat -r
  - sysctl(NET_RT_DUMP) doesn't return them
  - If RTF_LLDATA is specified, it returns nexthop caches
- Several definitions of routing flags and messages are removed
  - RTF_CLONING, RTF_XRESOLVE, RTF_LLINFO, RTF_CLONED and RTM_RESOLVE
- RTF_CONNECTED is added
  - It has the same value of RTF_CLONING for backward compatibility
- route's -xresolve, -[no]cloned and -llinfo options are removed
  - -[no]cloning remains because it seems there are users
  - -[no]connected is introduced and recommended
    to be used instead of -[no]cloning
- route show/netstat -r drops some flags
  - 'L' and 'c' are not seen anymore
  - 'C' now indicates a connected route
- Gateway value of a route of an interface address is now not
  a L2 address but "link#N" like a connected (cloning) route
- Proxy ARP: "arp -s ... pub" doesn't create a route

You can know details of behavior changes by seeing diffs under tests/.

Proposed on tech-net and tech-kern:
  http://mail-index.netbsd.org/tech-net/2016/03/11/msg005701.html
2016-04-04 07:37:07 +00:00

1967 lines
49 KiB
C

/* $NetBSD: in.c,v 1.165 2016/04/04 07:37:07 ozaki-r Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Public Access Networks Corporation ("Panix"). It was developed under
* contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in.c 8.4 (Berkeley) 1/9/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: in.c,v 1.165 2016/04/04 07:37:07 ozaki-r Exp $");
#include "arp.h"
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_inet_conf.h"
#include "opt_mrouting.h"
#endif
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/syslog.h>
#include <sys/kauth.h>
#include <sys/kmem.h>
#include <sys/cprng.h>
#include <net/if.h>
#include <net/route.h>
#include <net/pfil.h>
#include <net/if_arp.h>
#include <net/if_ether.h>
#include <net/if_types.h>
#include <net/if_llatbl.h>
#include <net/if_dl.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/in_ifattach.h>
#include <netinet/in_pcb.h>
#include <netinet/in_selsrc.h>
#include <netinet/if_inarp.h>
#include <netinet/ip_mroute.h>
#include <netinet/igmp_var.h>
#ifdef IPSELSRC
#include <netinet/in_selsrc.h>
#endif
static u_int in_mask2len(struct in_addr *);
static void in_len2mask(struct in_addr *, u_int);
static int in_lifaddr_ioctl(struct socket *, u_long, void *,
struct ifnet *);
static int in_addprefix(struct in_ifaddr *, int);
static int in_scrubprefix(struct in_ifaddr *);
static void in_sysctl_init(struct sysctllog **);
#ifndef SUBNETSARELOCAL
#define SUBNETSARELOCAL 1
#endif
#ifndef HOSTZEROBROADCAST
#define HOSTZEROBROADCAST 1
#endif
/* Note: 61, 127, 251, 509, 1021, 2039 are good. */
#ifndef IN_MULTI_HASH_SIZE
#define IN_MULTI_HASH_SIZE 509
#endif
static int subnetsarelocal = SUBNETSARELOCAL;
static int hostzeroisbroadcast = HOSTZEROBROADCAST;
/*
* This list is used to keep track of in_multi chains which belong to
* deleted interface addresses. We use in_ifaddr so that a chain head
* won't be deallocated until all multicast address record are deleted.
*/
LIST_HEAD(in_multihashhead, in_multi); /* Type of the hash head */
static struct pool inmulti_pool;
static u_int in_multientries;
static struct in_multihashhead *in_multihashtbl;
static u_long in_multihash;
static krwlock_t in_multilock;
#define IN_MULTI_HASH(x, ifp) \
(in_multihashtbl[(u_long)((x) ^ (ifp->if_index)) % IN_MULTI_HASH_SIZE])
struct in_ifaddrhashhead * in_ifaddrhashtbl;
u_long in_ifaddrhash;
struct in_ifaddrhead in_ifaddrhead;
void
in_init(void)
{
pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl",
NULL, IPL_SOFTNET);
TAILQ_INIT(&in_ifaddrhead);
in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
&in_ifaddrhash);
in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
&in_multihash);
rw_init(&in_multilock);
in_sysctl_init(NULL);
}
/*
* Return 1 if an internet address is for a ``local'' host
* (one to which we have a connection). If subnetsarelocal
* is true, this includes other subnets of the local net.
* Otherwise, it includes only the directly-connected (sub)nets.
*/
int
in_localaddr(struct in_addr in)
{
struct in_ifaddr *ia;
if (subnetsarelocal) {
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list)
if ((in.s_addr & ia->ia_netmask) == ia->ia_net)
return (1);
} else {
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list)
if ((in.s_addr & ia->ia_subnetmask) == ia->ia_subnet)
return (1);
}
return (0);
}
/*
* Determine whether an IP address is in a reserved set of addresses
* that may not be forwarded, or whether datagrams to that destination
* may be forwarded.
*/
int
in_canforward(struct in_addr in)
{
u_int32_t net;
if (IN_EXPERIMENTAL(in.s_addr) || IN_MULTICAST(in.s_addr))
return (0);
if (IN_CLASSA(in.s_addr)) {
net = in.s_addr & IN_CLASSA_NET;
if (net == 0 || net == htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT))
return (0);
}
return (1);
}
/*
* Trim a mask in a sockaddr
*/
void
in_socktrim(struct sockaddr_in *ap)
{
char *cplim = (char *) &ap->sin_addr;
char *cp = (char *) (&ap->sin_addr + 1);
ap->sin_len = 0;
while (--cp >= cplim)
if (*cp) {
(ap)->sin_len = cp - (char *) (ap) + 1;
break;
}
}
/*
* Routine to take an Internet address and convert into a
* "dotted quad" representation for printing.
*/
const char *
in_fmtaddr(struct in_addr addr)
{
static char buf[sizeof("123.456.789.123")];
addr.s_addr = ntohl(addr.s_addr);
snprintf(buf, sizeof(buf), "%d.%d.%d.%d",
(addr.s_addr >> 24) & 0xFF,
(addr.s_addr >> 16) & 0xFF,
(addr.s_addr >> 8) & 0xFF,
(addr.s_addr >> 0) & 0xFF);
return buf;
}
/*
* Maintain the "in_maxmtu" variable, which is the largest
* mtu for non-local interfaces with AF_INET addresses assigned
* to them that are up.
