09973b35ac
By this change, nexthop caches (IP-MAC address pair) are not stored in the routing table anymore. Instead nexthop caches are stored in each network interface; we already have lltable/llentry data structure for this purpose. This change also obsoletes the concept of cloning/cloned routes. Cloned routes no longer exist while cloning routes still exist with renamed to connected routes. Noticeable changes are: - Nexthop caches aren't listed in route show/netstat -r - sysctl(NET_RT_DUMP) doesn't return them - If RTF_LLDATA is specified, it returns nexthop caches - Several definitions of routing flags and messages are removed - RTF_CLONING, RTF_XRESOLVE, RTF_LLINFO, RTF_CLONED and RTM_RESOLVE - RTF_CONNECTED is added - It has the same value of RTF_CLONING for backward compatibility - route's -xresolve, -[no]cloned and -llinfo options are removed - -[no]cloning remains because it seems there are users - -[no]connected is introduced and recommended to be used instead of -[no]cloning - route show/netstat -r drops some flags - 'L' and 'c' are not seen anymore - 'C' now indicates a connected route - Gateway value of a route of an interface address is now not a L2 address but "link#N" like a connected (cloning) route - Proxy ARP: "arp -s ... pub" doesn't create a route You can know details of behavior changes by seeing diffs under tests/. Proposed on tech-net and tech-kern: http://mail-index.netbsd.org/tech-net/2016/03/11/msg005701.html
1967 lines
49 KiB
C
1967 lines
49 KiB
C
/* $NetBSD: in.c,v 1.165 2016/04/04 07:37:07 ozaki-r Exp $ */
|
|
|
|
/*
|
|
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1998 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Public Access Networks Corporation ("Panix"). It was developed under
|
|
* contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)in.c 8.4 (Berkeley) 1/9/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: in.c,v 1.165 2016/04/04 07:37:07 ozaki-r Exp $");
|
|
|
|
#include "arp.h"
|
|
|
|
#ifdef _KERNEL_OPT
|
|
#include "opt_inet.h"
|
|
#include "opt_inet_conf.h"
|
|
#include "opt_mrouting.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/kmem.h>
|
|
|
|
#include <sys/cprng.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
#include <net/pfil.h>
|
|
|
|
#include <net/if_arp.h>
|
|
#include <net/if_ether.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_llatbl.h>
|
|
#include <net/if_dl.h>
|
|
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/in_ifattach.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/in_selsrc.h>
|
|
#include <netinet/if_inarp.h>
|
|
#include <netinet/ip_mroute.h>
|
|
#include <netinet/igmp_var.h>
|
|
|
|
#ifdef IPSELSRC
|
|
#include <netinet/in_selsrc.h>
|
|
#endif
|
|
|
|
static u_int in_mask2len(struct in_addr *);
|
|
static void in_len2mask(struct in_addr *, u_int);
|
|
static int in_lifaddr_ioctl(struct socket *, u_long, void *,
|
|
struct ifnet *);
|
|
|
|
static int in_addprefix(struct in_ifaddr *, int);
|
|
static int in_scrubprefix(struct in_ifaddr *);
|
|
static void in_sysctl_init(struct sysctllog **);
|
|
|
|
#ifndef SUBNETSARELOCAL
|
|
#define SUBNETSARELOCAL 1
|
|
#endif
|
|
|
|
#ifndef HOSTZEROBROADCAST
|
|
#define HOSTZEROBROADCAST 1
|
|
#endif
|
|
|
|
/* Note: 61, 127, 251, 509, 1021, 2039 are good. */
|
|
#ifndef IN_MULTI_HASH_SIZE
|
|
#define IN_MULTI_HASH_SIZE 509
|
|
#endif
|
|
|
|
static int subnetsarelocal = SUBNETSARELOCAL;
|
|
static int hostzeroisbroadcast = HOSTZEROBROADCAST;
|
|
|
|
/*
|
|
* This list is used to keep track of in_multi chains which belong to
|
|
* deleted interface addresses. We use in_ifaddr so that a chain head
|
|
* won't be deallocated until all multicast address record are deleted.
|
|
*/
|
|
|
|
LIST_HEAD(in_multihashhead, in_multi); /* Type of the hash head */
|
|
|
|
static struct pool inmulti_pool;
|
|
static u_int in_multientries;
|
|
static struct in_multihashhead *in_multihashtbl;
|
|
static u_long in_multihash;
|
|
static krwlock_t in_multilock;
|
|
|
|
#define IN_MULTI_HASH(x, ifp) \
|
|
(in_multihashtbl[(u_long)((x) ^ (ifp->if_index)) % IN_MULTI_HASH_SIZE])
|
|
|
|
struct in_ifaddrhashhead * in_ifaddrhashtbl;
|
|
u_long in_ifaddrhash;
|
|
struct in_ifaddrhead in_ifaddrhead;
|
|
|
|
void
|
|
in_init(void)
|
|
{
|
|
pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl",
|
|
NULL, IPL_SOFTNET);
|
|
TAILQ_INIT(&in_ifaddrhead);
|
|
|
|
in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
|
|
&in_ifaddrhash);
|
|
in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
|
|
&in_multihash);
|
|
rw_init(&in_multilock);
|
|
|
|
in_sysctl_init(NULL);
|
|
}
|
|
|
|
/*
|
|
* Return 1 if an internet address is for a ``local'' host
|
|
* (one to which we have a connection). If subnetsarelocal
|
|
* is true, this includes other subnets of the local net.
|
|
* Otherwise, it includes only the directly-connected (sub)nets.
|
|
*/
|
|
int
|
|
in_localaddr(struct in_addr in)
|
|
{
|
|
struct in_ifaddr *ia;
|
|
|
|
if (subnetsarelocal) {
|
|
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list)
|
|
if ((in.s_addr & ia->ia_netmask) == ia->ia_net)
|
|
return (1);
|
|
} else {
|
|
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list)
|
|
if ((in.s_addr & ia->ia_subnetmask) == ia->ia_subnet)
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Determine whether an IP address is in a reserved set of addresses
|
|
* that may not be forwarded, or whether datagrams to that destination
|
|
* may be forwarded.
|
|
*/
|
|
int
|
|
in_canforward(struct in_addr in)
|
|
{
|
|
u_int32_t net;
|
|
|
|
if (IN_EXPERIMENTAL(in.s_addr) || IN_MULTICAST(in.s_addr))
|
|
return (0);
|
|
if (IN_CLASSA(in.s_addr)) {
|
|
net = in.s_addr & IN_CLASSA_NET;
|
|
if (net == 0 || net == htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT))
|
|
return (0);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Trim a mask in a sockaddr
|
|
*/
|
|
void
|
|
in_socktrim(struct sockaddr_in *ap)
|
|
{
|
|
char *cplim = (char *) &ap->sin_addr;
|
|
char *cp = (char *) (&ap->sin_addr + 1);
|
|
|
|
ap->sin_len = 0;
|
|
while (--cp >= cplim)
|
|
if (*cp) {
|
|
(ap)->sin_len = cp - (char *) (ap) + 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Routine to take an Internet address and convert into a
|
|
* "dotted quad" representation for printing.
|
|
*/
|
|
const char *
|
|
in_fmtaddr(struct in_addr addr)
|
|
{
|
|
static char buf[sizeof("123.456.789.123")];
|
|
|
|
addr.s_addr = ntohl(addr.s_addr);
|
|
|
|
snprintf(buf, sizeof(buf), "%d.%d.%d.%d",
|
|
(addr.s_addr >> 24) & 0xFF,
|
|
(addr.s_addr >> 16) & 0xFF,
|
|
(addr.s_addr >> 8) & 0xFF,
|
|
(addr.s_addr >> 0) & 0xFF);
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* Maintain the "in_maxmtu" variable, which is the largest
|
|
* mtu for non-local interfaces with AF_INET addresses assigned
|
|
* to them that are up.
|
|
*/
|
|
unsigned long in_maxmtu;
|
|
|
|
void
|
|
in_setmaxmtu(void)
|
|
{
|
|
struct in_ifaddr *ia;
|
|
struct ifnet *ifp;
|
|
unsigned long maxmtu = 0;
|
|
|
|
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) {
|
|
if ((ifp = ia->ia_ifp) == 0)
|
|
continue;
|
|
if ((ifp->if_flags & (IFF_UP|IFF_LOOPBACK)) != IFF_UP)
|
|
continue;
|
|
if (ifp->if_mtu > maxmtu)
|
|
maxmtu = ifp->if_mtu;
|
|
}
|
|
if (maxmtu)
|
|
in_maxmtu = maxmtu;
|
|
}
|
|
|
|
static u_int
|
|
in_mask2len(struct in_addr *mask)
|
|
{
|
|
u_int x, y;
|
|
u_char *p;
|
|
|
|
p = (u_char *)mask;
|
|
for (x = 0; x < sizeof(*mask); x++) {
|
|
if (p[x] != 0xff)
|
|
break;
|
|
}
|
|
y = 0;
|
|
if (x < sizeof(*mask)) {
|
|
for (y = 0; y < NBBY; y++) {
|
|
if ((p[x] & (0x80 >> y)) == 0)
|
|
break;
|
|
}
|
|
}
|
|
return x * NBBY + y;
|
|
}
|
|
|
|
static void
|
|
in_len2mask(struct in_addr *mask, u_int len)
|
|
{
|
|
u_int i;
|
|
u_char *p;
|
|
|
|
p = (u_char *)mask;
|
|
memset(mask, 0, sizeof(*mask));
|
|
for (i = 0; i < len / NBBY; i++)
|
|
p[i] = 0xff;
|
|
if (len % NBBY)
|
|
p[i] = (0xff00 >> (len % NBBY)) & 0xff;
|
|
}
|
|
|
|
/*
|
|
* Generic internet control operations (ioctl's).
|
|
* Ifp is 0 if not an interface-specific ioctl.
