NetBSD/sys/dev/ic/wdc.c

2085 lines
58 KiB
C

/* $NetBSD: wdc.c,v 1.291 2018/10/27 05:38:08 maya Exp $ */
/*
* Copyright (c) 1998, 2001, 2003 Manuel Bouyer. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1998, 2003, 2004 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum, by Onno van der Linden and by Manuel Bouyer.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* CODE UNTESTED IN THE CURRENT REVISION:
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: wdc.c,v 1.291 2018/10/27 05:38:08 maya Exp $");
#include "opt_ata.h"
#include "opt_wdc.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/buf.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/syslog.h>
#include <sys/proc.h>
#include <sys/intr.h>
#include <sys/bus.h>
#ifndef __BUS_SPACE_HAS_STREAM_METHODS
#define bus_space_write_multi_stream_2 bus_space_write_multi_2
#define bus_space_write_multi_stream_4 bus_space_write_multi_4
#define bus_space_read_multi_stream_2 bus_space_read_multi_2
#define bus_space_read_multi_stream_4 bus_space_read_multi_4
#define bus_space_read_stream_2 bus_space_read_2
#define bus_space_read_stream_4 bus_space_read_4
#define bus_space_write_stream_2 bus_space_write_2
#define bus_space_write_stream_4 bus_space_write_4
#endif /* __BUS_SPACE_HAS_STREAM_METHODS */
#include <dev/ata/atavar.h>
#include <dev/ata/atareg.h>
#include <dev/ata/satareg.h>
#include <dev/ata/satavar.h>
#include <dev/ic/wdcreg.h>
#include <dev/ic/wdcvar.h>
#include "locators.h"
#include "atapibus.h"
#include "wd.h"
#include "sata.h"
#define WDCDELAY 100 /* 100 microseconds */
#define WDCNDELAY_RST (WDC_RESET_WAIT * 1000 / WDCDELAY)
#if 0
/* If you enable this, it will report any delays more than WDCDELAY * N long. */
#define WDCNDELAY_DEBUG 50
#endif
/* When polling wait that much and then kpause for 1/hz seconds */
#define WDCDELAY_POLL 1 /* ms */
/* timeout for the control commands */
#define WDC_CTRL_DELAY 10000 /* 10s, for the recall command */
/*
* timeout when waiting for BSY to deassert when probing.
* set to 5s. From the standards this could be up to 31, but we can't
* wait that much at boot time, and 5s seems to be enough.
*/
#define WDC_PROBE_WAIT 5
#if NWD > 0
extern const struct ata_bustype wdc_ata_bustype; /* in ata_wdc.c */
#else
/* A fake one, the autoconfig will print "wd at foo ... not configured */
const struct ata_bustype wdc_ata_bustype = {
.bustype_type = SCSIPI_BUSTYPE_ATA,
.ata_bio = NULL,
.ata_reset_drive = NULL,
.ata_reset_channel = wdc_reset_channel,
.ata_exec_command = wdc_exec_command,
.ata_get_params = NULL,
.ata_addref = NULL,
.ata_delref = NULL,
.ata_killpending = NULL,
.ata_recovery = NULL,
};
#endif
/* Flags to wdcreset(). */
#define RESET_POLL 1
#define RESET_SLEEP 0 /* wdcreset() will use kpause() */
static int wdcprobe1(struct ata_channel *, int);
static int wdcreset(struct ata_channel *, int);
static void __wdcerror(struct ata_channel *, const char *);
static int __wdcwait_reset(struct ata_channel *, int, int);
static void __wdccommand_done(struct ata_channel *, struct ata_xfer *);
static void __wdccommand_poll(struct ata_channel *, struct ata_xfer *);
static void __wdccommand_done_end(struct ata_channel *, struct ata_xfer *);
static void __wdccommand_kill_xfer(struct ata_channel *,
struct ata_xfer *, int);
static int __wdccommand_start(struct ata_channel *, struct ata_xfer *);
static int __wdccommand_intr(struct ata_channel *, struct ata_xfer *, int);
static int __wdcwait(struct ata_channel *, int, int, int, int *);
static void wdc_datain_pio(struct ata_channel *, int, void *, size_t);
static void wdc_dataout_pio(struct ata_channel *, int, void *, size_t);
#define DEBUG_INTR 0x01
#define DEBUG_XFERS 0x02
#define DEBUG_STATUS 0x04
#define DEBUG_FUNCS 0x08
#define DEBUG_PROBE 0x10
#define DEBUG_DETACH 0x20
#define DEBUG_DELAY 0x40
#ifdef ATADEBUG
extern int atadebug_mask; /* init'ed in ata.c */
int wdc_nxfer = 0;
#define ATADEBUG_PRINT(args, level) if (atadebug_mask & (level)) printf args
#else
#define ATADEBUG_PRINT(args, level)
#endif
/*
* Initialize the "shadow register" handles for a standard wdc controller.
*/
void
wdc_init_shadow_regs(struct wdc_regs *wdr)
{
wdr->cmd_iohs[wd_status] = wdr->cmd_iohs[wd_command];
wdr->cmd_iohs[wd_features] = wdr->cmd_iohs[wd_error];
}
/*
* Allocate a wdc_regs array, based on the number of channels.
*/
void
wdc_allocate_regs(struct wdc_softc *wdc)
{
wdc->regs = malloc(wdc->sc_atac.atac_nchannels *
sizeof(struct wdc_regs), M_DEVBUF, M_WAITOK);
}
#if NSATA > 0
/*
* probe drives on SATA controllers with standard SATA registers:
* bring the PHYs online, read the drive signature and set drive flags
* appropriately.
*/
void
wdc_sataprobe(struct ata_channel *chp)
{
struct wdc_regs *wdr = CHAN_TO_WDC_REGS(chp);
uint8_t st = 0, sc __unused, sn __unused, cl, ch;
int i;
KASSERT(chp->ch_ndrives == 0 || chp->ch_drive != NULL);
/* do this before we take lock */
ata_channel_lock(chp);
/* reset the PHY and bring online */
switch (sata_reset_interface(chp, wdr->sata_iot, wdr->sata_control,
wdr->sata_status, AT_WAIT)) {
case SStatus_DET_DEV:
/* wait 5s for BSY to clear */
for (i = 0; i < WDC_PROBE_WAIT * hz; i++) {
bus_space_write_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_sdh], 0, WDSD_IBM);
delay(10); /* 400ns delay */
st = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_status], 0);
if ((st & WDCS_BSY) == 0)
break;
ata_delay(chp, 1, "sataprb", AT_WAIT);
}
if (i == WDC_PROBE_WAIT * hz)
aprint_error_dev(chp->ch_atac->atac_dev,
"BSY never cleared, status 0x%02x\n", st);
sc = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_seccnt], 0);
sn = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_sector], 0);
cl = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0);
ch = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_hi], 0);
ATADEBUG_PRINT(("%s: port %d: sc=0x%x sn=0x%x "
"cl=0x%x ch=0x%x\n",
device_xname(chp->ch_atac->atac_dev), chp->ch_channel,
sc, sn, cl, ch), DEBUG_PROBE);
if (atabus_alloc_drives(chp, 1) != 0)
return;
/*
* sc and sn are supposed to be 0x1 for ATAPI, but in some
* cases we get wrong values here, so ignore it.