*/
unsigned long in_maxmtu;
void
in_setmaxmtu(void)
{
struct in_ifaddr *ia;
struct ifnet *ifp;
unsigned long maxmtu = 0;
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) {
if ((ifp = ia->ia_ifp) == 0)
continue;
if ((ifp->if_flags & (IFF_UP|IFF_LOOPBACK)) != IFF_UP)
continue;
if (ifp->if_mtu > maxmtu)
maxmtu = ifp->if_mtu;
}
if (maxmtu)
in_maxmtu = maxmtu;
}
static u_int
in_mask2len(struct in_addr *mask)
{
u_int x, y;
u_char *p;
p = (u_char *)mask;
for (x = 0; x < sizeof(*mask); x++) {
if (p[x] != 0xff)
break;
}
y = 0;
if (x < sizeof(*mask)) {
for (y = 0; y < NBBY; y++) {
if ((p[x] & (0x80 >> y)) == 0)
break;
}
}
return x * NBBY + y;
}
static void
in_len2mask(struct in_addr *mask, u_int len)
{
u_int i;
u_char *p;
p = (u_char *)mask;
memset(mask, 0, sizeof(*mask));
for (i = 0; i < len / NBBY; i++)
p[i] = 0xff;
if (len % NBBY)
p[i] = (0xff00 >> (len % NBBY)) & 0xff;
}
/*
* Generic internet control operations (ioctl's).
* Ifp is 0 if not an interface-specific ioctl.
*/
/* ARGSUSED */
int
in_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
{
struct ifreq *ifr = (struct ifreq *)data;
struct in_ifaddr *ia = NULL;
struct in_aliasreq *ifra = (struct in_aliasreq *)data;
struct sockaddr_in oldaddr;
int error, hostIsNew, maskIsNew;
int newifaddr = 0;
switch (cmd) {
case SIOCALIFADDR:
case SIOCDLIFADDR:
case SIOCGLIFADDR:
if (ifp == NULL)
return EINVAL;
return in_lifaddr_ioctl(so, cmd, data, ifp);
case SIOCGIFADDRPREF:
case SIOCSIFADDRPREF:
if (ifp == NULL)
return EINVAL;
return ifaddrpref_ioctl(so, cmd, data, ifp);
}
/*
* Find address for this interface, if it exists.
*/
if (ifp != NULL)
IFP_TO_IA(ifp, ia);
hostIsNew = 1; /* moved here to appease gcc */
switch (cmd) {
case SIOCAIFADDR:
case SIOCDIFADDR:
case SIOCGIFALIAS:
case SIOCGIFAFLAG_IN:
if (ifra->ifra_addr.sin_family == AF_INET)
LIST_FOREACH(ia,
&IN_IFADDR_HASH(ifra->ifra_addr.sin_addr.s_addr),
ia_hash) {
if (ia->ia_ifp == ifp &&
in_hosteq(ia->ia_addr.sin_addr,
ifra->ifra_addr.sin_addr))
break;
}
if ((cmd == SIOCDIFADDR ||
cmd == SIOCGIFALIAS ||
cmd == SIOCGIFAFLAG_IN) &&
ia == NULL)
return (EADDRNOTAVAIL);
if (cmd == SIOCDIFADDR &&
ifra->ifra_addr.sin_family == AF_UNSPEC) {
ifra->ifra_addr.sin_family = AF_INET;
}
/* FALLTHROUGH */
case SIOCSIFADDR:
if (ia == NULL || ia->ia_addr.sin_family != AF_INET)
;
else if (ifra->ifra_addr.sin_len == 0) {
ifra->ifra_addr = ia->ia_addr;
hostIsNew = 0;
} else if (in_hosteq(ia->ia_addr.sin_addr,
ifra->ifra_addr.sin_addr))
hostIsNew = 0;
/* FALLTHROUGH */
case SIOCSIFDSTADDR:
if (ifra->ifra_addr.sin_family != AF_INET)
return (EAFNOSUPPORT);
/* FALLTHROUGH */
case SIOCSIFNETMASK:
if (ifp == NULL)
panic("in_control");
if (cmd == SIOCGIFALIAS || cmd == SIOCGIFAFLAG_IN)
break;
if (ia == NULL &&
(cmd == SIOCSIFNETMASK || cmd == SIOCSIFDSTADDR))
return (EADDRNOTAVAIL);
if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
NULL) != 0)
return (EPERM);
if (ia == NULL) {
ia = malloc(sizeof(*ia), M_IFADDR, M_WAITOK|M_ZERO);
if (ia == NULL)
return (ENOBUFS);
TAILQ_INSERT_TAIL(&in_ifaddrhead, ia, ia_list);
ifaref(&ia->ia_ifa);
ifa_insert(ifp, &ia->ia_ifa);
ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
ia->ia_ifa.ifa_netmask = sintosa(&ia->ia_sockmask);
#ifdef IPSELSRC
ia->ia_ifa.ifa_getifa = in_getifa;
#else /* IPSELSRC */
ia->ia_ifa.ifa_getifa = NULL;
#endif /* IPSELSRC */
ia->ia_sockmask.sin_len = 8;
ia->ia_sockmask.sin_family = AF_INET;
if (ifp->if_flags & IFF_BROADCAST) {
ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr);
ia->ia_broadaddr.sin_family = AF_INET;
}
ia->ia_ifp = ifp;
ia->ia_idsalt = cprng_fast32() % 65535;
LIST_INIT(&ia->ia_multiaddrs);
newifaddr = 1;
}
break;
case SIOCSIFBRDADDR:
if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
NULL) != 0)
return (EPERM);
/* FALLTHROUGH */
case SIOCGIFADDR:
case SIOCGIFNETMASK:
case SIOCGIFDSTADDR:
case SIOCGIFBRDADDR:
if (ia == NULL)
return (EADDRNOTAVAIL);
break;
}
error = 0;
switch (cmd) {
case SIOCGIFADDR:
ifreq_setaddr(cmd, ifr, sintocsa(&ia->ia_addr));
break;
case SIOCGIFBRDADDR:
if ((ifp->if_flags & IFF_BROADCAST) == 0)
return (EINVAL);
ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_broadaddr));
break;
case SIOCGIFDSTADDR:
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
return (EINVAL);
ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_dstaddr));
break;
case SIOCGIFNETMASK:
/*
* We keep the number of trailing zero bytes the sin_len field
* of ia_sockmask, so we fix this before we pass it back to
* userland.