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
in_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
|
|
{
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
struct in_ifaddr *ia = NULL;
|
|
struct in_aliasreq *ifra = (struct in_aliasreq *)data;
|
|
struct sockaddr_in oldaddr;
|
|
int error, hostIsNew, maskIsNew;
|
|
int newifaddr = 0;
|
|
|
|
switch (cmd) {
|
|
case SIOCALIFADDR:
|
|
case SIOCDLIFADDR:
|
|
case SIOCGLIFADDR:
|
|
if (ifp == NULL)
|
|
return EINVAL;
|
|
return in_lifaddr_ioctl(so, cmd, data, ifp);
|
|
case SIOCGIFADDRPREF:
|
|
case SIOCSIFADDRPREF:
|
|
if (ifp == NULL)
|
|
return EINVAL;
|
|
return ifaddrpref_ioctl(so, cmd, data, ifp);
|
|
}
|
|
|
|
/*
|
|
* Find address for this interface, if it exists.
|
|
*/
|
|
if (ifp != NULL)
|
|
IFP_TO_IA(ifp, ia);
|
|
|
|
hostIsNew = 1; /* moved here to appease gcc */
|
|
switch (cmd) {
|
|
case SIOCAIFADDR:
|
|
case SIOCDIFADDR:
|
|
case SIOCGIFALIAS:
|
|
case SIOCGIFAFLAG_IN:
|
|
if (ifra->ifra_addr.sin_family == AF_INET)
|
|
LIST_FOREACH(ia,
|
|
&IN_IFADDR_HASH(ifra->ifra_addr.sin_addr.s_addr),
|
|
ia_hash) {
|
|
if (ia->ia_ifp == ifp &&
|
|
in_hosteq(ia->ia_addr.sin_addr,
|
|
ifra->ifra_addr.sin_addr))
|
|
break;
|
|
}
|
|
if ((cmd == SIOCDIFADDR ||
|
|
cmd == SIOCGIFALIAS ||
|
|
cmd == SIOCGIFAFLAG_IN) &&
|
|
ia == NULL)
|
|
return (EADDRNOTAVAIL);
|
|
|
|
if (cmd == SIOCDIFADDR &&
|
|
ifra->ifra_addr.sin_family == AF_UNSPEC) {
|
|
ifra->ifra_addr.sin_family = AF_INET;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case SIOCSIFADDR:
|
|
if (ia == NULL || ia->ia_addr.sin_family != AF_INET)
|
|
;
|
|
else if (ifra->ifra_addr.sin_len == 0) {
|
|
ifra->ifra_addr = ia->ia_addr;
|
|
hostIsNew = 0;
|
|
} else if (in_hosteq(ia->ia_addr.sin_addr,
|
|
ifra->ifra_addr.sin_addr))
|
|
hostIsNew = 0;
|
|
/* FALLTHROUGH */
|
|
case SIOCSIFDSTADDR:
|
|
if (ifra->ifra_addr.sin_family != AF_INET)
|
|
return (EAFNOSUPPORT);
|
|
/* FALLTHROUGH */
|
|
case SIOCSIFNETMASK:
|
|
if (ifp == NULL)
|
|
panic("in_control");
|
|
|
|
if (cmd == SIOCGIFALIAS || cmd == SIOCGIFAFLAG_IN)
|
|
break;
|
|
|
|
if (ia == NULL &&
|
|
(cmd == SIOCSIFNETMASK || cmd == SIOCSIFDSTADDR))
|
|
return (EADDRNOTAVAIL);
|
|
|
|
if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
|
|
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
|
|
NULL) != 0)
|
|
return (EPERM);
|
|
|
|
if (ia == NULL) {
|
|
ia = malloc(sizeof(*ia), M_IFADDR, M_WAITOK|M_ZERO);
|
|
if (ia == NULL)
|
|
return (ENOBUFS);
|
|
TAILQ_INSERT_TAIL(&in_ifaddrhead, ia, ia_list);
|
|
ifaref(&ia->ia_ifa);
|
|
ifa_insert(ifp, &ia->ia_ifa);
|
|
ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
|
|
ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
|
|
ia->ia_ifa.ifa_netmask = sintosa(&ia->ia_sockmask);
|
|
#ifdef IPSELSRC
|
|
ia->ia_ifa.ifa_getifa = in_getifa;
|
|
#else /* IPSELSRC */
|
|
ia->ia_ifa.ifa_getifa = NULL;
|
|
#endif /* IPSELSRC */
|
|
ia->ia_sockmask.sin_len = 8;
|
|
ia->ia_sockmask.sin_family = AF_INET;
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr);
|
|
ia->ia_broadaddr.sin_family = AF_INET;
|
|
}
|
|
ia->ia_ifp = ifp;
|
|
ia->ia_idsalt = cprng_fast32() % 65535;
|
|
LIST_INIT(&ia->ia_multiaddrs);
|
|
newifaddr = 1;
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFBRDADDR:
|
|
if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
|
|
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
|
|
NULL) != 0)
|
|
return (EPERM);
|
|
/* FALLTHROUGH */
|
|
|
|
case SIOCGIFADDR:
|
|
case SIOCGIFNETMASK:
|
|
case SIOCGIFDSTADDR:
|
|
case SIOCGIFBRDADDR:
|
|
if (ia == NULL)
|
|
return (EADDRNOTAVAIL);
|
|
break;
|
|
}
|
|
error = 0;
|
|
switch (cmd) {
|
|
|
|
case SIOCGIFADDR:
|
|
ifreq_setaddr(cmd, ifr, sintocsa(&ia->ia_addr));
|
|
break;
|
|
|
|
case SIOCGIFBRDADDR:
|
|
if ((ifp->if_flags & IFF_BROADCAST) == 0)
|
|
return (EINVAL);
|
|
ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_broadaddr));
|
|
break;
|
|
|
|
case SIOCGIFDSTADDR:
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
|
|
return (EINVAL);
|
|
ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_dstaddr));
|
|
break;
|
|
|
|
case SIOCGIFNETMASK:
|
|
/*
|
|
* We keep the number of trailing zero bytes the sin_len field
|
|
* of ia_sockmask, so we fix this before we pass it back to
|
|
* userland.