*/
if (cl == 0x14 && ch == 0xeb)
chp->ch_drive[0].drive_type = ATA_DRIVET_ATAPI;
else
chp->ch_drive[0].drive_type = ATA_DRIVET_ATA;
/*
* issue a reset in case only the interface part of the drive
* is up
*/
if (wdcreset(chp, RESET_SLEEP) != 0)
chp->ch_drive[0].drive_type = ATA_DRIVET_NONE;
break;
default:
break;
}
ata_channel_unlock(chp);
}
#endif /* NSATA > 0 */
/* Test to see controller with at last one attached drive is there.
* Returns a bit for each possible drive found (0x01 for drive 0,
* 0x02 for drive 1).
* Logic:
* - If a status register is at 0xff, assume there is no drive here
* (ISA has pull-up resistors). Similarly if the status register has
* the value we last wrote to the bus (for IDE interfaces without pullups).
* If no drive at all -> return.
* - reset the controller, wait for it to complete (may take up to 31s !).
* If timeout -> return.
* - test ATA/ATAPI signatures. If at last one drive found -> return.
* - try an ATA command on the master.
*/
void
wdc_drvprobe(struct ata_channel *chp)
{
struct ataparams params; /* XXX: large struct */
struct atac_softc *atac = chp->ch_atac;
struct wdc_softc *wdc = CHAN_TO_WDC(chp);
struct wdc_regs *wdr = &wdc->regs[chp->ch_channel];
u_int8_t st0 = 0, st1 = 0;
int i, j, error, tfd;
if (atabus_alloc_drives(chp, wdc->wdc_maxdrives) != 0)
return;
if (wdcprobe1(chp, 0) == 0) {
/* No drives, abort the attach here. */
atabus_free_drives(chp);
return;
}
ata_channel_lock(chp);
/* for ATA/OLD drives, wait for DRDY, 3s timeout */
for (i = 0; i < mstohz(3000); i++) {
/*
* select drive 1 first, so that master is selected on
* exit from the loop
*/
if (chp->ch_ndrives > 1 &&
chp->ch_drive[1].drive_type == ATA_DRIVET_ATA) {
if (wdc->select)
wdc->select(chp,1);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh],
0, WDSD_IBM | 0x10);
delay(10); /* 400ns delay */
st1 = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_status], 0);
}
if (chp->ch_drive[0].drive_type == ATA_DRIVET_ATA) {
if (wdc->select)
wdc->select(chp,0);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh],
0, WDSD_IBM);
delay(10); /* 400ns delay */
st0 = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_status], 0);
}
if ((chp->ch_drive[0].drive_type != ATA_DRIVET_ATA ||
(st0 & WDCS_DRDY)) &&
(chp->ch_ndrives < 2 ||
chp->ch_drive[1].drive_type != ATA_DRIVET_ATA ||
(st1 & WDCS_DRDY)))
break;
#ifdef WDC_NO_IDS
/* cannot kpause here (can't enable IPL_BIO interrups),
* delay instead
*/
delay(1000000 / hz);
#else
ata_delay(chp, 1, "atadrdy", AT_WAIT);
#endif
}
if ((st0 & WDCS_DRDY) == 0 &&
chp->ch_drive[0].drive_type != ATA_DRIVET_ATAPI)
chp->ch_drive[0].drive_type = ATA_DRIVET_NONE;
if (chp->ch_ndrives > 1 && (st1 & WDCS_DRDY) == 0 &&
chp->ch_drive[1].drive_type != ATA_DRIVET_ATAPI)
chp->ch_drive[1].drive_type = ATA_DRIVET_NONE;
ata_channel_unlock(chp);
ATADEBUG_PRINT(("%s:%d: wait DRDY st0 0x%x st1 0x%x\n",
device_xname(atac->atac_dev),
chp->ch_channel, st0, st1), DEBUG_PROBE);
/* Wait a bit, some devices are weird just after a reset. */
delay(5000);
for (i = 0; i < chp->ch_ndrives; i++) {
#if NATA_DMA
/*
* Init error counter so that an error within the first xfers
* will trigger a downgrade
*/
chp->ch_drive[i].n_dmaerrs = NERRS_MAX-1;
#endif
/* If controller can't do 16bit flag the drives as 32bit */
if ((atac->atac_cap &
(ATAC_CAP_DATA16 | ATAC_CAP_DATA32)) == ATAC_CAP_DATA32) {
ata_channel_lock(chp);
chp->ch_drive[i].drive_flags |= ATA_DRIVE_CAP32;
ata_channel_unlock(chp);
}
if (chp->ch_drive[i].drive_type == ATA_DRIVET_NONE)
continue;
/* Shortcut in case we've been shutdown */
if (chp->ch_flags & ATACH_SHUTDOWN)
return;
/*
* Issue an identify, to try to detect ghosts.
* Note that we can't use interrupts here, because if there
* is no devices, we will get a command aborted without
* interrupts.
*/
error = ata_get_params(&chp->ch_drive[i],
AT_WAIT | AT_POLL, &params);
if (error != CMD_OK) {
ata_channel_lock(chp);
ata_delay(chp, 1000, "atacnf", AT_WAIT);
ata_channel_unlock(chp);
/* Shortcut in case we've been shutdown */
if (chp->ch_flags & ATACH_SHUTDOWN)
return;
error = ata_get_params(&chp->ch_drive[i],
AT_WAIT | AT_POLL, &params);
}
if (error != CMD_OK) {
ATADEBUG_PRINT(("%s:%d:%d: IDENTIFY failed (%d)\n",
device_xname(atac->atac_dev),
chp->ch_channel, i, error), DEBUG_PROBE);
ata_channel_lock(chp);
if (chp->ch_drive[i].drive_type != ATA_DRIVET_ATA ||
(wdc->cap & WDC_CAPABILITY_PREATA) == 0) {
chp->ch_drive[i].drive_type = ATA_DRIVET_NONE;
ata_channel_unlock(chp);
continue;
}
/*
* Pre-ATA drive ?