*/
oldaddr = ia->ia_sockmask;
oldaddr.sin_len = sizeof(struct sockaddr_in);
ifreq_setaddr(cmd, ifr, (const void *)&oldaddr);
break;
case SIOCSIFDSTADDR:
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
return (EINVAL);
oldaddr = ia->ia_dstaddr;
ia->ia_dstaddr = *satocsin(ifreq_getdstaddr(cmd, ifr));
if ((error = if_addr_init(ifp, &ia->ia_ifa, false)) != 0) {
ia->ia_dstaddr = oldaddr;
return error;
}
if (ia->ia_flags & IFA_ROUTE) {
ia->ia_ifa.ifa_dstaddr = sintosa(&oldaddr);
rtinit(&ia->ia_ifa, RTM_DELETE, RTF_HOST);
ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
rtinit(&ia->ia_ifa, RTM_ADD, RTF_HOST|RTF_UP);
}
break;
case SIOCSIFBRDADDR:
if ((ifp->if_flags & IFF_BROADCAST) == 0)
return EINVAL;
ia->ia_broadaddr = *satocsin(ifreq_getbroadaddr(cmd, ifr));
break;
case SIOCSIFADDR:
error = in_ifinit(ifp, ia, satocsin(ifreq_getaddr(cmd, ifr)),
1, hostIsNew);
if (error == 0) {
(void)pfil_run_hooks(if_pfil,
(struct mbuf **)SIOCSIFADDR, ifp, PFIL_IFADDR);
}
break;
case SIOCSIFNETMASK:
in_ifscrub(ifp, ia);
ia->ia_sockmask = *satocsin(ifreq_getaddr(cmd, ifr));
ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
error = in_ifinit(ifp, ia, NULL, 0, 0);
break;
case SIOCAIFADDR:
maskIsNew = 0;
if (ifra->ifra_mask.sin_len) {
/* Only scrub if we control the prefix route,
* otherwise userland gets a bogus message */
if ((ia->ia_flags & IFA_ROUTE))
in_ifscrub(ifp, ia);
ia->ia_sockmask = ifra->ifra_mask;
ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
maskIsNew = 1;
}
if ((ifp->if_flags & IFF_POINTOPOINT) &&
(ifra->ifra_dstaddr.sin_family == AF_INET)) {
/* Only scrub if we control the prefix route,
* otherwise userland gets a bogus message */
if ((ia->ia_flags & IFA_ROUTE))
in_ifscrub(ifp, ia);
ia->ia_dstaddr = ifra->ifra_dstaddr;
maskIsNew = 1; /* We lie; but the effect's the same */
}
if (ifra->ifra_addr.sin_family == AF_INET &&
(hostIsNew || maskIsNew)) {
error = in_ifinit(ifp, ia, &ifra->ifra_addr, 0,
hostIsNew);
}
if ((ifp->if_flags & IFF_BROADCAST) &&
(ifra->ifra_broadaddr.sin_family == AF_INET))
ia->ia_broadaddr = ifra->ifra_broadaddr;
if (error == 0)
(void)pfil_run_hooks(if_pfil,
(struct mbuf **)SIOCAIFADDR, ifp, PFIL_IFADDR);
break;
case SIOCGIFALIAS:
ifra->ifra_mask = ia->ia_sockmask;
if ((ifp->if_flags & IFF_POINTOPOINT) &&
(ia->ia_dstaddr.sin_family == AF_INET))
ifra->ifra_dstaddr = ia->ia_dstaddr;
else if ((ifp->if_flags & IFF_BROADCAST) &&
(ia->ia_broadaddr.sin_family == AF_INET))
ifra->ifra_broadaddr = ia->ia_broadaddr;
else
memset(&ifra->ifra_broadaddr, 0,
sizeof(ifra->ifra_broadaddr));
break;
case SIOCGIFAFLAG_IN:
ifr->ifr_addrflags = ia->ia4_flags;
break;
case SIOCDIFADDR:
in_purgeaddr(&ia->ia_ifa);
(void)pfil_run_hooks(if_pfil, (struct mbuf **)SIOCDIFADDR,
ifp, PFIL_IFADDR);
break;
#ifdef MROUTING
case SIOCGETVIFCNT:
case SIOCGETSGCNT:
error = mrt_ioctl(so, cmd, data);
break;
#endif /* MROUTING */
default:
return ENOTTY;
}
if (error != 0 && newifaddr) {
KASSERT(ia != NULL);
in_purgeaddr(&ia->ia_ifa);
}
return error;
}
/* Add ownaddr as loopback rtentry. */
static void
in_ifaddlocal(struct ifaddr *ifa)
{
struct in_ifaddr *ia;
ia = (struct in_ifaddr *)ifa;
if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY ||
(ia->ia_ifp->if_flags & IFF_POINTOPOINT &&
in_hosteq(ia->ia_dstaddr.sin_addr, ia->ia_addr.sin_addr)))
{
rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
return;
}
rt_ifa_addlocal(ifa);
}
/* Rempve loopback entry of ownaddr */
static void
in_ifremlocal(struct ifaddr *ifa)
{
struct in_ifaddr *ia, *p;
struct ifaddr *alt_ifa = NULL;
int ia_count = 0;
ia = (struct in_ifaddr *)ifa;
/* Delete the entry if exactly one ifaddr matches the
* address, ifa->ifa_addr. */
TAILQ_FOREACH(p, &in_ifaddrhead, ia_list) {
if (!in_hosteq(p->ia_addr.sin_addr, ia->ia_addr.sin_addr))
continue;
if (p->ia_ifp != ia->ia_ifp)
alt_ifa = &p->ia_ifa;
if (++ia_count > 1 && alt_ifa != NULL)
break;
}
if (ia_count == 0)
return;
rt_ifa_remlocal(ifa, ia_count == 1 ? NULL : alt_ifa);
}
void
in_purgeaddr(struct ifaddr *ifa)
{
struct ifnet *ifp = ifa->ifa_ifp;
struct in_ifaddr *ia = (void *) ifa;
/* stop DAD processing */
if (ia->ia_dad_stop != NULL)
ia->ia_dad_stop(ifa);
in_ifscrub(ifp, ia);
in_ifremlocal(ifa);
LIST_REMOVE(ia, ia_hash);
ifa_remove(ifp, &ia->ia_ifa);
TAILQ_REMOVE(&in_ifaddrhead, ia, ia_list);
if (ia->ia_allhosts != NULL)
in_delmulti(ia->ia_allhosts);
ifafree(&ia->ia_ifa);
in_setmaxmtu();
}
void
in_purgeif(struct ifnet *ifp) /* MUST be called at splsoftnet() */
{
if_purgeaddrs(ifp, AF_INET, in_purgeaddr);
igmp_purgeif(ifp); /* manipulates pools */
#ifdef MROUTING
ip_mrouter_detach(ifp);
#endif
}
/*
* SIOC[GAD]LIFADDR.
* SIOCGLIFADDR: get first address. (???)
* SIOCGLIFADDR with IFLR_PREFIX:
* get first address that matches the specified prefix.
* SIOCALIFADDR: add the specified address.
* SIOCALIFADDR with IFLR_PREFIX:
* EINVAL since we can't deduce hostid part of the address.
* SIOCDLIFADDR: delete the specified address.
* SIOCDLIFADDR with IFLR_PREFIX:
* delete the first address that matches the specified prefix.