|
|
*/
|
|
oldaddr = ia->ia_sockmask;
|
|
oldaddr.sin_len = sizeof(struct sockaddr_in);
|
|
ifreq_setaddr(cmd, ifr, (const void *)&oldaddr);
|
|
break;
|
|
|
|
case SIOCSIFDSTADDR:
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
|
|
return (EINVAL);
|
|
oldaddr = ia->ia_dstaddr;
|
|
ia->ia_dstaddr = *satocsin(ifreq_getdstaddr(cmd, ifr));
|
|
if ((error = if_addr_init(ifp, &ia->ia_ifa, false)) != 0) {
|
|
ia->ia_dstaddr = oldaddr;
|
|
return error;
|
|
}
|
|
if (ia->ia_flags & IFA_ROUTE) {
|
|
ia->ia_ifa.ifa_dstaddr = sintosa(&oldaddr);
|
|
rtinit(&ia->ia_ifa, RTM_DELETE, RTF_HOST);
|
|
ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
|
|
rtinit(&ia->ia_ifa, RTM_ADD, RTF_HOST|RTF_UP);
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFBRDADDR:
|
|
if ((ifp->if_flags & IFF_BROADCAST) == 0)
|
|
return EINVAL;
|
|
ia->ia_broadaddr = *satocsin(ifreq_getbroadaddr(cmd, ifr));
|
|
break;
|
|
|
|
case SIOCSIFADDR:
|
|
error = in_ifinit(ifp, ia, satocsin(ifreq_getaddr(cmd, ifr)),
|
|
1, hostIsNew);
|
|
if (error == 0) {
|
|
(void)pfil_run_hooks(if_pfil,
|
|
(struct mbuf **)SIOCSIFADDR, ifp, PFIL_IFADDR);
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFNETMASK:
|
|
in_ifscrub(ifp, ia);
|
|
ia->ia_sockmask = *satocsin(ifreq_getaddr(cmd, ifr));
|
|
ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
|
|
error = in_ifinit(ifp, ia, NULL, 0, 0);
|
|
break;
|
|
|
|
case SIOCAIFADDR:
|
|
maskIsNew = 0;
|
|
if (ifra->ifra_mask.sin_len) {
|
|
/* Only scrub if we control the prefix route,
|
|
* otherwise userland gets a bogus message */
|
|
if ((ia->ia_flags & IFA_ROUTE))
|
|
in_ifscrub(ifp, ia);
|
|
ia->ia_sockmask = ifra->ifra_mask;
|
|
ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
|
|
maskIsNew = 1;
|
|
}
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) &&
|
|
(ifra->ifra_dstaddr.sin_family == AF_INET)) {
|
|
/* Only scrub if we control the prefix route,
|
|
* otherwise userland gets a bogus message */
|
|
if ((ia->ia_flags & IFA_ROUTE))
|
|
in_ifscrub(ifp, ia);
|
|
ia->ia_dstaddr = ifra->ifra_dstaddr;
|
|
maskIsNew = 1; /* We lie; but the effect's the same */
|
|
}
|
|
if (ifra->ifra_addr.sin_family == AF_INET &&
|
|
(hostIsNew || maskIsNew)) {
|
|
error = in_ifinit(ifp, ia, &ifra->ifra_addr, 0,
|
|
hostIsNew);
|
|
}
|
|
if ((ifp->if_flags & IFF_BROADCAST) &&
|
|
(ifra->ifra_broadaddr.sin_family == AF_INET))
|
|
ia->ia_broadaddr = ifra->ifra_broadaddr;
|
|
if (error == 0)
|
|
(void)pfil_run_hooks(if_pfil,
|
|
(struct mbuf **)SIOCAIFADDR, ifp, PFIL_IFADDR);
|
|
break;
|
|
|
|
case SIOCGIFALIAS:
|
|
ifra->ifra_mask = ia->ia_sockmask;
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) &&
|
|
(ia->ia_dstaddr.sin_family == AF_INET))
|
|
ifra->ifra_dstaddr = ia->ia_dstaddr;
|
|
else if ((ifp->if_flags & IFF_BROADCAST) &&
|
|
(ia->ia_broadaddr.sin_family == AF_INET))
|
|
ifra->ifra_broadaddr = ia->ia_broadaddr;
|
|
else
|
|
memset(&ifra->ifra_broadaddr, 0,
|
|
sizeof(ifra->ifra_broadaddr));
|
|
break;
|
|
|
|
case SIOCGIFAFLAG_IN:
|
|
ifr->ifr_addrflags = ia->ia4_flags;
|
|
break;
|
|
|
|
case SIOCDIFADDR:
|
|
in_purgeaddr(&ia->ia_ifa);
|
|
(void)pfil_run_hooks(if_pfil, (struct mbuf **)SIOCDIFADDR,
|
|
ifp, PFIL_IFADDR);
|
|
break;
|
|
|
|
#ifdef MROUTING
|
|
case SIOCGETVIFCNT:
|
|
case SIOCGETSGCNT:
|
|
error = mrt_ioctl(so, cmd, data);
|
|
break;
|
|
#endif /* MROUTING */
|
|
|
|
default:
|
|
return ENOTTY;
|
|
}
|
|
|
|
if (error != 0 && newifaddr) {
|
|
KASSERT(ia != NULL);
|
|
in_purgeaddr(&ia->ia_ifa);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Add ownaddr as loopback rtentry. */
|
|
static void
|
|
in_ifaddlocal(struct ifaddr *ifa)
|
|
{
|
|
struct in_ifaddr *ia;
|
|
|
|
ia = (struct in_ifaddr *)ifa;
|
|
if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY ||
|
|
(ia->ia_ifp->if_flags & IFF_POINTOPOINT &&
|
|
in_hosteq(ia->ia_dstaddr.sin_addr, ia->ia_addr.sin_addr)))
|
|
{
|
|
rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
|
|
return;
|
|
}
|
|
|
|
rt_ifa_addlocal(ifa);
|
|
}
|
|
|
|
/* Rempve loopback entry of ownaddr */
|
|
static void
|
|
in_ifremlocal(struct ifaddr *ifa)
|
|
{
|
|
struct in_ifaddr *ia, *p;
|
|
struct ifaddr *alt_ifa = NULL;
|
|
int ia_count = 0;
|
|
|
|
ia = (struct in_ifaddr *)ifa;
|
|
/* Delete the entry if exactly one ifaddr matches the
|
|
* address, ifa->ifa_addr. */
|
|
TAILQ_FOREACH(p, &in_ifaddrhead, ia_list) {
|
|
if (!in_hosteq(p->ia_addr.sin_addr, ia->ia_addr.sin_addr))
|
|
continue;
|
|
if (p->ia_ifp != ia->ia_ifp)
|
|
alt_ifa = &p->ia_ifa;
|
|
if (++ia_count > 1 && alt_ifa != NULL)
|
|
break;
|
|
}
|
|
|
|
if (ia_count == 0)
|
|
return;
|
|
|
|
rt_ifa_remlocal(ifa, ia_count == 1 ? NULL : alt_ifa);
|
|
}
|
|
|
|
void
|
|
in_purgeaddr(struct ifaddr *ifa)
|
|
{
|
|
struct ifnet *ifp = ifa->ifa_ifp;
|
|
struct in_ifaddr *ia = (void *) ifa;
|
|
|
|
/* stop DAD processing */
|
|
if (ia->ia_dad_stop != NULL)
|
|
ia->ia_dad_stop(ifa);
|
|
|
|
in_ifscrub(ifp, ia);
|
|
in_ifremlocal(ifa);
|
|
LIST_REMOVE(ia, ia_hash);
|
|
ifa_remove(ifp, &ia->ia_ifa);
|
|
TAILQ_REMOVE(&in_ifaddrhead, ia, ia_list);
|
|
if (ia->ia_allhosts != NULL)
|
|
in_delmulti(ia->ia_allhosts);
|
|
ifafree(&ia->ia_ifa);
|
|
in_setmaxmtu();
|
|
}
|
|
|
|
void
|
|
in_purgeif(struct ifnet *ifp) /* MUST be called at splsoftnet() */
|
|
{
|
|
if_purgeaddrs(ifp, AF_INET, in_purgeaddr);
|
|
igmp_purgeif(ifp); /* manipulates pools */
|
|
#ifdef MROUTING
|
|
ip_mrouter_detach(ifp);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* SIOC[GAD]LIFADDR.
|
|
* SIOCGLIFADDR: get first address. (???)
|
|
* SIOCGLIFADDR with IFLR_PREFIX:
|
|
* get first address that matches the specified prefix.
|
|
* SIOCALIFADDR: add the specified address.
|
|
* SIOCALIFADDR with IFLR_PREFIX:
|
|
* EINVAL since we can't deduce hostid part of the address.
|
|
* SIOCDLIFADDR: delete the specified address.
|
|
* SIOCDLIFADDR with IFLR_PREFIX:
|
|
* delete the first address that matches the specified prefix.