* Test registers writability (Error register not
* writable, but cyllo is), then try an ATA command.
*/
if (wdc->select)
wdc->select(chp,i);
bus_space_write_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_sdh], 0, WDSD_IBM | (i << 4));
delay(10); /* 400ns delay */
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_error],
0, 0x58);
bus_space_write_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0, 0xa5);
if (bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_error], 0) == 0x58 ||
bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0) != 0xa5) {
ATADEBUG_PRINT(("%s:%d:%d: register "
"writability failed\n",
device_xname(atac->atac_dev),
chp->ch_channel, i), DEBUG_PROBE);
chp->ch_drive[i].drive_type = ATA_DRIVET_NONE;
ata_channel_unlock(chp);
continue;
}
if (wdc_wait_for_ready(chp, 10000, 0, &tfd) ==
WDCWAIT_TOUT) {
ATADEBUG_PRINT(("%s:%d:%d: not ready\n",
device_xname(atac->atac_dev),
chp->ch_channel, i), DEBUG_PROBE);
chp->ch_drive[i].drive_type = ATA_DRIVET_NONE;
ata_channel_unlock(chp);
continue;
}
bus_space_write_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_command], 0, WDCC_RECAL);
delay(10); /* 400ns delay */
if (wdc_wait_for_ready(chp, 10000, 0, &tfd) ==
WDCWAIT_TOUT) {
ATADEBUG_PRINT(("%s:%d:%d: WDCC_RECAL failed\n",
device_xname(atac->atac_dev),
chp->ch_channel, i), DEBUG_PROBE);
chp->ch_drive[i].drive_type = ATA_DRIVET_NONE;
ata_channel_unlock(chp);
} else {
for (j = 0; j < chp->ch_ndrives; j++) {
if (chp->ch_drive[i].drive_type !=
ATA_DRIVET_NONE) {
chp->ch_drive[j].drive_type =
ATA_DRIVET_OLD;
}
}
ata_channel_unlock(chp);
}
}
}
}
int
wdcprobe(struct wdc_regs *wdr)
{
struct wdc_softc wdc;
struct ata_channel ch;
int rv;
memset(&wdc, 0, sizeof(wdc));
memset(&ch, 0, sizeof(ch));
ata_channel_init(&ch);
ch.ch_atac = &wdc.sc_atac;
wdc.regs = wdr;
/* default reset method */
if (wdc.reset == NULL)
wdc.reset = wdc_do_reset;
rv = wdcprobe1(&ch, 1);
ata_channel_destroy(&ch);
return rv;
}
static int
wdcprobe1(struct ata_channel *chp, int poll)
{
struct wdc_softc *wdc = CHAN_TO_WDC(chp);
struct wdc_regs *wdr = &wdc->regs[chp->ch_channel];
u_int8_t st0 = 0, st1 = 0, sc __unused, sn __unused, cl, ch;
u_int8_t ret_value = 0x03;
u_int8_t drive;
/* XXX if poll, wdc_probe_count is 0. */
int wdc_probe_count =
poll ? (WDC_PROBE_WAIT / WDCDELAY)
: (WDC_PROBE_WAIT * hz);
/*
* Sanity check to see if the wdc channel responds at all.
*/
ata_channel_lock(chp);
if ((wdc->cap & WDC_CAPABILITY_NO_EXTRA_RESETS) == 0) {
while (wdc_probe_count-- > 0) {
if (wdc->select)
wdc->select(chp,0);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh],
0, WDSD_IBM);
delay(10); /* 400ns delay */
st0 = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_status], 0);
if (wdc->select)
wdc->select(chp,1);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh],
0, WDSD_IBM | 0x10);
delay(10); /* 400ns delay */
st1 = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_status], 0);
if ((st0 & WDCS_BSY) == 0)
break;
}
ATADEBUG_PRINT(("%s:%d: before reset, st0=0x%x, st1=0x%x\n",
__func__, chp->ch_channel, st0, st1), DEBUG_PROBE);
if (st0 == 0xff || st0 == WDSD_IBM)
ret_value &= ~0x01;
if (st1 == 0xff || st1 == (WDSD_IBM | 0x10))
ret_value &= ~0x02;
/* Register writability test, drive 0. */
if (ret_value & 0x01) {
if (wdc->select)
wdc->select(chp,0);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh],
0, WDSD_IBM);
bus_space_write_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0, 0x02);
cl = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0);
if (cl != 0x02) {
ATADEBUG_PRINT(("%s:%d drive 0 wd_cyl_lo: "
"got 0x%x != 0x02\n",
__func__, chp->ch_channel, cl),
DEBUG_PROBE);
ret_value &= ~0x01;
}
bus_space_write_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0, 0x01);
cl = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0);
if (cl != 0x01) {
ATADEBUG_PRINT(("%s:%d drive 0 wd_cyl_lo: "
"got 0x%x != 0x01\n",
__func__, chp->ch_channel, cl),
DEBUG_PROBE);
ret_value &= ~0x01;
}
bus_space_write_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_sector], 0, 0x01);
cl = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_sector], 0);
if (cl != 0x01) {
ATADEBUG_PRINT(("%s:%d drive 0 wd_sector: "
"got 0x%x != 0x01\n",
__func__, chp->ch_channel, cl),
DEBUG_PROBE);
ret_value &= ~0x01;
}
bus_space_write_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_sector], 0, 0x02);
cl = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_sector], 0);
if (cl != 0x02) {
ATADEBUG_PRINT(("%s:%d drive 0 wd_sector: "
"got 0x%x != 0x02\n",
__func__, chp->ch_channel, cl),
DEBUG_PROBE);
ret_value &= ~0x01;
}
cl = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0);
if (cl != 0x01) {
ATADEBUG_PRINT(("%s:%d drive 0 wd_cyl_lo(2): "
"got 0x%x != 0x01\n",
__func__, chp->ch_channel, cl),
DEBUG_PROBE);
ret_value &= ~0x01;
}
}
/* Register writability test, drive 1. */
if (ret_value & 0x02) {
if (wdc->select)
wdc->select(chp,1);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh],
0, WDSD_IBM | 0x10);
bus_space_write_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0, 0x02);
cl = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0);
if (cl != 0x02) {
ATADEBUG_PRINT(("%s:%d drive 1 wd_cyl_lo: "
"got 0x%x != 0x02\n",
__func__, chp->ch_channel, cl),
DEBUG_PROBE);
ret_value &= ~0x02;
}
bus_space_write_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0, 0x01);
cl = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0);
if (cl != 0x01) {
ATADEBUG_PRINT(("%s:%d drive 1 wd_cyl_lo: "
"got 0x%x != 0x01\n",
__func__, chp->ch_channel, cl),
DEBUG_PROBE);
ret_value &= ~0x02;
}
bus_space_write_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_sector], 0, 0x01);