* return values:
* EINVAL on invalid parameters
* EADDRNOTAVAIL on prefix match failed/specified address not found
* other values may be returned from in_ioctl()
*/
static int
in_lifaddr_ioctl(struct socket *so, u_long cmd, void *data,
struct ifnet *ifp)
{
struct if_laddrreq *iflr = (struct if_laddrreq *)data;
struct ifaddr *ifa;
struct sockaddr *sa;
/* sanity checks */
if (data == NULL || ifp == NULL) {
panic("invalid argument to in_lifaddr_ioctl");
/*NOTRECHED*/
}
switch (cmd) {
case SIOCGLIFADDR:
/* address must be specified on GET with IFLR_PREFIX */
if ((iflr->flags & IFLR_PREFIX) == 0)
break;
/*FALLTHROUGH*/
case SIOCALIFADDR:
case SIOCDLIFADDR:
/* address must be specified on ADD and DELETE */
sa = (struct sockaddr *)&iflr->addr;
if (sa->sa_family != AF_INET)
return EINVAL;
if (sa->sa_len != sizeof(struct sockaddr_in))
return EINVAL;
/* XXX need improvement */
sa = (struct sockaddr *)&iflr->dstaddr;
if (sa->sa_family != AF_UNSPEC && sa->sa_family != AF_INET)
return EINVAL;
if (sa->sa_len != 0 && sa->sa_len != sizeof(struct sockaddr_in))
return EINVAL;
break;
default: /*shouldn't happen*/
#if 0
panic("invalid cmd to in_lifaddr_ioctl");
/*NOTREACHED*/
#else
return EOPNOTSUPP;
#endif
}
if (sizeof(struct in_addr) * NBBY < iflr->prefixlen)
return EINVAL;
switch (cmd) {
case SIOCALIFADDR:
{
struct in_aliasreq ifra;
if (iflr->flags & IFLR_PREFIX)
return EINVAL;
/* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR). */
memset(&ifra, 0, sizeof(ifra));
memcpy(ifra.ifra_name, iflr->iflr_name,
sizeof(ifra.ifra_name));
memcpy(&ifra.ifra_addr, &iflr->addr,
((struct sockaddr *)&iflr->addr)->sa_len);
if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/
memcpy(&ifra.ifra_dstaddr, &iflr->dstaddr,
((struct sockaddr *)&iflr->dstaddr)->sa_len);
}
ifra.ifra_mask.sin_family = AF_INET;
ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in);
in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen);
return in_control(so, SIOCAIFADDR, &ifra, ifp);
}
case SIOCGLIFADDR:
case SIOCDLIFADDR:
{
struct in_ifaddr *ia;
struct in_addr mask, candidate, match;
struct sockaddr_in *sin;
int cmp;
memset(&mask, 0, sizeof(mask));
memset(&match, 0, sizeof(match)); /* XXX gcc */
if (iflr->flags & IFLR_PREFIX) {
/* lookup a prefix rather than address. */
in_len2mask(&mask, iflr->prefixlen);
sin = (struct sockaddr_in *)&iflr->addr;
match.s_addr = sin->sin_addr.s_addr;
match.s_addr &= mask.s_addr;
/* if you set extra bits, that's wrong */
if (match.s_addr != sin->sin_addr.s_addr)
return EINVAL;
cmp = 1;
} else {
if (cmd == SIOCGLIFADDR) {
/* on getting an address, take the 1st match */
cmp = 0; /*XXX*/
} else {
/* on deleting an address, do exact match */
in_len2mask(&mask, 32);
sin = (struct sockaddr_in *)&iflr->addr;
match.s_addr = sin->sin_addr.s_addr;
cmp = 1;
}
}
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family != AF_INET)
continue;
if (cmp == 0)
break;
candidate.s_addr = ((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr;
candidate.s_addr &= mask.s_addr;
if (candidate.s_addr == match.s_addr)
break;
}
if (ifa == NULL)
return EADDRNOTAVAIL;
ia = (struct in_ifaddr *)ifa;
if (cmd == SIOCGLIFADDR) {
/* fill in the if_laddrreq structure */
memcpy(&iflr->addr, &ia->ia_addr, ia->ia_addr.sin_len);
if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
memcpy(&iflr->dstaddr, &ia->ia_dstaddr,
ia->ia_dstaddr.sin_len);
} else
memset(&iflr->dstaddr, 0, sizeof(iflr->dstaddr));
iflr->prefixlen =
in_mask2len(&ia->ia_sockmask.sin_addr);
iflr->flags = 0; /*XXX*/
return 0;
} else {
struct in_aliasreq ifra;
/* fill in_aliasreq and do ioctl(SIOCDIFADDR) */
memset(&ifra, 0, sizeof(ifra));
memcpy(ifra.ifra_name, iflr->iflr_name,
sizeof(ifra.ifra_name));
memcpy(&ifra.ifra_addr, &ia->ia_addr,
ia->ia_addr.sin_len);
if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
memcpy(&ifra.ifra_dstaddr, &ia->ia_dstaddr,
ia->ia_dstaddr.sin_len);
}
memcpy(&ifra.ifra_dstaddr, &ia->ia_sockmask,
ia->ia_sockmask.sin_len);
return in_control(so, SIOCDIFADDR, &ifra, ifp);
}
}
}
return EOPNOTSUPP; /*just for safety*/
}
/*
* Delete any existing route for an interface.
*/
void
in_ifscrub(struct ifnet *ifp, struct in_ifaddr *ia)
{
in_scrubprefix(ia);
}
/*
* Initialize an interface's internet address
* and routing table entry.
*/
int
in_ifinit(struct ifnet *ifp, struct in_ifaddr *ia,
const struct sockaddr_in *sin, int scrub, int hostIsNew)
{
u_int32_t i;
struct sockaddr_in oldaddr;
int s = splnet(), flags = RTF_UP, error;
if (sin == NULL)
sin = &ia->ia_addr;
/*
* Set up new addresses.
*/
oldaddr = ia->ia_addr;
if (ia->ia_addr.sin_family == AF_INET)
LIST_REMOVE(ia, ia_hash);
ia->ia_addr = *sin;
LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia, ia_hash);
/* Set IN_IFF flags early for if_addr_init() */
if (hostIsNew && if_do_dad(ifp) && !in_nullhost(ia->ia_addr.sin_addr)) {
if (ifp->if_link_state == LINK_STATE_DOWN)
ia->ia4_flags |= IN_IFF_DETACHED;
else
/* State the intent to try DAD if possible */
ia->ia4_flags |= IN_IFF_TRYTENTATIVE;
}
/*
* Give the interface a chance to initialize
* if this is its first address,
* and to validate the address if necessary.
*/
if ((error = if_addr_init(ifp, &ia->ia_ifa, true)) != 0)
goto bad;
/* Now clear the try tentative flag, it's job is done. */
ia->ia4_flags &= ~IN_IFF_TRYTENTATIVE;
splx(s);
if (scrub) {
ia->ia_ifa.ifa_addr = sintosa(&oldaddr);
in_ifscrub(ifp, ia);
ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
}
/* Add the local route to the address */
in_ifaddlocal(&ia->ia_ifa);
i = ia->ia_addr.sin_addr.s_addr;
if (IN_CLASSA(i))
ia->ia_netmask = IN_CLASSA_NET;
else if (IN_CLASSB(i))
ia->ia_netmask = IN_CLASSB_NET;
else
ia->ia_netmask = IN_CLASSC_NET;
/*
* The subnet mask usually includes at least the standard network part,
* but may may be smaller in the case of supernetting.
* If it is set, we believe it.