|
|
* return values:
|
|
* EINVAL on invalid parameters
|
|
* EADDRNOTAVAIL on prefix match failed/specified address not found
|
|
* other values may be returned from in_ioctl()
|
|
*/
|
|
static int
|
|
in_lifaddr_ioctl(struct socket *so, u_long cmd, void *data,
|
|
struct ifnet *ifp)
|
|
{
|
|
struct if_laddrreq *iflr = (struct if_laddrreq *)data;
|
|
struct ifaddr *ifa;
|
|
struct sockaddr *sa;
|
|
|
|
/* sanity checks */
|
|
if (data == NULL || ifp == NULL) {
|
|
panic("invalid argument to in_lifaddr_ioctl");
|
|
/*NOTRECHED*/
|
|
}
|
|
|
|
switch (cmd) {
|
|
case SIOCGLIFADDR:
|
|
/* address must be specified on GET with IFLR_PREFIX */
|
|
if ((iflr->flags & IFLR_PREFIX) == 0)
|
|
break;
|
|
/*FALLTHROUGH*/
|
|
case SIOCALIFADDR:
|
|
case SIOCDLIFADDR:
|
|
/* address must be specified on ADD and DELETE */
|
|
sa = (struct sockaddr *)&iflr->addr;
|
|
if (sa->sa_family != AF_INET)
|
|
return EINVAL;
|
|
if (sa->sa_len != sizeof(struct sockaddr_in))
|
|
return EINVAL;
|
|
/* XXX need improvement */
|
|
sa = (struct sockaddr *)&iflr->dstaddr;
|
|
if (sa->sa_family != AF_UNSPEC && sa->sa_family != AF_INET)
|
|
return EINVAL;
|
|
if (sa->sa_len != 0 && sa->sa_len != sizeof(struct sockaddr_in))
|
|
return EINVAL;
|
|
break;
|
|
default: /*shouldn't happen*/
|
|
#if 0
|
|
panic("invalid cmd to in_lifaddr_ioctl");
|
|
/*NOTREACHED*/
|
|
#else
|
|
return EOPNOTSUPP;
|
|
#endif
|
|
}
|
|
if (sizeof(struct in_addr) * NBBY < iflr->prefixlen)
|
|
return EINVAL;
|
|
|
|
switch (cmd) {
|
|
case SIOCALIFADDR:
|
|
{
|
|
struct in_aliasreq ifra;
|
|
|
|
if (iflr->flags & IFLR_PREFIX)
|
|
return EINVAL;
|
|
|
|
/* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR). */
|
|
memset(&ifra, 0, sizeof(ifra));
|
|
memcpy(ifra.ifra_name, iflr->iflr_name,
|
|
sizeof(ifra.ifra_name));
|
|
|
|
memcpy(&ifra.ifra_addr, &iflr->addr,
|
|
((struct sockaddr *)&iflr->addr)->sa_len);
|
|
|
|
if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/
|
|
memcpy(&ifra.ifra_dstaddr, &iflr->dstaddr,
|
|
((struct sockaddr *)&iflr->dstaddr)->sa_len);
|
|
}
|
|
|
|
ifra.ifra_mask.sin_family = AF_INET;
|
|
ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in);
|
|
in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen);
|
|
|
|
return in_control(so, SIOCAIFADDR, &ifra, ifp);
|
|
}
|
|
case SIOCGLIFADDR:
|
|
case SIOCDLIFADDR:
|
|
{
|
|
struct in_ifaddr *ia;
|
|
struct in_addr mask, candidate, match;
|
|
struct sockaddr_in *sin;
|
|
int cmp;
|
|
|
|
memset(&mask, 0, sizeof(mask));
|
|
memset(&match, 0, sizeof(match)); /* XXX gcc */
|
|
if (iflr->flags & IFLR_PREFIX) {
|
|
/* lookup a prefix rather than address. */
|
|
in_len2mask(&mask, iflr->prefixlen);
|
|
|
|
sin = (struct sockaddr_in *)&iflr->addr;
|
|
match.s_addr = sin->sin_addr.s_addr;
|
|
match.s_addr &= mask.s_addr;
|
|
|
|
/* if you set extra bits, that's wrong */
|
|
if (match.s_addr != sin->sin_addr.s_addr)
|
|
return EINVAL;
|
|
|
|
cmp = 1;
|
|
} else {
|
|
if (cmd == SIOCGLIFADDR) {
|
|
/* on getting an address, take the 1st match */
|
|
cmp = 0; /*XXX*/
|
|
} else {
|
|
/* on deleting an address, do exact match */
|
|
in_len2mask(&mask, 32);
|
|
sin = (struct sockaddr_in *)&iflr->addr;
|
|
match.s_addr = sin->sin_addr.s_addr;
|
|
|
|
cmp = 1;
|
|
}
|
|
}
|
|
|
|
IFADDR_FOREACH(ifa, ifp) {
|
|
if (ifa->ifa_addr->sa_family != AF_INET)
|
|
continue;
|
|
if (cmp == 0)
|
|
break;
|
|
candidate.s_addr = ((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr;
|
|
candidate.s_addr &= mask.s_addr;
|
|
if (candidate.s_addr == match.s_addr)
|
|
break;
|
|
}
|
|
if (ifa == NULL)
|
|
return EADDRNOTAVAIL;
|
|
ia = (struct in_ifaddr *)ifa;
|
|
|
|
if (cmd == SIOCGLIFADDR) {
|
|
/* fill in the if_laddrreq structure */
|
|
memcpy(&iflr->addr, &ia->ia_addr, ia->ia_addr.sin_len);
|
|
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
|
|
memcpy(&iflr->dstaddr, &ia->ia_dstaddr,
|
|
ia->ia_dstaddr.sin_len);
|
|
} else
|
|
memset(&iflr->dstaddr, 0, sizeof(iflr->dstaddr));
|
|
|
|
iflr->prefixlen =
|
|
in_mask2len(&ia->ia_sockmask.sin_addr);
|
|
|
|
iflr->flags = 0; /*XXX*/
|
|
|
|
return 0;
|
|
} else {
|
|
struct in_aliasreq ifra;
|
|
|
|
/* fill in_aliasreq and do ioctl(SIOCDIFADDR) */
|
|
memset(&ifra, 0, sizeof(ifra));
|
|
memcpy(ifra.ifra_name, iflr->iflr_name,
|
|
sizeof(ifra.ifra_name));
|
|
|
|
memcpy(&ifra.ifra_addr, &ia->ia_addr,
|
|
ia->ia_addr.sin_len);
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
|
|
memcpy(&ifra.ifra_dstaddr, &ia->ia_dstaddr,
|
|
ia->ia_dstaddr.sin_len);
|
|
}
|
|
memcpy(&ifra.ifra_dstaddr, &ia->ia_sockmask,
|
|
ia->ia_sockmask.sin_len);
|
|
|
|
return in_control(so, SIOCDIFADDR, &ifra, ifp);
|
|
}
|
|
}
|
|
}
|
|
|
|
return EOPNOTSUPP; /*just for safety*/
|
|
}
|
|
|
|
/*
|
|
* Delete any existing route for an interface.
|
|
*/
|
|
void
|
|
in_ifscrub(struct ifnet *ifp, struct in_ifaddr *ia)
|
|
{
|
|
|
|
in_scrubprefix(ia);
|
|
}
|
|
|
|
/*
|
|
* Initialize an interface's internet address
|
|
* and routing table entry.
|
|
*/
|
|
int
|
|
in_ifinit(struct ifnet *ifp, struct in_ifaddr *ia,
|
|
const struct sockaddr_in *sin, int scrub, int hostIsNew)
|
|
{
|
|
u_int32_t i;
|
|
struct sockaddr_in oldaddr;
|
|
int s = splnet(), flags = RTF_UP, error;
|
|
|
|
if (sin == NULL)
|
|
sin = &ia->ia_addr;
|
|
|
|
/*
|
|
* Set up new addresses.
|
|
*/
|
|
oldaddr = ia->ia_addr;
|
|
if (ia->ia_addr.sin_family == AF_INET)
|
|
LIST_REMOVE(ia, ia_hash);
|
|
ia->ia_addr = *sin;
|
|
LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia, ia_hash);
|
|
|
|
/* Set IN_IFF flags early for if_addr_init() */
|
|
if (hostIsNew && if_do_dad(ifp) && !in_nullhost(ia->ia_addr.sin_addr)) {
|
|
if (ifp->if_link_state == LINK_STATE_DOWN)
|
|
ia->ia4_flags |= IN_IFF_DETACHED;
|
|
else
|
|
/* State the intent to try DAD if possible */
|
|
ia->ia4_flags |= IN_IFF_TRYTENTATIVE;
|
|
}
|
|
|
|
/*
|
|
* Give the interface a chance to initialize
|
|
* if this is its first address,
|
|
* and to validate the address if necessary.
|
|
*/
|
|
if ((error = if_addr_init(ifp, &ia->ia_ifa, true)) != 0)
|
|
goto bad;
|
|
/* Now clear the try tentative flag, it's job is done. */
|
|
ia->ia4_flags &= ~IN_IFF_TRYTENTATIVE;
|
|
splx(s);
|
|
|
|
if (scrub) {
|
|
ia->ia_ifa.ifa_addr = sintosa(&oldaddr);
|
|
in_ifscrub(ifp, ia);
|
|
ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
|
|
}
|
|
|
|
/* Add the local route to the address */
|
|
in_ifaddlocal(&ia->ia_ifa);
|
|
|
|
i = ia->ia_addr.sin_addr.s_addr;
|
|
if (IN_CLASSA(i))
|
|
ia->ia_netmask = IN_CLASSA_NET;
|
|
else if (IN_CLASSB(i))
|
|
ia->ia_netmask = IN_CLASSB_NET;
|
|
else
|
|
ia->ia_netmask = IN_CLASSC_NET;
|
|
/*
|
|
* The subnet mask usually includes at least the standard network part,
|
|
* but may may be smaller in the case of supernetting.
|
|
* If it is set, we believe it.
|
|
*/
|
|
if (ia->ia_subnetmask == 0) {
|
|
ia->ia_subnetmask = ia->ia_netmask;
|
|
ia->ia_sockmask.sin_addr.s_addr = ia->ia_subnetmask;
|
|
} else
|
|
ia->ia_netmask &= ia->ia_subnetmask;
|
|
|
|
ia->ia_net = i & ia->ia_netmask;
|
|
ia->ia_subnet = i & ia->ia_subnetmask;
|
|
in_socktrim(&ia->ia_sockmask);
|
|
/* re-calculate the "in_maxmtu" value */
|
|
in_setmaxmtu();
|
|
/*
|
|
* Add route for the network.