cl = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_sector], 0);
if (cl != 0x01) {
ATADEBUG_PRINT(("%s:%d drive 1 wd_sector: "
"got 0x%x != 0x01\n",
__func__, chp->ch_channel, cl),
DEBUG_PROBE);
ret_value &= ~0x02;
}
bus_space_write_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_sector], 0, 0x02);
cl = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_sector], 0);
if (cl != 0x02) {
ATADEBUG_PRINT(("%s:%d drive 1 wd_sector: "
"got 0x%x != 0x02\n",
__func__, chp->ch_channel, cl),
DEBUG_PROBE);
ret_value &= ~0x02;
}
cl = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0);
if (cl != 0x01) {
ATADEBUG_PRINT(("%s:%d drive 1 wd_cyl_lo(2): "
"got 0x%x != 0x01\n",
__func__, chp->ch_channel, cl),
DEBUG_PROBE);
ret_value &= ~0x02;
}
}
if (ret_value == 0) {
ata_channel_unlock(chp);
return 0;
}
}
#if 0 /* XXX this break some ATA or ATAPI devices */
/*
* reset bus. Also send an ATAPI_RESET to devices, in case there are
* ATAPI device out there which don't react to the bus reset
*/
if (ret_value & 0x01) {
if (wdc->select)
wdc->select(chp,0);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh],
0, WDSD_IBM);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_command], 0,
ATAPI_SOFT_RESET);
}
if (ret_value & 0x02) {
if (wdc->select)
wdc->select(chp,0);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh],
0, WDSD_IBM | 0x10);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_command], 0,
ATAPI_SOFT_RESET);
}
delay(5000);
#endif
wdc->reset(chp, RESET_POLL);
DELAY(2000);
(void) bus_space_read_1(wdr->cmd_iot, wdr->cmd_iohs[wd_error], 0);
if (! (wdc->cap & WDC_CAPABILITY_NO_AUXCTL))
bus_space_write_1(wdr->ctl_iot, wdr->ctl_ioh, wd_aux_ctlr,
WDCTL_4BIT);
#ifdef WDC_NO_IDS
ret_value = __wdcwait_reset(chp, ret_value, RESET_POLL);
#else
ret_value = __wdcwait_reset(chp, ret_value, poll);
#endif
ATADEBUG_PRINT(("%s:%d: after reset, ret_value=%#x\n",
__func__, chp->ch_channel, ret_value), DEBUG_PROBE);
/* if reset failed, there's nothing here */
if (ret_value == 0) {
ata_channel_unlock(chp);
return 0;
}
/*
* Test presence of drives. First test register signatures looking
* for ATAPI devices. If it's not an ATAPI and reset said there may
* be something here assume it's ATA or OLD. Ghost will be killed
* later in attach routine.
*/
for (drive = 0; drive < wdc->wdc_maxdrives; drive++) {
if ((ret_value & (0x01 << drive)) == 0)
continue;
if (wdc->select)
wdc->select(chp,drive);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh], 0,
WDSD_IBM | (drive << 4));
delay(10); /* 400ns delay */
/* Save registers contents */
sc = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_seccnt], 0);
sn = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_sector], 0);
cl = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0);
ch = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_hi], 0);
ATADEBUG_PRINT(("%s:%d:%d: after reset, sc=0x%x sn=0x%x "
"cl=0x%x ch=0x%x\n", __func__, chp->ch_channel, drive, sc,
sn, cl, ch), DEBUG_PROBE);
/*
* sc & sn are supposed to be 0x1 for ATAPI but in some cases
* we get wrong values here, so ignore it.
*/
if (chp->ch_drive != NULL) {
if (cl == 0x14 && ch == 0xeb) {
chp->ch_drive[drive].drive_type = ATA_DRIVET_ATAPI;
} else {
chp->ch_drive[drive].drive_type = ATA_DRIVET_ATA;
}
}
}
/*
* Select an existing drive before lowering spl, some WDC_NO_IDS
* devices incorrectly assert IRQ on nonexistent slave
*/
if (ret_value & 0x01) {
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh], 0,
WDSD_IBM);
(void)bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_status], 0);
}
ata_channel_unlock(chp);
return (ret_value);
}
void
wdcattach(struct ata_channel *chp)
{
struct atac_softc *atac = chp->ch_atac;
struct wdc_softc *wdc = CHAN_TO_WDC(chp);
KASSERT(wdc->wdc_maxdrives > 0 && wdc->wdc_maxdrives <= WDC_MAXDRIVES);
/* default data transfer methods */
if (wdc->datain_pio == NULL)
wdc->datain_pio = wdc_datain_pio;
if (wdc->dataout_pio == NULL)
wdc->dataout_pio = wdc_dataout_pio;
/* default reset method */
if (wdc->reset == NULL)
wdc->reset = wdc_do_reset;
/* initialise global data */
if (atac->atac_bustype_ata == NULL)
atac->atac_bustype_ata = &wdc_ata_bustype;
if (atac->atac_probe == NULL)
atac->atac_probe = wdc_drvprobe;
#if NATAPIBUS > 0
if (atac->atac_atapibus_attach == NULL)
atac->atac_atapibus_attach = wdc_atapibus_attach;
#endif
ata_channel_attach(chp);
}
void
wdc_childdetached(device_t self, device_t child)
{
struct atac_softc *atac = device_private(self);
struct ata_channel *chp;
int i;
for (i = 0; i < atac->atac_nchannels; i++) {
chp = atac->atac_channels[i];
if (child == chp->atabus) {
chp->atabus = NULL;
return;
}
}
}
int
wdcdetach(device_t self, int flags)
{
struct atac_softc *atac = device_private(self);
struct ata_channel *chp;
struct scsipi_adapter *adapt = &atac->atac_atapi_adapter._generic;
int i, error = 0;
for (i = 0; i < atac->atac_nchannels; i++) {
chp = atac->atac_channels[i];
if (chp->atabus == NULL)
continue;
ATADEBUG_PRINT(("wdcdetach: %s: detaching %s\n",
device_xname(atac->atac_dev), device_xname(chp->atabus)),
DEBUG_DETACH);
if ((error = config_detach(chp->atabus, flags)) != 0)
return error;
ata_channel_detach(chp);
}
if (adapt->adapt_refcnt != 0)
return EBUSY;
return 0;
}
/* restart an interrupted I/O */
void
wdcrestart(void *v)
{
struct ata_channel *chp = v;
int s;
s = splbio();
atastart(chp);
splx(s);
}
/*
* Interrupt routine for the controller. Acknowledge the interrupt, check for
* errors on the current operation, mark it done if necessary, and start the
* next request. Also check for a partially done transfer, and continue with
* the next chunk if so.