*/
if (ia->ia_subnetmask == 0) {
ia->ia_subnetmask = ia->ia_netmask;
ia->ia_sockmask.sin_addr.s_addr = ia->ia_subnetmask;
} else
ia->ia_netmask &= ia->ia_subnetmask;
ia->ia_net = i & ia->ia_netmask;
ia->ia_subnet = i & ia->ia_subnetmask;
in_socktrim(&ia->ia_sockmask);
/* re-calculate the "in_maxmtu" value */
in_setmaxmtu();
/*
* Add route for the network.
*/
ia->ia_ifa.ifa_metric = ifp->if_metric;
if (ifp->if_flags & IFF_BROADCAST) {
ia->ia_broadaddr.sin_addr.s_addr =
ia->ia_subnet | ~ia->ia_subnetmask;
ia->ia_netbroadcast.s_addr =
ia->ia_net | ~ia->ia_netmask;
} else if (ifp->if_flags & IFF_LOOPBACK) {
ia->ia_dstaddr = ia->ia_addr;
flags |= RTF_HOST;
} else if (ifp->if_flags & IFF_POINTOPOINT) {
if (ia->ia_dstaddr.sin_family != AF_INET)
return (0);
flags |= RTF_HOST;
}
error = in_addprefix(ia, flags);
/*
* If the interface supports multicast, join the "all hosts"
* multicast group on that interface.
*/
if ((ifp->if_flags & IFF_MULTICAST) != 0 && ia->ia_allhosts == NULL) {
struct in_addr addr;
addr.s_addr = INADDR_ALLHOSTS_GROUP;
ia->ia_allhosts = in_addmulti(&addr, ifp);
}
if (hostIsNew && if_do_dad(ifp) &&
!in_nullhost(ia->ia_addr.sin_addr) &&
ia->ia4_flags & IN_IFF_TENTATIVE)
ia->ia_dad_start((struct ifaddr *)ia);
return (error);
bad:
splx(s);
LIST_REMOVE(ia, ia_hash);
ia->ia_addr = oldaddr;
if (ia->ia_addr.sin_family == AF_INET)
LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr),
ia, ia_hash);
return (error);
}
#define rtinitflags(x) \
((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \
? RTF_HOST : 0)
/*
* add a route to prefix ("connected route" in cisco terminology).
* does nothing if there's some interface address with the same prefix already.
*/
static int
in_addprefix(struct in_ifaddr *target, int flags)
{
struct in_ifaddr *ia;
struct in_addr prefix, mask, p;
int error;
if ((flags & RTF_HOST) != 0)
prefix = target->ia_dstaddr.sin_addr;
else {
prefix = target->ia_addr.sin_addr;
mask = target->ia_sockmask.sin_addr;
prefix.s_addr &= mask.s_addr;
}
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) {
if (rtinitflags(ia))
p = ia->ia_dstaddr.sin_addr;
else {
p = ia->ia_addr.sin_addr;
p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
}
if (prefix.s_addr != p.s_addr)
continue;
/*
* if we got a matching prefix route inserted by other
* interface address, we don't need to bother
*
* XXX RADIX_MPATH implications here? -dyoung
*/
if (ia->ia_flags & IFA_ROUTE)
return 0;
}
/*
* noone seem to have prefix route. insert it.
*/
error = rtinit(&target->ia_ifa, RTM_ADD, flags);
if (error == 0)
target->ia_flags |= IFA_ROUTE;
else if (error == EEXIST) {
/*
* the fact the route already exists is not an error.
*/
error = 0;
}
return error;
}
/*
* remove a route to prefix ("connected route" in cisco terminology).
* re-installs the route by using another interface address, if there's one
* with the same prefix (otherwise we lose the route mistakenly).
*/
static int
in_scrubprefix(struct in_ifaddr *target)
{
struct in_ifaddr *ia;
struct in_addr prefix, mask, p;
int error;
/* If we don't have IFA_ROUTE we should still inform userland */
if ((target->ia_flags & IFA_ROUTE) == 0)
return 0;
if (rtinitflags(target))
prefix = target->ia_dstaddr.sin_addr;
else {
prefix = target->ia_addr.sin_addr;
mask = target->ia_sockmask.sin_addr;
prefix.s_addr &= mask.s_addr;
}
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) {
if (rtinitflags(ia))
p = ia->ia_dstaddr.sin_addr;
else {
p = ia->ia_addr.sin_addr;
p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
}
if (prefix.s_addr != p.s_addr)
continue;
/*
* if we got a matching prefix route, move IFA_ROUTE to him
*/
if ((ia->ia_flags & IFA_ROUTE) == 0) {
rtinit(&target->ia_ifa, RTM_DELETE,
rtinitflags(target));
target->ia_flags &= ~IFA_ROUTE;
error = rtinit(&ia->ia_ifa, RTM_ADD,
rtinitflags(ia) | RTF_UP);
if (error == 0)
ia->ia_flags |= IFA_ROUTE;
return error;
}
}
/*
* noone seem to have prefix route. remove it.
*/
rtinit(&target->ia_ifa, RTM_DELETE, rtinitflags(target));
target->ia_flags &= ~IFA_ROUTE;
return 0;
}
#undef rtinitflags
/*
* Return 1 if the address might be a local broadcast address.
*/
int
in_broadcast(struct in_addr in, struct ifnet *ifp)
{
struct ifaddr *ifa;
if (in.s_addr == INADDR_BROADCAST ||
in_nullhost(in))
return 1;
if ((ifp->if_flags & IFF_BROADCAST) == 0)
return 0;
/*
* Look through the list of addresses for a match
* with a broadcast address.
*/
#define ia (ifatoia(ifa))
IFADDR_FOREACH(ifa, ifp)
if (ifa->ifa_addr->sa_family == AF_INET &&
!in_hosteq(in, ia->ia_addr.sin_addr) &&
(in_hosteq(in, ia->ia_broadaddr.sin_addr) ||
in_hosteq(in, ia->ia_netbroadcast) ||
(hostzeroisbroadcast &&
/*
* Check for old-style (host 0) broadcast.
*/
(in.s_addr == ia->ia_subnet ||
in.s_addr == ia->ia_net))))
return 1;
return (0);
#undef ia
}
/*
* perform DAD when interface becomes IFF_UP.
*/
void
in_if_link_up(struct ifnet *ifp)
{
struct ifaddr *ifa;
struct in_ifaddr *ia;
/* Ensure it's sane to run DAD */
if (ifp->if_link_state == LINK_STATE_DOWN)
return;
if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING))
return;
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family != AF_INET)
continue;
ia = (struct in_ifaddr *)ifa;
/* If detached then mark as tentative */
if (ia->ia4_flags & IN_IFF_DETACHED) {
ia->ia4_flags &= ~IN_IFF_DETACHED;
if (if_do_dad(ifp) && ia->ia_dad_start != NULL)
ia->ia4_flags |= IN_IFF_TENTATIVE;
else if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0)
rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
}
if (ia->ia4_flags & IN_IFF_TENTATIVE) {
/* Clear the duplicated flag as we're starting DAD. */
ia->ia4_flags &= ~IN_IFF_DUPLICATED;
ia->ia_dad_start(ifa);
}
}
}
void
in_if_up(struct ifnet *ifp)
{
/* interface may not support link state, so bring it up also */
in_if_link_up(ifp);
}
/*
* Mark all addresses as detached.