|
|
*/
|
|
ia->ia_ifa.ifa_metric = ifp->if_metric;
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
ia->ia_broadaddr.sin_addr.s_addr =
|
|
ia->ia_subnet | ~ia->ia_subnetmask;
|
|
ia->ia_netbroadcast.s_addr =
|
|
ia->ia_net | ~ia->ia_netmask;
|
|
} else if (ifp->if_flags & IFF_LOOPBACK) {
|
|
ia->ia_dstaddr = ia->ia_addr;
|
|
flags |= RTF_HOST;
|
|
} else if (ifp->if_flags & IFF_POINTOPOINT) {
|
|
if (ia->ia_dstaddr.sin_family != AF_INET)
|
|
return (0);
|
|
flags |= RTF_HOST;
|
|
}
|
|
error = in_addprefix(ia, flags);
|
|
/*
|
|
* If the interface supports multicast, join the "all hosts"
|
|
* multicast group on that interface.
|
|
*/
|
|
if ((ifp->if_flags & IFF_MULTICAST) != 0 && ia->ia_allhosts == NULL) {
|
|
struct in_addr addr;
|
|
|
|
addr.s_addr = INADDR_ALLHOSTS_GROUP;
|
|
ia->ia_allhosts = in_addmulti(&addr, ifp);
|
|
}
|
|
|
|
if (hostIsNew && if_do_dad(ifp) &&
|
|
!in_nullhost(ia->ia_addr.sin_addr) &&
|
|
ia->ia4_flags & IN_IFF_TENTATIVE)
|
|
ia->ia_dad_start((struct ifaddr *)ia);
|
|
|
|
return (error);
|
|
bad:
|
|
splx(s);
|
|
LIST_REMOVE(ia, ia_hash);
|
|
ia->ia_addr = oldaddr;
|
|
if (ia->ia_addr.sin_family == AF_INET)
|
|
LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr),
|
|
ia, ia_hash);
|
|
return (error);
|
|
}
|
|
|
|
#define rtinitflags(x) \
|
|
((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \
|
|
? RTF_HOST : 0)
|
|
|
|
/*
|
|
* add a route to prefix ("connected route" in cisco terminology).
|
|
* does nothing if there's some interface address with the same prefix already.
|
|
*/
|
|
static int
|
|
in_addprefix(struct in_ifaddr *target, int flags)
|
|
{
|
|
struct in_ifaddr *ia;
|
|
struct in_addr prefix, mask, p;
|
|
int error;
|
|
|
|
if ((flags & RTF_HOST) != 0)
|
|
prefix = target->ia_dstaddr.sin_addr;
|
|
else {
|
|
prefix = target->ia_addr.sin_addr;
|
|
mask = target->ia_sockmask.sin_addr;
|
|
prefix.s_addr &= mask.s_addr;
|
|
}
|
|
|
|
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) {
|
|
if (rtinitflags(ia))
|
|
p = ia->ia_dstaddr.sin_addr;
|
|
else {
|
|
p = ia->ia_addr.sin_addr;
|
|
p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
|
|
}
|
|
|
|
if (prefix.s_addr != p.s_addr)
|
|
continue;
|
|
|
|
/*
|
|
* if we got a matching prefix route inserted by other
|
|
* interface address, we don't need to bother
|
|
*
|
|
* XXX RADIX_MPATH implications here? -dyoung
|
|
*/
|
|
if (ia->ia_flags & IFA_ROUTE)
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* noone seem to have prefix route. insert it.
|
|
*/
|
|
error = rtinit(&target->ia_ifa, RTM_ADD, flags);
|
|
if (error == 0)
|
|
target->ia_flags |= IFA_ROUTE;
|
|
else if (error == EEXIST) {
|
|
/*
|
|
* the fact the route already exists is not an error.
|
|
*/
|
|
error = 0;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* remove a route to prefix ("connected route" in cisco terminology).
|
|
* re-installs the route by using another interface address, if there's one
|
|
* with the same prefix (otherwise we lose the route mistakenly).
|
|
*/
|
|
static int
|
|
in_scrubprefix(struct in_ifaddr *target)
|
|
{
|
|
struct in_ifaddr *ia;
|
|
struct in_addr prefix, mask, p;
|
|
int error;
|
|
|
|
/* If we don't have IFA_ROUTE we should still inform userland */
|
|
if ((target->ia_flags & IFA_ROUTE) == 0)
|
|
return 0;
|
|
|
|
if (rtinitflags(target))
|
|
prefix = target->ia_dstaddr.sin_addr;
|
|
else {
|
|
prefix = target->ia_addr.sin_addr;
|
|
mask = target->ia_sockmask.sin_addr;
|
|
prefix.s_addr &= mask.s_addr;
|
|
}
|
|
|
|
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) {
|
|
if (rtinitflags(ia))
|
|
p = ia->ia_dstaddr.sin_addr;
|
|
else {
|
|
p = ia->ia_addr.sin_addr;
|
|
p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
|
|
}
|
|
|
|
if (prefix.s_addr != p.s_addr)
|
|
continue;
|
|
|
|
/*
|
|
* if we got a matching prefix route, move IFA_ROUTE to him
|
|
*/
|
|
if ((ia->ia_flags & IFA_ROUTE) == 0) {
|
|
rtinit(&target->ia_ifa, RTM_DELETE,
|
|
rtinitflags(target));
|
|
target->ia_flags &= ~IFA_ROUTE;
|
|
|
|
error = rtinit(&ia->ia_ifa, RTM_ADD,
|
|
rtinitflags(ia) | RTF_UP);
|
|
if (error == 0)
|
|
ia->ia_flags |= IFA_ROUTE;
|
|
return error;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* noone seem to have prefix route. remove it.
|
|
*/
|
|
rtinit(&target->ia_ifa, RTM_DELETE, rtinitflags(target));
|
|
target->ia_flags &= ~IFA_ROUTE;
|
|
return 0;
|
|
}
|
|
|
|
#undef rtinitflags
|
|
|
|
/*
|
|
* Return 1 if the address might be a local broadcast address.
|
|
*/
|
|
int
|
|
in_broadcast(struct in_addr in, struct ifnet *ifp)
|
|
{
|
|
struct ifaddr *ifa;
|
|
|
|
if (in.s_addr == INADDR_BROADCAST ||
|
|
in_nullhost(in))
|
|
return 1;
|
|
if ((ifp->if_flags & IFF_BROADCAST) == 0)
|
|
return 0;
|
|
/*
|
|
* Look through the list of addresses for a match
|
|
* with a broadcast address.
|
|
*/
|
|
#define ia (ifatoia(ifa))
|
|
IFADDR_FOREACH(ifa, ifp)
|
|
if (ifa->ifa_addr->sa_family == AF_INET &&
|
|
!in_hosteq(in, ia->ia_addr.sin_addr) &&
|
|
(in_hosteq(in, ia->ia_broadaddr.sin_addr) ||
|
|
in_hosteq(in, ia->ia_netbroadcast) ||
|
|
(hostzeroisbroadcast &&
|
|
/*
|
|
* Check for old-style (host 0) broadcast.
|
|
*/
|
|
(in.s_addr == ia->ia_subnet ||
|
|
in.s_addr == ia->ia_net))))
|
|
return 1;
|
|
return (0);
|
|
#undef ia
|
|
}
|
|
|
|
/*
|
|
* perform DAD when interface becomes IFF_UP.
|
|
*/
|
|
void
|
|
in_if_link_up(struct ifnet *ifp)
|
|
{
|
|
struct ifaddr *ifa;
|
|
struct in_ifaddr *ia;
|
|
|
|
/* Ensure it's sane to run DAD */
|
|
if (ifp->if_link_state == LINK_STATE_DOWN)
|
|
return;
|
|
if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING))
|
|
return;
|
|
|
|
IFADDR_FOREACH(ifa, ifp) {
|
|
if (ifa->ifa_addr->sa_family != AF_INET)
|
|
continue;
|
|
ia = (struct in_ifaddr *)ifa;
|
|
|
|
/* If detached then mark as tentative */
|
|
if (ia->ia4_flags & IN_IFF_DETACHED) {
|
|
ia->ia4_flags &= ~IN_IFF_DETACHED;
|
|
if (if_do_dad(ifp) && ia->ia_dad_start != NULL)
|
|
ia->ia4_flags |= IN_IFF_TENTATIVE;
|
|
else if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0)
|
|
rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
|
|
}
|
|
|
|
if (ia->ia4_flags & IN_IFF_TENTATIVE) {
|
|
/* Clear the duplicated flag as we're starting DAD. */
|
|
ia->ia4_flags &= ~IN_IFF_DUPLICATED;
|
|
ia->ia_dad_start(ifa);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
in_if_up(struct ifnet *ifp)
|
|
{
|
|
|
|
/* interface may not support link state, so bring it up also */
|
|
in_if_link_up(ifp);
|
|
}
|
|
|
|
/*
|
|
* Mark all addresses as detached.