*/
int
wdcintr(void *arg)
{
struct ata_channel *chp = arg;
struct atac_softc *atac = chp->ch_atac;
struct wdc_softc *wdc = CHAN_TO_WDC(chp);
struct wdc_regs *wdr = &wdc->regs[chp->ch_channel];
struct ata_xfer *xfer;
int ret;
if (!device_is_active(atac->atac_dev)) {
ATADEBUG_PRINT(("wdcintr: deactivated controller\n"),
DEBUG_INTR);
return (0);
}
if ((chp->ch_flags & ATACH_IRQ_WAIT) == 0) {
ATADEBUG_PRINT(("wdcintr: irq not expected\n"), DEBUG_INTR);
goto ignore;
}
xfer = ata_queue_get_active_xfer(chp);
if (xfer == NULL) {
ATADEBUG_PRINT(("wdcintr: inactive controller\n"), DEBUG_INTR);
ignore:
/* try to clear the pending interrupt anyway */
(void)bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_status], 0);
return (0);
}
/*
* On some controllers (e.g. some PCI-IDE) setting the WDCTL_IDS bit
* actually has no effect, and interrupt is triggered regardless.
* Ignore polled commands here, they are processed separately.
*/
if (ISSET(xfer->c_flags, C_POLL)) {
ATADEBUG_PRINT(("%s: polled xfer ignored\n", __func__),
DEBUG_INTR);
goto ignore;
}
ATADEBUG_PRINT(("wdcintr\n"), DEBUG_INTR);
KASSERT(xfer != NULL);
#if NATA_DMA || NATA_PIOBM
if (chp->ch_flags & ATACH_DMA_WAIT) {
wdc->dma_status =
(*wdc->dma_finish)(wdc->dma_arg, chp->ch_channel,
xfer->c_drive, WDC_DMAEND_END);
if (wdc->dma_status & WDC_DMAST_NOIRQ) {
/* IRQ not for us, not detected by DMA engine */
return 0;
}
chp->ch_flags &= ~ATACH_DMA_WAIT;
}
#endif
chp->ch_flags &= ~ATACH_IRQ_WAIT;
KASSERT(xfer->ops != NULL && xfer->ops->c_intr != NULL);
ret = xfer->ops->c_intr(chp, xfer, 1);
if (ret == 0) /* irq was not for us, still waiting for irq */
chp->ch_flags |= ATACH_IRQ_WAIT;
return (ret);
}
/* Put all disk in RESET state */
void
wdc_reset_drive(struct ata_drive_datas *drvp, int flags, uint32_t *sigp)
{
struct ata_channel *chp = drvp->chnl_softc;
ata_channel_lock_owned(chp);
KASSERT(sigp == NULL);
ATADEBUG_PRINT(("wdc_reset_drive %s:%d for drive %d\n",
device_xname(chp->ch_atac->atac_dev), chp->ch_channel,
drvp->drive), DEBUG_FUNCS);
ata_thread_run(chp, flags, ATACH_TH_RESET, ATACH_NODRIVE);
}
void
wdc_reset_channel(struct ata_channel *chp, int flags)
{
struct ata_xfer *xfer;
ata_channel_lock_owned(chp);
#if NATA_DMA || NATA_PIOBM
struct wdc_softc *wdc = CHAN_TO_WDC(chp);
#endif
chp->ch_flags &= ~ATACH_IRQ_WAIT;
/*
* if the current command is on an ATAPI device, issue a
* ATAPI_SOFT_RESET
*/
xfer = ata_queue_get_active_xfer_locked(chp);
if (xfer && xfer->c_chp == chp && (xfer->c_flags & C_ATAPI)) {
wdccommandshort(chp, xfer->c_drive, ATAPI_SOFT_RESET);
ata_delay(chp, 1000, "atardl", flags);
}
/* reset the channel */
if (flags & AT_WAIT)
(void) wdcreset(chp, RESET_SLEEP);
else
(void) wdcreset(chp, RESET_POLL);
/*
* wait a bit after reset; in case the DMA engines needs some time
* to recover.
*/
ata_delay(chp, 1000, "atardl", flags);
/*
* Look for pending xfers. If we have a shared queue, we'll also reset
* the other channel if the current xfer is running on it.
* Then we'll kill the eventual active transfer explicitely, so that
* it is queued for retry immediatelly without waiting for I/O timeout.