*/
void
in_if_link_down(struct ifnet *ifp)
{
struct ifaddr *ifa;
struct in_ifaddr *ia;
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family != AF_INET)
continue;
ia = (struct in_ifaddr *)ifa;
/* Stop DAD processing */
if (ia->ia_dad_stop != NULL)
ia->ia_dad_stop(ifa);
/*
* Mark the address as detached.
*/
if (!(ia->ia4_flags & IN_IFF_DETACHED)) {
ia->ia4_flags |= IN_IFF_DETACHED;
ia->ia4_flags &=
~(IN_IFF_TENTATIVE | IN_IFF_DUPLICATED);
rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
}
}
}
void
in_if_down(struct ifnet *ifp)
{
in_if_link_down(ifp);
}
void
in_if_link_state_change(struct ifnet *ifp, int link_state)
{
switch (link_state) {
case LINK_STATE_DOWN:
in_if_link_down(ifp);
break;
case LINK_STATE_UP:
in_if_link_up(ifp);
break;
}
}
/*
* in_lookup_multi: look up the in_multi record for a given IP
* multicast address on a given interface. If no matching record is
* found, return NULL.
*/
struct in_multi *
in_lookup_multi(struct in_addr addr, ifnet_t *ifp)
{
struct in_multi *inm;
KASSERT(rw_lock_held(&in_multilock));
LIST_FOREACH(inm, &IN_MULTI_HASH(addr.s_addr, ifp), inm_list) {
if (in_hosteq(inm->inm_addr, addr) && inm->inm_ifp == ifp)
break;
}
return inm;
}
/*
* in_multi_group: check whether the address belongs to an IP multicast
* group we are joined on this interface. Returns true or false.
*/
bool
in_multi_group(struct in_addr addr, ifnet_t *ifp, int flags)
{
bool ingroup;
if (__predict_true(flags & IP_IGMP_MCAST) == 0) {
rw_enter(&in_multilock, RW_READER);
ingroup = in_lookup_multi(addr, ifp) != NULL;
rw_exit(&in_multilock);
} else {
/* XXX Recursive call from ip_output(). */
KASSERT(rw_lock_held(&in_multilock));
ingroup = in_lookup_multi(addr, ifp) != NULL;
}
return ingroup;
}
/*
* Add an address to the list of IP multicast addresses for a given interface.
*/
struct in_multi *
in_addmulti(struct in_addr *ap, ifnet_t *ifp)
{
struct sockaddr_in sin;
struct in_multi *inm;
/*
* See if address already in list.
*/
rw_enter(&in_multilock, RW_WRITER);
inm = in_lookup_multi(*ap, ifp);
if (inm != NULL) {
/*
* Found it; just increment the reference count.
*/
inm->inm_refcount++;
rw_exit(&in_multilock);
return inm;
}
/*
* New address; allocate a new multicast record.
*/
inm = pool_get(&inmulti_pool, PR_NOWAIT);
if (inm == NULL) {
rw_exit(&in_multilock);
return NULL;
}
inm->inm_addr = *ap;
inm->inm_ifp = ifp;
inm->inm_refcount = 1;
/*
* Ask the network driver to update its multicast reception
* filter appropriately for the new address.
*/
sockaddr_in_init(&sin, ap, 0);
if (if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin)) != 0) {
rw_exit(&in_multilock);
pool_put(&inmulti_pool, inm);
return NULL;
}
/*
* Let IGMP know that we have joined a new IP multicast group.
*/
if (igmp_joingroup(inm) != 0) {
rw_exit(&in_multilock);
pool_put(&inmulti_pool, inm);
return NULL;
}
LIST_INSERT_HEAD(
&IN_MULTI_HASH(inm->inm_addr.s_addr, ifp),
inm, inm_list);
in_multientries++;
rw_exit(&in_multilock);
return inm;
}
/*
* Delete a multicast address record.
*/
void
in_delmulti(struct in_multi *inm)
{
struct sockaddr_in sin;
rw_enter(&in_multilock, RW_WRITER);
if (--inm->inm_refcount > 0) {
rw_exit(&in_multilock);
return;
}
/*
* No remaining claims to this record; let IGMP know that
* we are leaving the multicast group.
*/
igmp_leavegroup(inm);
/*
* Notify the network driver to update its multicast reception
* filter.
*/
sockaddr_in_init(&sin, &inm->inm_addr, 0);
if_mcast_op(inm->inm_ifp, SIOCDELMULTI, sintosa(&sin));
/*
* Unlink from list.
*/
LIST_REMOVE(inm, inm_list);
in_multientries--;
rw_exit(&in_multilock);
pool_put(&inmulti_pool, inm);
}
/*
* in_next_multi: step through all of the in_multi records, one at a time.
* The current position is remembered in "step", which the caller must
* provide. in_first_multi(), below, must be called to initialize "step"
* and get the first record. Both macros return a NULL "inm" when there
* are no remaining records.
*/
struct in_multi *
in_next_multi(struct in_multistep *step)
{
struct in_multi *inm;
KASSERT(rw_lock_held(&in_multilock));
while (step->i_inm == NULL && step->i_n < IN_MULTI_HASH_SIZE) {
step->i_inm = LIST_FIRST(&in_multihashtbl[++step->i_n]);
}
if ((inm = step->i_inm) != NULL) {
step->i_inm = LIST_NEXT(inm, inm_list);
}
return inm;
}
struct in_multi *
in_first_multi(struct in_multistep *step)
{
KASSERT(rw_lock_held(&in_multilock));
step->i_n = 0;
step->i_inm = LIST_FIRST(&in_multihashtbl[0]);
return in_next_multi(step);
}
void
in_multi_lock(int op)
{
rw_enter(&in_multilock, op);
}
void
in_multi_unlock(void)
{
rw_exit(&in_multilock);
}
int
in_multi_lock_held(void)
{
return rw_lock_held(&in_multilock);
}
struct sockaddr_in *
in_selectsrc(struct sockaddr_in *sin, struct route *ro,
int soopts, struct ip_moptions *mopts, int *errorp)
{
struct rtentry *rt = NULL;
struct in_ifaddr *ia = NULL;
/*
* If route is known or can be allocated now, take the
* source address from the interface. Otherwise, punt.
*/
if ((soopts & SO_DONTROUTE) != 0)
rtcache_free(ro);
else {
union {
struct sockaddr dst;
struct sockaddr_in dst4;
} u;
sockaddr_in_init(&u.dst4, &sin->sin_addr, 0);
rt = rtcache_lookup(ro, &u.dst);
}
/*
* If we found a route, use the address
* corresponding to the outgoing interface
* unless it is the loopback (in case a route
* to our address on another net goes to loopback).