|
|
*/
|
|
void
|
|
in_if_link_down(struct ifnet *ifp)
|
|
{
|
|
struct ifaddr *ifa;
|
|
struct in_ifaddr *ia;
|
|
|
|
IFADDR_FOREACH(ifa, ifp) {
|
|
if (ifa->ifa_addr->sa_family != AF_INET)
|
|
continue;
|
|
ia = (struct in_ifaddr *)ifa;
|
|
|
|
/* Stop DAD processing */
|
|
if (ia->ia_dad_stop != NULL)
|
|
ia->ia_dad_stop(ifa);
|
|
|
|
/*
|
|
* Mark the address as detached.
|
|
*/
|
|
if (!(ia->ia4_flags & IN_IFF_DETACHED)) {
|
|
ia->ia4_flags |= IN_IFF_DETACHED;
|
|
ia->ia4_flags &=
|
|
~(IN_IFF_TENTATIVE | IN_IFF_DUPLICATED);
|
|
rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
in_if_down(struct ifnet *ifp)
|
|
{
|
|
|
|
in_if_link_down(ifp);
|
|
}
|
|
|
|
void
|
|
in_if_link_state_change(struct ifnet *ifp, int link_state)
|
|
{
|
|
|
|
switch (link_state) {
|
|
case LINK_STATE_DOWN:
|
|
in_if_link_down(ifp);
|
|
break;
|
|
case LINK_STATE_UP:
|
|
in_if_link_up(ifp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* in_lookup_multi: look up the in_multi record for a given IP
|
|
* multicast address on a given interface. If no matching record is
|
|
* found, return NULL.
|
|
*/
|
|
struct in_multi *
|
|
in_lookup_multi(struct in_addr addr, ifnet_t *ifp)
|
|
{
|
|
struct in_multi *inm;
|
|
|
|
KASSERT(rw_lock_held(&in_multilock));
|
|
|
|
LIST_FOREACH(inm, &IN_MULTI_HASH(addr.s_addr, ifp), inm_list) {
|
|
if (in_hosteq(inm->inm_addr, addr) && inm->inm_ifp == ifp)
|
|
break;
|
|
}
|
|
return inm;
|
|
}
|
|
|
|
/*
|
|
* in_multi_group: check whether the address belongs to an IP multicast
|
|
* group we are joined on this interface. Returns true or false.
|
|
*/
|
|
bool
|
|
in_multi_group(struct in_addr addr, ifnet_t *ifp, int flags)
|
|
{
|
|
bool ingroup;
|
|
|
|
if (__predict_true(flags & IP_IGMP_MCAST) == 0) {
|
|
rw_enter(&in_multilock, RW_READER);
|
|
ingroup = in_lookup_multi(addr, ifp) != NULL;
|
|
rw_exit(&in_multilock);
|
|
} else {
|
|
/* XXX Recursive call from ip_output(). */
|
|
KASSERT(rw_lock_held(&in_multilock));
|
|
ingroup = in_lookup_multi(addr, ifp) != NULL;
|
|
}
|
|
return ingroup;
|
|
}
|
|
|
|
/*
|
|
* Add an address to the list of IP multicast addresses for a given interface.
|
|
*/
|
|
struct in_multi *
|
|
in_addmulti(struct in_addr *ap, ifnet_t *ifp)
|
|
{
|
|
struct sockaddr_in sin;
|
|
struct in_multi *inm;
|
|
|
|
/*
|
|
* See if address already in list.
|
|
*/
|
|
rw_enter(&in_multilock, RW_WRITER);
|
|
inm = in_lookup_multi(*ap, ifp);
|
|
if (inm != NULL) {
|
|
/*
|
|
* Found it; just increment the reference count.
|
|
*/
|
|
inm->inm_refcount++;
|
|
rw_exit(&in_multilock);
|
|
return inm;
|
|
}
|
|
|
|
/*
|
|
* New address; allocate a new multicast record.
|
|
*/
|
|
inm = pool_get(&inmulti_pool, PR_NOWAIT);
|
|
if (inm == NULL) {
|
|
rw_exit(&in_multilock);
|
|
return NULL;
|
|
}
|
|
inm->inm_addr = *ap;
|
|
inm->inm_ifp = ifp;
|
|
inm->inm_refcount = 1;
|
|
|
|
/*
|
|
* Ask the network driver to update its multicast reception
|
|
* filter appropriately for the new address.
|
|
*/
|
|
sockaddr_in_init(&sin, ap, 0);
|
|
if (if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin)) != 0) {
|
|
rw_exit(&in_multilock);
|
|
pool_put(&inmulti_pool, inm);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Let IGMP know that we have joined a new IP multicast group.
|
|
*/
|
|
if (igmp_joingroup(inm) != 0) {
|
|
rw_exit(&in_multilock);
|
|
pool_put(&inmulti_pool, inm);
|
|
return NULL;
|
|
}
|
|
LIST_INSERT_HEAD(
|
|
&IN_MULTI_HASH(inm->inm_addr.s_addr, ifp),
|
|
inm, inm_list);
|
|
in_multientries++;
|
|
rw_exit(&in_multilock);
|
|
|
|
return inm;
|
|
}
|
|
|
|
/*
|
|
* Delete a multicast address record.
|
|
*/
|
|
void
|
|
in_delmulti(struct in_multi *inm)
|
|
{
|
|
struct sockaddr_in sin;
|
|
|
|
rw_enter(&in_multilock, RW_WRITER);
|
|
if (--inm->inm_refcount > 0) {
|
|
rw_exit(&in_multilock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* No remaining claims to this record; let IGMP know that
|
|
* we are leaving the multicast group.
|
|
*/
|
|
igmp_leavegroup(inm);
|
|
|
|
/*
|
|
* Notify the network driver to update its multicast reception
|
|
* filter.
|
|
*/
|
|
sockaddr_in_init(&sin, &inm->inm_addr, 0);
|
|
if_mcast_op(inm->inm_ifp, SIOCDELMULTI, sintosa(&sin));
|
|
|
|
/*
|
|
* Unlink from list.
|
|
*/
|
|
LIST_REMOVE(inm, inm_list);
|
|
in_multientries--;
|
|
rw_exit(&in_multilock);
|
|
|
|
pool_put(&inmulti_pool, inm);
|
|
}
|
|
|
|
/*
|
|
* in_next_multi: step through all of the in_multi records, one at a time.
|
|
* The current position is remembered in "step", which the caller must
|
|
* provide. in_first_multi(), below, must be called to initialize "step"
|
|
* and get the first record. Both macros return a NULL "inm" when there
|
|
* are no remaining records.
|
|
*/
|
|
struct in_multi *
|
|
in_next_multi(struct in_multistep *step)
|
|
{
|
|
struct in_multi *inm;
|
|
|
|
KASSERT(rw_lock_held(&in_multilock));
|
|
|
|
while (step->i_inm == NULL && step->i_n < IN_MULTI_HASH_SIZE) {
|
|
step->i_inm = LIST_FIRST(&in_multihashtbl[++step->i_n]);
|
|
}
|
|
if ((inm = step->i_inm) != NULL) {
|
|
step->i_inm = LIST_NEXT(inm, inm_list);
|
|
}
|
|
return inm;
|
|
}
|
|
|
|
struct in_multi *
|
|
in_first_multi(struct in_multistep *step)
|
|
{
|
|
KASSERT(rw_lock_held(&in_multilock));
|
|
|
|
step->i_n = 0;
|
|
step->i_inm = LIST_FIRST(&in_multihashtbl[0]);
|
|
return in_next_multi(step);
|
|
}
|
|
|
|
void
|
|
in_multi_lock(int op)
|
|
{
|
|
rw_enter(&in_multilock, op);
|
|
}
|
|
|
|
void
|
|
in_multi_unlock(void)
|
|
{
|
|
rw_exit(&in_multilock);
|
|
}
|
|
|
|
int
|
|
in_multi_lock_held(void)
|
|
{
|
|
return rw_lock_held(&in_multilock);
|
|
}
|
|
|
|
struct sockaddr_in *
|
|
in_selectsrc(struct sockaddr_in *sin, struct route *ro,
|
|
int soopts, struct ip_moptions *mopts, int *errorp)
|
|
{
|
|
struct rtentry *rt = NULL;
|
|
struct in_ifaddr *ia = NULL;
|
|
|
|
/*
|
|
* If route is known or can be allocated now, take the
|
|
* source address from the interface. Otherwise, punt.
|
|
*/
|
|
if ((soopts & SO_DONTROUTE) != 0)
|
|
rtcache_free(ro);
|
|
else {
|
|
union {
|
|
struct sockaddr dst;
|
|
struct sockaddr_in dst4;
|
|
} u;
|
|
|
|
sockaddr_in_init(&u.dst4, &sin->sin_addr, 0);
|
|
rt = rtcache_lookup(ro, &u.dst);
|
|
}
|
|
/*
|
|
* If we found a route, use the address
|
|
* corresponding to the outgoing interface
|
|
* unless it is the loopback (in case a route
|
|
* to our address on another net goes to loopback).
|
|
*
|
|
* XXX Is this still true? Do we care?