*/
if (xfer) {
if (xfer->c_chp != chp) {
ata_thread_run(xfer->c_chp, flags, ATACH_TH_RESET,
ATACH_NODRIVE);
} else {
#if NATA_DMA || NATA_PIOBM
/*
* If we're waiting for DMA, stop the
* DMA engine
*/
if (chp->ch_flags & ATACH_DMA_WAIT) {
(*wdc->dma_finish)(wdc->dma_arg,
chp->ch_channel, xfer->c_drive,
WDC_DMAEND_ABRT_QUIET);
chp->ch_flags &= ~ATACH_DMA_WAIT;
}
#endif
}
}
ata_kill_active(chp, KILL_RESET, flags);
}
static int
wdcreset(struct ata_channel *chp, int poll)
{
struct atac_softc *atac = chp->ch_atac;
struct wdc_softc *wdc = CHAN_TO_WDC(chp);
struct wdc_regs *wdr = &wdc->regs[chp->ch_channel];
int drv_mask1, drv_mask2;
ata_channel_lock_owned(chp);
#ifdef WDC_NO_IDS
poll = RESET_POLL;
#endif
wdc->reset(chp, poll);
drv_mask1 = (chp->ch_drive[0].drive_type != ATA_DRIVET_NONE)
? 0x01 : 0x00;
if (chp->ch_ndrives > 1)
drv_mask1 |= (chp->ch_drive[1].drive_type != ATA_DRIVET_NONE)
? 0x02 : 0x00;
drv_mask2 = __wdcwait_reset(chp, drv_mask1,
(poll == RESET_SLEEP) ? 0 : 1);
if (drv_mask2 != drv_mask1) {
aprint_error("%s channel %d: reset failed for",
device_xname(atac->atac_dev), chp->ch_channel);
if ((drv_mask1 & 0x01) != 0 && (drv_mask2 & 0x01) == 0)
aprint_normal(" drive 0");
if ((drv_mask1 & 0x02) != 0 && (drv_mask2 & 0x02) == 0)
aprint_normal(" drive 1");
aprint_normal("\n");
}
if (! (wdc->cap & WDC_CAPABILITY_NO_AUXCTL))
bus_space_write_1(wdr->ctl_iot, wdr->ctl_ioh, wd_aux_ctlr,
WDCTL_4BIT);
return (drv_mask1 != drv_mask2) ? 1 : 0;
}
void
wdc_do_reset(struct ata_channel *chp, int poll)
{
struct wdc_softc *wdc = CHAN_TO_WDC(chp);
struct wdc_regs *wdr = &wdc->regs[chp->ch_channel];
int s = 0;
if (poll != RESET_SLEEP)
s = splbio();
if (wdc->select)
wdc->select(chp,0);
/* master */
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh], 0, WDSD_IBM);
delay(10); /* 400ns delay */
/* assert SRST, wait for reset to complete */
if (! (wdc->cap & WDC_CAPABILITY_NO_AUXCTL)) {
bus_space_write_1(wdr->ctl_iot, wdr->ctl_ioh, wd_aux_ctlr,
WDCTL_RST | WDCTL_IDS | WDCTL_4BIT);
delay(2000);
}
(void) bus_space_read_1(wdr->cmd_iot, wdr->cmd_iohs[wd_error], 0);
if (! (wdc->cap & WDC_CAPABILITY_NO_AUXCTL))
bus_space_write_1(wdr->ctl_iot, wdr->ctl_ioh, wd_aux_ctlr,
WDCTL_4BIT | WDCTL_IDS);
delay(10); /* 400ns delay */
if (poll != RESET_SLEEP) {
/* ACK interrupt in case there is one pending left */
if (wdc->irqack)
wdc->irqack(chp);
splx(s);
}
}
static int
__wdcwait_reset(struct ata_channel *chp, int drv_mask, int poll)
{
struct wdc_softc *wdc = CHAN_TO_WDC(chp);
struct wdc_regs *wdr = &wdc->regs[chp->ch_channel];
int timeout, nloop;
int wflags = poll ? AT_POLL : AT_WAIT;
u_int8_t st0 = 0, st1 = 0;
#ifdef ATADEBUG
u_int8_t sc0 = 0, sn0 = 0, cl0 = 0, ch0 = 0;
u_int8_t sc1 = 0, sn1 = 0, cl1 = 0, ch1 = 0;
#endif
if (poll)
nloop = WDCNDELAY_RST;
else
nloop = WDC_RESET_WAIT * hz / 1000;
/* wait for BSY to deassert */
for (timeout = 0; timeout < nloop; timeout++) {
if ((drv_mask & 0x01) != 0) {
if (wdc->select)
wdc->select(chp,0);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh],
0, WDSD_IBM); /* master */
delay(10);
st0 = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_status], 0);
#ifdef ATADEBUG
sc0 = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_seccnt], 0);
sn0 = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_sector], 0);
cl0 = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0);
ch0 = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_hi], 0);
#endif
}
if ((drv_mask & 0x02) != 0) {
if (wdc->select)
wdc->select(chp,1);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh],
0, WDSD_IBM | 0x10); /* slave */
delay(10);
st1 = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_status], 0);
#ifdef ATADEBUG
sc1 = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_seccnt], 0);
sn1 = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_sector], 0);
cl1 = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0);
ch1 = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_hi], 0);
#endif
}
if ((drv_mask & 0x01) == 0) {
/* no master */
if ((drv_mask & 0x02) != 0 && (st1 & WDCS_BSY) == 0) {
/* No master, slave is ready, it's done */
goto end;
}
if ((drv_mask & 0x02) == 0) {
/* No master, no slave: it's done */
goto end;
}
} else if ((drv_mask & 0x02) == 0) {
/* no slave */
if ((drv_mask & 0x01) != 0 && (st0 & WDCS_BSY) == 0) {
/* No slave, master is ready, it's done */
goto end;
}
} else {
/* Wait for both master and slave to be ready */
if ((st0 & WDCS_BSY) == 0 && (st1 & WDCS_BSY) == 0) {
goto end;
}
}
ata_delay(chp, WDCDELAY, "atarst", wflags);
}
/* Reset timed out. Maybe it's because drv_mask was not right */
if (st0 & WDCS_BSY)
drv_mask &= ~0x01;
if (st1 & WDCS_BSY)
drv_mask &= ~0x02;
end:
ATADEBUG_PRINT(("%s:%d:0: after reset, sc=0x%x sn=0x%x "
"cl=0x%x ch=0x%x\n",
device_xname(chp->ch_atac->atac_dev),
chp->ch_channel, sc0, sn0, cl0, ch0), DEBUG_PROBE);
ATADEBUG_PRINT(("%s:%d:1: after reset, sc=0x%x sn=0x%x "
"cl=0x%x ch=0x%x\n",
device_xname(chp->ch_atac->atac_dev),
chp->ch_channel, sc1, sn1, cl1, ch1), DEBUG_PROBE);
ATADEBUG_PRINT(("%s:%d: wdcwait_reset() end, st0=0x%x st1=0x%x\n",
device_xname(chp->ch_atac->atac_dev), chp->ch_channel,
st0, st1), DEBUG_PROBE);
return drv_mask;
}
/*
* Wait for a drive to be !BSY, and have mask in its status register.
* return -1 for a timeout after "timeout" ms.