*
* XXX Is this still true? Do we care?
*/
if (rt != NULL && (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
ia = ifatoia(rt->rt_ifa);
if (ia == NULL) {
u_int16_t fport = sin->sin_port;
sin->sin_port = 0;
ia = ifatoia(ifa_ifwithladdr(sintosa(sin)));
sin->sin_port = fport;
if (ia == NULL) {
/* Find 1st non-loopback AF_INET address */
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) {
if (!(ia->ia_ifp->if_flags & IFF_LOOPBACK))
break;
}
}
if (ia == NULL) {
*errorp = EADDRNOTAVAIL;
return NULL;
}
}
/*
* If the destination address is multicast and an outgoing
* interface has been set as a multicast option, use the
* address of that interface as our source address.
*/
if (IN_MULTICAST(sin->sin_addr.s_addr) && mopts != NULL) {
struct ip_moptions *imo;
struct ifnet *ifp;
imo = mopts;
if (imo->imo_multicast_ifp != NULL) {
ifp = imo->imo_multicast_ifp;
IFP_TO_IA(ifp, ia); /* XXX */
if (ia == 0 || ia->ia4_flags & IN_IFF_NOTREADY) {
*errorp = EADDRNOTAVAIL;
return NULL;
}
}
}
if (ia->ia_ifa.ifa_getifa != NULL) {
ia = ifatoia((*ia->ia_ifa.ifa_getifa)(&ia->ia_ifa,
sintosa(sin)));
if (ia == NULL) {
*errorp = EADDRNOTAVAIL;
return NULL;
}
}
#ifdef GETIFA_DEBUG
else
printf("%s: missing ifa_getifa\n", __func__);
#endif
return satosin(&ia->ia_addr);
}
#if NARP > 0
struct in_llentry {
struct llentry base;
};
#define IN_LLTBL_DEFAULT_HSIZE 32
#define IN_LLTBL_HASH(k, h) \
(((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1))
/*
* Do actual deallocation of @lle.
* Called by LLE_FREE_LOCKED when number of references
* drops to zero.
*/
static void
in_lltable_destroy_lle(struct llentry *lle)
{
LLE_WUNLOCK(lle);
LLE_LOCK_DESTROY(lle);
kmem_intr_free(lle, sizeof(*lle));
}
static struct llentry *
in_lltable_new(struct in_addr addr4, u_int flags)
{
struct in_llentry *lle;
lle = kmem_intr_zalloc(sizeof(*lle), KM_NOSLEEP);
if (lle == NULL) /* NB: caller generates msg */
return NULL;
/*
* For IPv4 this will trigger "arpresolve" to generate
* an ARP request.
*/
lle->base.la_expire = time_uptime; /* mark expired */
lle->base.r_l3addr.addr4 = addr4;
lle->base.lle_refcnt = 1;
lle->base.lle_free = in_lltable_destroy_lle;
LLE_LOCK_INIT(&lle->base);
callout_init(&lle->base.la_timer, CALLOUT_MPSAFE);
return (&lle->base);
}
#define IN_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \
(((ntohl((d).s_addr) ^ (a)->sin_addr.s_addr) & (m)->sin_addr.s_addr)) == 0 )
static int
in_lltable_match_prefix(const struct sockaddr *prefix,
const struct sockaddr *mask, u_int flags, struct llentry *lle)
{
const struct sockaddr_in *pfx = (const struct sockaddr_in *)prefix;
const struct sockaddr_in *msk = (const struct sockaddr_in *)mask;
/*
* (flags & LLE_STATIC) means deleting all entries
* including static ARP entries.
*/
if (IN_ARE_MASKED_ADDR_EQUAL(lle->r_l3addr.addr4, pfx, msk) &&
((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)))
return (1);
return (0);
}
static void
in_lltable_free_entry(struct lltable *llt, struct llentry *lle)
{
struct ifnet *ifp __diagused;
size_t pkts_dropped;
LLE_WLOCK_ASSERT(lle);
KASSERT(llt != NULL);
/* Unlink entry from table if not already */
if ((lle->la_flags & LLE_LINKED) != 0) {
ifp = llt->llt_ifp;
IF_AFDATA_WLOCK_ASSERT(ifp);
lltable_unlink_entry(llt, lle);
}
/* cancel timer */
if (callout_halt(&lle->lle_timer, &lle->lle_lock))
LLE_REMREF(lle);
/* Drop hold queue */
pkts_dropped = llentry_free(lle);
arp_stat_add(ARP_STAT_DFRDROPPED, (uint64_t)pkts_dropped);
}
static int
in_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr)
{
struct rtentry *rt;
int error = EINVAL;
KASSERTMSG(l3addr->sa_family == AF_INET,
"sin_family %d", l3addr->sa_family);
rt = rtalloc1(l3addr, 0);
if (rt == NULL)
return error;
/*
* If the gateway for an existing host route matches the target L3
* address, which is a special route inserted by some implementation
* such as MANET, and the interface is of the correct type, then
* allow for ARP to proceed.
*/
if (rt->rt_flags & RTF_GATEWAY) {
if (!(rt->rt_flags & RTF_HOST) || !rt->rt_ifp ||
rt->rt_ifp->if_type != IFT_ETHER ||
#ifdef __FreeBSD__
(rt->rt_ifp->if_flags & (IFF_NOARP | IFF_STATICARP)) != 0 ||
#else
(rt->rt_ifp->if_flags & IFF_NOARP) != 0 ||
#endif
memcmp(rt->rt_gateway->sa_data, l3addr->sa_data,
sizeof(in_addr_t)) != 0) {
goto error;
}
}
/*
* Make sure that at least the destination address is covered
* by the route. This is for handling the case where 2 or more
* interfaces have the same prefix. An incoming packet arrives
* on one interface and the corresponding outgoing packet leaves
* another interface.
*/
if (!(rt->rt_flags & RTF_HOST) && rt->rt_ifp != ifp) {
const char *sa, *mask, *addr, *lim;
int len;
mask = (const char *)rt_mask(rt);
/*
* Just being extra cautious to avoid some custom
* code getting into trouble.