|
|
*/
|
|
if (rt != NULL && (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
|
|
ia = ifatoia(rt->rt_ifa);
|
|
if (ia == NULL) {
|
|
u_int16_t fport = sin->sin_port;
|
|
|
|
sin->sin_port = 0;
|
|
ia = ifatoia(ifa_ifwithladdr(sintosa(sin)));
|
|
sin->sin_port = fport;
|
|
if (ia == NULL) {
|
|
/* Find 1st non-loopback AF_INET address */
|
|
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) {
|
|
if (!(ia->ia_ifp->if_flags & IFF_LOOPBACK))
|
|
break;
|
|
}
|
|
}
|
|
if (ia == NULL) {
|
|
*errorp = EADDRNOTAVAIL;
|
|
return NULL;
|
|
}
|
|
}
|
|
/*
|
|
* If the destination address is multicast and an outgoing
|
|
* interface has been set as a multicast option, use the
|
|
* address of that interface as our source address.
|
|
*/
|
|
if (IN_MULTICAST(sin->sin_addr.s_addr) && mopts != NULL) {
|
|
struct ip_moptions *imo;
|
|
struct ifnet *ifp;
|
|
|
|
imo = mopts;
|
|
if (imo->imo_multicast_ifp != NULL) {
|
|
ifp = imo->imo_multicast_ifp;
|
|
IFP_TO_IA(ifp, ia); /* XXX */
|
|
if (ia == 0 || ia->ia4_flags & IN_IFF_NOTREADY) {
|
|
*errorp = EADDRNOTAVAIL;
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
if (ia->ia_ifa.ifa_getifa != NULL) {
|
|
ia = ifatoia((*ia->ia_ifa.ifa_getifa)(&ia->ia_ifa,
|
|
sintosa(sin)));
|
|
if (ia == NULL) {
|
|
*errorp = EADDRNOTAVAIL;
|
|
return NULL;
|
|
}
|
|
}
|
|
#ifdef GETIFA_DEBUG
|
|
else
|
|
printf("%s: missing ifa_getifa\n", __func__);
|
|
#endif
|
|
return satosin(&ia->ia_addr);
|
|
}
|
|
|
|
#if NARP > 0
|
|
|
|
struct in_llentry {
|
|
struct llentry base;
|
|
};
|
|
|
|
#define IN_LLTBL_DEFAULT_HSIZE 32
|
|
#define IN_LLTBL_HASH(k, h) \
|
|
(((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1))
|
|
|
|
/*
|
|
* Do actual deallocation of @lle.
|
|
* Called by LLE_FREE_LOCKED when number of references
|
|
* drops to zero.
|
|
*/
|
|
static void
|
|
in_lltable_destroy_lle(struct llentry *lle)
|
|
{
|
|
|
|
LLE_WUNLOCK(lle);
|
|
LLE_LOCK_DESTROY(lle);
|
|
kmem_intr_free(lle, sizeof(*lle));
|
|
}
|
|
|
|
static struct llentry *
|
|
in_lltable_new(struct in_addr addr4, u_int flags)
|
|
{
|
|
struct in_llentry *lle;
|
|
|
|
lle = kmem_intr_zalloc(sizeof(*lle), KM_NOSLEEP);
|
|
if (lle == NULL) /* NB: caller generates msg */
|
|
return NULL;
|
|
|
|
/*
|
|
* For IPv4 this will trigger "arpresolve" to generate
|
|
* an ARP request.
|
|
*/
|
|
lle->base.la_expire = time_uptime; /* mark expired */
|
|
lle->base.r_l3addr.addr4 = addr4;
|
|
lle->base.lle_refcnt = 1;
|
|
lle->base.lle_free = in_lltable_destroy_lle;
|
|
LLE_LOCK_INIT(&lle->base);
|
|
callout_init(&lle->base.la_timer, CALLOUT_MPSAFE);
|
|
|
|
return (&lle->base);
|
|
}
|
|
|
|
#define IN_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \
|
|
(((ntohl((d).s_addr) ^ (a)->sin_addr.s_addr) & (m)->sin_addr.s_addr)) == 0 )
|
|
|
|
static int
|
|
in_lltable_match_prefix(const struct sockaddr *prefix,
|
|
const struct sockaddr *mask, u_int flags, struct llentry *lle)
|
|
{
|
|
const struct sockaddr_in *pfx = (const struct sockaddr_in *)prefix;
|
|
const struct sockaddr_in *msk = (const struct sockaddr_in *)mask;
|
|
|
|
/*
|
|
* (flags & LLE_STATIC) means deleting all entries
|
|
* including static ARP entries.
|
|
*/
|
|
if (IN_ARE_MASKED_ADDR_EQUAL(lle->r_l3addr.addr4, pfx, msk) &&
|
|
((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)))
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
in_lltable_free_entry(struct lltable *llt, struct llentry *lle)
|
|
{
|
|
struct ifnet *ifp __diagused;
|
|
size_t pkts_dropped;
|
|
|
|
LLE_WLOCK_ASSERT(lle);
|
|
KASSERT(llt != NULL);
|
|
|
|
/* Unlink entry from table if not already */
|
|
if ((lle->la_flags & LLE_LINKED) != 0) {
|
|
ifp = llt->llt_ifp;
|
|
IF_AFDATA_WLOCK_ASSERT(ifp);
|
|
lltable_unlink_entry(llt, lle);
|
|
}
|
|
|
|
/* cancel timer */
|
|
if (callout_halt(&lle->lle_timer, &lle->lle_lock))
|
|
LLE_REMREF(lle);
|
|
|
|
/* Drop hold queue */
|
|
pkts_dropped = llentry_free(lle);
|
|
arp_stat_add(ARP_STAT_DFRDROPPED, (uint64_t)pkts_dropped);
|
|
}
|
|
|
|
static int
|
|
in_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr)
|
|
{
|
|
struct rtentry *rt;
|
|
int error = EINVAL;
|
|
|
|
KASSERTMSG(l3addr->sa_family == AF_INET,
|
|
"sin_family %d", l3addr->sa_family);
|
|
|
|
rt = rtalloc1(l3addr, 0);
|
|
if (rt == NULL)
|
|
return error;
|
|
|
|
/*
|
|
* If the gateway for an existing host route matches the target L3
|
|
* address, which is a special route inserted by some implementation
|
|
* such as MANET, and the interface is of the correct type, then
|
|
* allow for ARP to proceed.
|
|
*/
|
|
if (rt->rt_flags & RTF_GATEWAY) {
|
|
if (!(rt->rt_flags & RTF_HOST) || !rt->rt_ifp ||
|
|
rt->rt_ifp->if_type != IFT_ETHER ||
|
|
#ifdef __FreeBSD__
|
|
(rt->rt_ifp->if_flags & (IFF_NOARP | IFF_STATICARP)) != 0 ||
|
|
#else
|
|
(rt->rt_ifp->if_flags & IFF_NOARP) != 0 ||
|
|
#endif
|
|
memcmp(rt->rt_gateway->sa_data, l3addr->sa_data,
|
|
sizeof(in_addr_t)) != 0) {
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure that at least the destination address is covered
|
|
* by the route. This is for handling the case where 2 or more
|
|
* interfaces have the same prefix. An incoming packet arrives
|
|
* on one interface and the corresponding outgoing packet leaves
|
|
* another interface.
|
|
*/
|
|
if (!(rt->rt_flags & RTF_HOST) && rt->rt_ifp != ifp) {
|
|
const char *sa, *mask, *addr, *lim;
|
|
int len;
|
|
|
|
mask = (const char *)rt_mask(rt);
|
|
/*
|
|
* Just being extra cautious to avoid some custom
|
|
* code getting into trouble.