*/
static int
__wdcwait(struct ata_channel *chp, int mask, int bits, int timeout, int *tfd)
{
struct wdc_softc *wdc = CHAN_TO_WDC(chp);
struct wdc_regs *wdr = &wdc->regs[chp->ch_channel];
u_char status, error = 0;
int xtime = 0;
int rv;
ATADEBUG_PRINT(("__wdcwait %s:%d\n",
device_xname(chp->ch_atac->atac_dev),
chp->ch_channel), DEBUG_STATUS);
*tfd = 0;
timeout = timeout * 1000 / WDCDELAY; /* delay uses microseconds */
for (;;) {
status =
bus_space_read_1(wdr->cmd_iot, wdr->cmd_iohs[wd_status], 0);
if ((status & (WDCS_BSY | mask)) == bits)
break;
if (++xtime > timeout) {
ATADEBUG_PRINT(("__wdcwait: timeout (time=%d), "
"status %x error %x (mask 0x%x bits 0x%x)\n",
xtime, status,
bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_error], 0), mask, bits),
DEBUG_STATUS | DEBUG_PROBE | DEBUG_DELAY);
rv = WDCWAIT_TOUT;
goto out;
}
delay(WDCDELAY);
}
#ifdef ATADEBUG
if (xtime > 0 && (atadebug_mask & DEBUG_DELAY))
printf("__wdcwait: did busy-wait, time=%d\n", xtime);
#endif
if (status & WDCS_ERR)
error = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_error], 0);
#ifdef WDCNDELAY_DEBUG
/* After autoconfig, there should be no long delays. */
if (!cold && xtime > WDCNDELAY_DEBUG) {
struct ata_xfer *xfer;
xfer = ata_queue_get_active_xfer(chp);
if (xfer == NULL)
printf("%s channel %d: warning: busy-wait took %dus\n",
device_xname(chp->ch_atac->atac_dev),
chp->ch_channel, WDCDELAY * xtime);
else
printf("%s:%d:%d: warning: busy-wait took %dus\n",
device_xname(chp->ch_atac->atac_dev),
chp->ch_channel, xfer->c_drive,
WDCDELAY * xtime);
}
#endif
rv = WDCWAIT_OK;
out:
*tfd = ATACH_ERR_ST(error, status);
return rv;
}
/*
* Call __wdcwait(), polling using kpause() or waking up the kernel
* thread if possible
*/
int
wdcwait(struct ata_channel *chp, int mask, int bits, int timeout, int flags,
int *tfd)
{
int error, i, timeout_hz = mstohz(timeout);
ata_channel_lock_owned(chp);
if (timeout_hz == 0 ||
(flags & (AT_WAIT | AT_POLL)) == AT_POLL)
error = __wdcwait(chp, mask, bits, timeout, tfd);
else {
error = __wdcwait(chp, mask, bits, WDCDELAY_POLL, tfd);
if (error != 0) {
if ((chp->ch_flags & ATACH_TH_RUN) ||
(flags & AT_WAIT)) {
/*
* we're running in the channel thread
* or some userland thread context
*/
for (i = 0; i < timeout_hz; i++) {
if (__wdcwait(chp, mask, bits,
WDCDELAY_POLL, tfd) == 0) {
error = 0;
break;
}
kpause("atapoll", true, 1,
&chp->ch_lock);
}
} else {
/*
* we're probably in interrupt context,
* caller must ask the thread to come back here
*/
return(WDCWAIT_THR);
}
}
}
return (error);
}
#if NATA_DMA
/*
* Busy-wait for DMA to complete
*/
int
wdc_dmawait(struct ata_channel *chp, struct ata_xfer *xfer, int timeout)
{
struct wdc_softc *wdc = CHAN_TO_WDC(chp);
int xtime;
for (xtime = 0; xtime < timeout * 1000 / WDCDELAY; xtime++) {
wdc->dma_status =
(*wdc->dma_finish)(wdc->dma_arg,
chp->ch_channel, xfer->c_drive, WDC_DMAEND_END);
if ((wdc->dma_status & WDC_DMAST_NOIRQ) == 0)
return 0;
delay(WDCDELAY);
}
/* timeout, force a DMA halt */
wdc->dma_status = (*wdc->dma_finish)(wdc->dma_arg,
chp->ch_channel, xfer->c_drive, WDC_DMAEND_ABRT);
return 1;
}
#endif
void
wdctimeout(void *arg)
{
struct ata_xfer *xfer;
struct ata_channel *chp = arg;
#if NATA_DMA || NATA_PIOBM
struct wdc_softc *wdc = CHAN_TO_WDC(chp);
#endif
int s;
ATADEBUG_PRINT(("wdctimeout\n"), DEBUG_FUNCS);
s = splbio();
callout_ack(&chp->c_timo_callout);
xfer = ata_queue_get_active_xfer(chp);
KASSERT(xfer != NULL);
if (ata_timo_xfer_check(xfer)) {
/* Already logged */
goto out;
}
__wdcerror(chp, "lost interrupt");
printf("\ttype: %s tc_bcount: %d tc_skip: %d\n",
(xfer->c_flags & C_ATAPI) ? "atapi" : "ata",
xfer->c_bcount, xfer->c_skip);
#if NATA_DMA || NATA_PIOBM
if (chp->ch_flags & ATACH_DMA_WAIT) {
wdc->dma_status =
(*wdc->dma_finish)(wdc->dma_arg, chp->ch_channel,
xfer->c_drive, WDC_DMAEND_ABRT);
chp->ch_flags &= ~ATACH_DMA_WAIT;
}
#endif
/*
* Call the interrupt routine. If we just missed an interrupt,
* it will do what's needed. Else, it will take the needed
* action (reset the device).