*/
if (mask == NULL)
goto error;
sa = (const char *)rt_getkey(rt);
addr = (const char *)l3addr;
len = ((const struct sockaddr_in *)l3addr)->sin_len;
lim = addr + len;
for ( ; addr < lim; sa++, mask++, addr++) {
if ((*sa ^ *addr) & *mask) {
#ifdef DIAGNOSTIC
log(LOG_INFO, "IPv4 address: \"%s\" is not on the network\n",
inet_ntoa(((const struct sockaddr_in *)l3addr)->sin_addr));
#endif
goto error;
}
}
}
error = 0;
error:
rtfree(rt);
return error;
}
static inline uint32_t
in_lltable_hash_dst(const struct in_addr dst, uint32_t hsize)
{
return (IN_LLTBL_HASH(dst.s_addr, hsize));
}
static uint32_t
in_lltable_hash(const struct llentry *lle, uint32_t hsize)
{
return (in_lltable_hash_dst(lle->r_l3addr.addr4, hsize));
}
static void
in_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa)
{
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)sa;
memset(sin, 0, sizeof(*sin));
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_addr = lle->r_l3addr.addr4;
}
static inline struct llentry *
in_lltable_find_dst(struct lltable *llt, struct in_addr dst)
{
struct llentry *lle;
struct llentries *lleh;
u_int hashidx;
hashidx = in_lltable_hash_dst(dst, llt->llt_hsize);
lleh = &llt->lle_head[hashidx];
LIST_FOREACH(lle, lleh, lle_next) {
if (lle->la_flags & LLE_DELETED)
continue;
if (lle->r_l3addr.addr4.s_addr == dst.s_addr)
break;
}
return (lle);
}
static int
in_lltable_delete(struct lltable *llt, u_int flags,
const struct sockaddr *l3addr)
{
const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
struct ifnet *ifp __diagused = llt->llt_ifp;
struct llentry *lle;
IF_AFDATA_WLOCK_ASSERT(ifp);
KASSERTMSG(l3addr->sa_family == AF_INET,
"sin_family %d", l3addr->sa_family);
lle = in_lltable_find_dst(llt, sin->sin_addr);
if (lle == NULL) {
#ifdef DIAGNOSTIC
log(LOG_INFO, "interface address is missing from cache = %p in delete\n", lle);
#endif
return (ENOENT);
}
LLE_WLOCK(lle);
lle->la_flags |= LLE_DELETED;
#ifdef DIAGNOSTIC
log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle);
#endif
if ((lle->la_flags & (LLE_STATIC | LLE_IFADDR)) == LLE_STATIC)
llentry_free(lle);
else
LLE_WUNLOCK(lle);
return (0);
}
static struct llentry *
in_lltable_create(struct lltable *llt, u_int flags, const struct sockaddr *l3addr)
{
const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
struct ifnet *ifp = llt->llt_ifp;
struct llentry *lle;
IF_AFDATA_WLOCK_ASSERT(ifp);
KASSERTMSG(l3addr->sa_family == AF_INET,
"sin_family %d", l3addr->sa_family);
lle = in_lltable_find_dst(llt, sin->sin_addr);
if (lle != NULL) {
LLE_WLOCK(lle);
return (lle);
}
/* no existing record, we need to create new one */
/*
* A route that covers the given address must have
* been installed 1st because we are doing a resolution,
* verify this.
*/
if (!(flags & LLE_IFADDR) &&
in_lltable_rtcheck(ifp, flags, l3addr) != 0)
return (NULL);
lle = in_lltable_new(sin->sin_addr, flags);
if (lle == NULL) {
log(LOG_INFO, "lla_lookup: new lle malloc failed\n");
return (NULL);
}
lle->la_flags = flags;
if ((flags & LLE_IFADDR) == LLE_IFADDR) {
memcpy(&lle->ll_addr, CLLADDR(ifp->if_sadl), ifp->if_addrlen);
lle->la_flags |= (LLE_VALID | LLE_STATIC);
}
lltable_link_entry(llt, lle);
LLE_WLOCK(lle);
return (lle);
}
/*
* Return NULL if not found or marked for deletion.
* If found return lle read locked.
*/
static struct llentry *
in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr)
{
const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
struct llentry *lle;
IF_AFDATA_LOCK_ASSERT(llt->llt_ifp);
KASSERTMSG(l3addr->sa_family == AF_INET,
"sin_family %d", l3addr->sa_family);
lle = in_lltable_find_dst(llt, sin->sin_addr);
if (lle == NULL)
return NULL;
if (flags & LLE_EXCLUSIVE)
LLE_WLOCK(lle);
else
LLE_RLOCK(lle);
return lle;
}
static int
in_lltable_dump_entry(struct lltable *llt, struct llentry *lle,
struct rt_walkarg *w)
{
struct sockaddr_in sin;
LLTABLE_LOCK_ASSERT();
/* skip deleted entries */
if (lle->la_flags & LLE_DELETED)
return 0;
sockaddr_in_init(&sin, &lle->r_l3addr.addr4, 0);
return lltable_dump_entry(llt, lle, w, sintosa(&sin));
}
#endif /* NARP > 0 */
static void
in_sysctl_init(struct sysctllog **clog)
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "inet",
SYSCTL_DESCR("PF_INET related settings"),
NULL, 0, NULL, 0,
CTL_NET, PF_INET, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "ip",
SYSCTL_DESCR("IPv4 related settings"),
NULL, 0, NULL, 0,
CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "subnetsarelocal",
SYSCTL_DESCR("Whether logical subnets are considered "
"local"),
NULL, 0, &subnetsarelocal, 0,
CTL_NET, PF_INET, IPPROTO_IP,
IPCTL_SUBNETSARELOCAL, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "hostzerobroadcast",
SYSCTL_DESCR("All zeroes address is broadcast address"),
NULL, 0, &hostzeroisbroadcast, 0,
CTL_NET, PF_INET, IPPROTO_IP,
IPCTL_HOSTZEROBROADCAST, CTL_EOL);
}
#if NARP > 0
static struct lltable *
in_lltattach(struct ifnet *ifp)
{
struct lltable *llt;
llt = lltable_allocate_htbl(IN_LLTBL_DEFAULT_HSIZE);
llt->llt_af = AF_INET;
llt->llt_ifp = ifp;
llt->llt_lookup = in_lltable_lookup;
llt->llt_create = in_lltable_create;
llt->llt_delete = in_lltable_delete;
llt->llt_dump_entry = in_lltable_dump_entry;
llt->llt_hash = in_lltable_hash;
llt->llt_fill_sa_entry = in_lltable_fill_sa_entry;
llt->llt_free_entry = in_lltable_free_entry;
llt->llt_match_prefix = in_lltable_match_prefix;
lltable_link(llt);
return (llt);
}
#endif /* NARP > 0 */
void *
in_domifattach(struct ifnet *ifp)
{
struct in_ifinfo *ii;
ii = kmem_zalloc(sizeof(struct in_ifinfo), KM_SLEEP);
KASSERT(ii != NULL);
#if NARP > 0
ii->ii_llt = in_lltattach(ifp);
#endif
#ifdef IPSELSRC
ii->ii_selsrc = in_selsrc_domifattach(ifp);
KASSERT(ii->ii_selsrc != NULL);
#endif
return ii;
}
void
in_domifdetach(struct ifnet *ifp, void *aux)
{
struct in_ifinfo *ii = aux;
#ifdef IPSELSRC
in_selsrc_domifdetach(ifp, ii->ii_selsrc);
#endif
#if NARP > 0
lltable_free(ii->ii_llt);
#endif
kmem_free(ii, sizeof(struct in_ifinfo));
}