|
|
*/
|
|
if (mask == NULL)
|
|
goto error;
|
|
|
|
sa = (const char *)rt_getkey(rt);
|
|
addr = (const char *)l3addr;
|
|
len = ((const struct sockaddr_in *)l3addr)->sin_len;
|
|
lim = addr + len;
|
|
|
|
for ( ; addr < lim; sa++, mask++, addr++) {
|
|
if ((*sa ^ *addr) & *mask) {
|
|
#ifdef DIAGNOSTIC
|
|
log(LOG_INFO, "IPv4 address: \"%s\" is not on the network\n",
|
|
inet_ntoa(((const struct sockaddr_in *)l3addr)->sin_addr));
|
|
#endif
|
|
goto error;
|
|
}
|
|
}
|
|
}
|
|
|
|
error = 0;
|
|
error:
|
|
rtfree(rt);
|
|
return error;
|
|
}
|
|
|
|
static inline uint32_t
|
|
in_lltable_hash_dst(const struct in_addr dst, uint32_t hsize)
|
|
{
|
|
|
|
return (IN_LLTBL_HASH(dst.s_addr, hsize));
|
|
}
|
|
|
|
static uint32_t
|
|
in_lltable_hash(const struct llentry *lle, uint32_t hsize)
|
|
{
|
|
|
|
return (in_lltable_hash_dst(lle->r_l3addr.addr4, hsize));
|
|
}
|
|
|
|
static void
|
|
in_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa)
|
|
{
|
|
struct sockaddr_in *sin;
|
|
|
|
sin = (struct sockaddr_in *)sa;
|
|
memset(sin, 0, sizeof(*sin));
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_len = sizeof(*sin);
|
|
sin->sin_addr = lle->r_l3addr.addr4;
|
|
}
|
|
|
|
static inline struct llentry *
|
|
in_lltable_find_dst(struct lltable *llt, struct in_addr dst)
|
|
{
|
|
struct llentry *lle;
|
|
struct llentries *lleh;
|
|
u_int hashidx;
|
|
|
|
hashidx = in_lltable_hash_dst(dst, llt->llt_hsize);
|
|
lleh = &llt->lle_head[hashidx];
|
|
LIST_FOREACH(lle, lleh, lle_next) {
|
|
if (lle->la_flags & LLE_DELETED)
|
|
continue;
|
|
if (lle->r_l3addr.addr4.s_addr == dst.s_addr)
|
|
break;
|
|
}
|
|
|
|
return (lle);
|
|
}
|
|
|
|
static int
|
|
in_lltable_delete(struct lltable *llt, u_int flags,
|
|
const struct sockaddr *l3addr)
|
|
{
|
|
const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
|
|
struct ifnet *ifp __diagused = llt->llt_ifp;
|
|
struct llentry *lle;
|
|
|
|
IF_AFDATA_WLOCK_ASSERT(ifp);
|
|
KASSERTMSG(l3addr->sa_family == AF_INET,
|
|
"sin_family %d", l3addr->sa_family);
|
|
|
|
lle = in_lltable_find_dst(llt, sin->sin_addr);
|
|
if (lle == NULL) {
|
|
#ifdef DIAGNOSTIC
|
|
log(LOG_INFO, "interface address is missing from cache = %p in delete\n", lle);
|
|
#endif
|
|
return (ENOENT);
|
|
}
|
|
|
|
LLE_WLOCK(lle);
|
|
lle->la_flags |= LLE_DELETED;
|
|
#ifdef DIAGNOSTIC
|
|
log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle);
|
|
#endif
|
|
if ((lle->la_flags & (LLE_STATIC | LLE_IFADDR)) == LLE_STATIC)
|
|
llentry_free(lle);
|
|
else
|
|
LLE_WUNLOCK(lle);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static struct llentry *
|
|
in_lltable_create(struct lltable *llt, u_int flags, const struct sockaddr *l3addr)
|
|
{
|
|
const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
|
|
struct ifnet *ifp = llt->llt_ifp;
|
|
struct llentry *lle;
|
|
|
|
IF_AFDATA_WLOCK_ASSERT(ifp);
|
|
KASSERTMSG(l3addr->sa_family == AF_INET,
|
|
"sin_family %d", l3addr->sa_family);
|
|
|
|
lle = in_lltable_find_dst(llt, sin->sin_addr);
|
|
|
|
if (lle != NULL) {
|
|
LLE_WLOCK(lle);
|
|
return (lle);
|
|
}
|
|
|
|
/* no existing record, we need to create new one */
|
|
|
|
/*
|
|
* A route that covers the given address must have
|
|
* been installed 1st because we are doing a resolution,
|
|
* verify this.
|
|
*/
|
|
if (!(flags & LLE_IFADDR) &&
|
|
in_lltable_rtcheck(ifp, flags, l3addr) != 0)
|
|
return (NULL);
|
|
|
|
lle = in_lltable_new(sin->sin_addr, flags);
|
|
if (lle == NULL) {
|
|
log(LOG_INFO, "lla_lookup: new lle malloc failed\n");
|
|
return (NULL);
|
|
}
|
|
lle->la_flags = flags;
|
|
if ((flags & LLE_IFADDR) == LLE_IFADDR) {
|
|
memcpy(&lle->ll_addr, CLLADDR(ifp->if_sadl), ifp->if_addrlen);
|
|
lle->la_flags |= (LLE_VALID | LLE_STATIC);
|
|
}
|
|
|
|
lltable_link_entry(llt, lle);
|
|
LLE_WLOCK(lle);
|
|
|
|
return (lle);
|
|
}
|
|
|
|
/*
|
|
* Return NULL if not found or marked for deletion.
|
|
* If found return lle read locked.
|
|
*/
|
|
static struct llentry *
|
|
in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr)
|
|
{
|
|
const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
|
|
struct llentry *lle;
|
|
|
|
IF_AFDATA_LOCK_ASSERT(llt->llt_ifp);
|
|
KASSERTMSG(l3addr->sa_family == AF_INET,
|
|
"sin_family %d", l3addr->sa_family);
|
|
|
|
lle = in_lltable_find_dst(llt, sin->sin_addr);
|
|
|
|
if (lle == NULL)
|
|
return NULL;
|
|
|
|
if (flags & LLE_EXCLUSIVE)
|
|
LLE_WLOCK(lle);
|
|
else
|
|
LLE_RLOCK(lle);
|
|
|
|
return lle;
|
|
}
|
|
|
|
static int
|
|
in_lltable_dump_entry(struct lltable *llt, struct llentry *lle,
|
|
struct rt_walkarg *w)
|
|
{
|
|
struct sockaddr_in sin;
|
|
|
|
LLTABLE_LOCK_ASSERT();
|
|
|
|
/* skip deleted entries */
|
|
if (lle->la_flags & LLE_DELETED)
|
|
return 0;
|
|
|
|
sockaddr_in_init(&sin, &lle->r_l3addr.addr4, 0);
|
|
|
|
return lltable_dump_entry(llt, lle, w, sintosa(&sin));
|
|
}
|
|
|
|
#endif /* NARP > 0 */
|
|
|
|
static void
|
|
in_sysctl_init(struct sysctllog **clog)
|
|
{
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "inet",
|
|
SYSCTL_DESCR("PF_INET related settings"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_NET, PF_INET, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "ip",
|
|
SYSCTL_DESCR("IPv4 related settings"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
|
|
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "subnetsarelocal",
|
|
SYSCTL_DESCR("Whether logical subnets are considered "
|
|
"local"),
|
|
NULL, 0, &subnetsarelocal, 0,
|
|
CTL_NET, PF_INET, IPPROTO_IP,
|
|
IPCTL_SUBNETSARELOCAL, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "hostzerobroadcast",
|
|
SYSCTL_DESCR("All zeroes address is broadcast address"),
|
|
NULL, 0, &hostzeroisbroadcast, 0,
|
|
CTL_NET, PF_INET, IPPROTO_IP,
|
|
IPCTL_HOSTZEROBROADCAST, CTL_EOL);
|
|
}
|
|
|
|
#if NARP > 0
|
|
|
|
static struct lltable *
|
|
in_lltattach(struct ifnet *ifp)
|
|
{
|
|
struct lltable *llt;
|
|
|
|
llt = lltable_allocate_htbl(IN_LLTBL_DEFAULT_HSIZE);
|
|
llt->llt_af = AF_INET;
|
|
llt->llt_ifp = ifp;
|
|
|
|
llt->llt_lookup = in_lltable_lookup;
|
|
llt->llt_create = in_lltable_create;
|
|
llt->llt_delete = in_lltable_delete;
|
|
llt->llt_dump_entry = in_lltable_dump_entry;
|
|
llt->llt_hash = in_lltable_hash;
|
|
llt->llt_fill_sa_entry = in_lltable_fill_sa_entry;
|
|
llt->llt_free_entry = in_lltable_free_entry;
|
|
llt->llt_match_prefix = in_lltable_match_prefix;
|
|
lltable_link(llt);
|
|
|
|
return (llt);
|
|
}
|
|
|
|
#endif /* NARP > 0 */
|
|
|
|
void *
|
|
in_domifattach(struct ifnet *ifp)
|
|
{
|
|
struct in_ifinfo *ii;
|
|
|
|
ii = kmem_zalloc(sizeof(struct in_ifinfo), KM_SLEEP);
|
|
KASSERT(ii != NULL);
|
|
|
|
#if NARP > 0
|
|
ii->ii_llt = in_lltattach(ifp);
|
|
#endif
|
|
|
|
#ifdef IPSELSRC
|
|
ii->ii_selsrc = in_selsrc_domifattach(ifp);
|
|
KASSERT(ii->ii_selsrc != NULL);
|
|
#endif
|
|
|
|
return ii;
|
|
}
|
|
|
|
void
|
|
in_domifdetach(struct ifnet *ifp, void *aux)
|
|
{
|
|
struct in_ifinfo *ii = aux;
|
|
|
|
#ifdef IPSELSRC
|
|
in_selsrc_domifdetach(ifp, ii->ii_selsrc);
|
|
#endif
|
|
#if NARP > 0
|
|
lltable_free(ii->ii_llt);
|
|
#endif
|
|
kmem_free(ii, sizeof(struct in_ifinfo));
|
|
}
|