* Before that we need to reinstall the timeout callback,
* in case it will miss another irq while in this transfer
* We arbitray chose it to be 1s
*/
callout_reset(&chp->c_timo_callout, hz, wdctimeout, chp);
xfer->c_flags |= C_TIMEOU;
KASSERT(xfer->ops != NULL && xfer->ops->c_intr != NULL);
xfer->ops->c_intr(chp, xfer, 1);
out:
splx(s);
}
static const struct ata_xfer_ops wdc_cmd_xfer_ops = {
.c_start = __wdccommand_start,
.c_poll = __wdccommand_poll,
.c_abort = __wdccommand_done,
.c_intr = __wdccommand_intr,
.c_kill_xfer = __wdccommand_kill_xfer,
};
int
wdc_exec_command(struct ata_drive_datas *drvp, struct ata_xfer *xfer)
{
struct ata_channel *chp = drvp->chnl_softc;
struct ata_command *ata_c = &xfer->c_ata_c;
int s, ret;
ATADEBUG_PRINT(("wdc_exec_command %s:%d:%d\n",
device_xname(chp->ch_atac->atac_dev), chp->ch_channel,
drvp->drive), DEBUG_FUNCS);
/* set up an xfer and queue. Wait for completion */
if (chp->ch_atac->atac_cap & ATAC_CAP_NOIRQ)
ata_c->flags |= AT_POLL;
if (ata_c->flags & AT_POLL)
xfer->c_flags |= C_POLL;
if (ata_c->flags & AT_WAIT)
xfer->c_flags |= C_WAIT;
xfer->c_drive = drvp->drive;
xfer->c_databuf = ata_c->data;
xfer->c_bcount = ata_c->bcount;
xfer->ops = &wdc_cmd_xfer_ops;
s = splbio();
ata_exec_xfer(chp, xfer);
#ifdef DIAGNOSTIC
if ((ata_c->flags & AT_POLL) != 0 &&
(ata_c->flags & AT_DONE) == 0)
panic("wdc_exec_command: polled command not done");
#endif
if (ata_c->flags & AT_DONE) {
ret = ATACMD_COMPLETE;
} else {
if (ata_c->flags & AT_WAIT) {
ata_wait_cmd(chp, xfer);
ret = ATACMD_COMPLETE;
} else {
ret = ATACMD_QUEUED;
}
}
splx(s);
return ret;
}
static int
__wdccommand_start(struct ata_channel *chp, struct ata_xfer *xfer)
{
struct wdc_softc *wdc = CHAN_TO_WDC(chp);
struct wdc_regs *wdr = &wdc->regs[chp->ch_channel];
int drive = xfer->c_drive;
int wait_flags = (xfer->c_flags & C_POLL) ? AT_POLL : 0;
struct ata_command *ata_c = &xfer->c_ata_c;
int tfd;
ATADEBUG_PRINT(("__wdccommand_start %s:%d:%d\n",
device_xname(chp->ch_atac->atac_dev), chp->ch_channel,
xfer->c_drive), DEBUG_FUNCS);
if (wdc->select)
wdc->select(chp,drive);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh], 0,
WDSD_IBM | (drive << 4));
switch(wdcwait(chp, ata_c->r_st_bmask | WDCS_DRQ,
ata_c->r_st_bmask, ata_c->timeout, wait_flags, &tfd)) {
case WDCWAIT_OK:
break;
case WDCWAIT_TOUT:
ata_c->flags |= AT_TIMEOU;
return ATASTART_ABORT;
case WDCWAIT_THR:
return ATASTART_TH;
}
if (ata_c->flags & AT_POLL) {
/* polled command, disable interrupts */
if (! (wdc->cap & WDC_CAPABILITY_NO_AUXCTL))
bus_space_write_1(wdr->ctl_iot, wdr->ctl_ioh,
wd_aux_ctlr, WDCTL_4BIT | WDCTL_IDS);
}
if ((ata_c->flags & AT_LBA48) != 0) {
wdccommandext(chp, drive, ata_c->r_command,
ata_c->r_lba, ata_c->r_count, ata_c->r_features,
ata_c->r_device & ~0x10);
} else {
wdccommand(chp, drive, ata_c->r_command,
(ata_c->r_lba >> 8) & 0xffff,
WDSD_IBM | (drive << 4) |
(((ata_c->flags & AT_LBA) != 0) ? WDSD_LBA : 0) |
((ata_c->r_lba >> 24) & 0x0f),
ata_c->r_lba & 0xff,
ata_c->r_count & 0xff,
ata_c->r_features & 0xff);
}
if ((ata_c->flags & AT_POLL) == 0) {
chp->ch_flags |= ATACH_IRQ_WAIT; /* wait for interrupt */
callout_reset(&chp->c_timo_callout, ata_c->timeout / 1000 * hz,
wdctimeout, chp);
return ATASTART_STARTED;
}
/*
* Polled command. Wait for drive ready or drq. Done in intr().
* Wait for at last 400ns for status bit to be valid.
*/
delay(10); /* 400ns delay */
return ATASTART_POLL;
}
static void
__wdccommand_poll(struct ata_channel *chp, struct ata_xfer *xfer)
{
__wdccommand_intr(chp, xfer, 0);
}
static int
__wdccommand_intr(struct ata_channel *chp, struct ata_xfer *xfer, int irq)
{
struct wdc_softc *wdc = CHAN_TO_WDC(chp);
struct wdc_regs *wdr = &wdc->regs[chp->ch_channel];
struct ata_command *ata_c = &xfer->c_ata_c;
int bcount = ata_c->bcount;
char *data = ata_c->data;
int wflags, tfd;
int drive_flags;
if (ata_c->r_command == WDCC_IDENTIFY ||
ata_c->r_command == ATAPI_IDENTIFY_DEVICE) {
/*
* The IDENTIFY data has been designed as an array of
* u_int16_t, so we can byteswap it on the fly.
* Historically it's what we have always done so keeping it
* here ensure binary backward compatibility.
*/
drive_flags = ATA_DRIVE_NOSTREAM |
chp->ch_drive[xfer->c_drive].drive_flags;
} else {
/*
* Other data structure are opaque and should be transfered
* as is.
*/
drive_flags = chp->ch_drive[xfer->c_drive].drive_flags;
}
#ifdef WDC_NO_IDS
wflags = AT_POLL;
#else
if ((ata_c->flags & (AT_WAIT | AT_POLL)) == (AT_WAIT | AT_POLL)) {
/* both wait and poll, we can kpause here */
wflags = AT_WAIT | AT_POLL;
} else {
wflags = AT_POLL;
}
#endif
ata_channel_lock(chp);
again:
ATADEBUG_PRINT(("__wdccommand_intr %s:%d:%d\n",
device_xname(chp->ch_atac->atac_dev), chp->ch_channel,
xfer->c_drive), DEBUG_INTR);
/*
* after a ATAPI_SOFT_RESET, the device will have released the bus.
* Reselect again, it doesn't hurt for others commands, and the time
* penalty for the extra register write is acceptable,
* wdc_exec_command() isn't called often (mostly for autoconfig)
*/
if ((xfer->c_flags & C_ATAPI) != 0) {
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh], 0,
WDSD_IBM | (xfer->c_drive << 4));
}
if ((ata_c->flags & AT_XFDONE) != 0) {
/*
* We have completed a data xfer. The drive should now be
* in its initial state
*/
if (wdcwait(chp, ata_c->r_st_bmask | WDCS_DRQ,
ata_c->r_st_bmask, (irq == 0) ? ata_c->timeout : 0,
wflags, &tfd) == WDCWAIT_TOUT) {
if (irq && (xfer->c_flags & C_TIMEOU) == 0) {
ata_channel_unlock(chp);
return 0; /* IRQ was not for us */
}
ata_c->flags |= AT_TIMEOU;
}
goto out;
}
if (wdcwait(chp, ata_c->r_st_pmask, ata_c->r_st_pmask,
(irq == 0) ? ata_c->timeout : 0, wflags, &tfd) == WDCWAIT_TOUT) {
if (irq && (xfer->c_flags & C_TIMEOU) == 0) {
ata_channel_unlock(chp);
return 0; /* IRQ was not for us */
}
ata_c->flags |= AT_TIMEOU;
goto out;
}
if (wdc->irqack)
wdc->irqack(chp);
if (ata_c->flags & AT_READ) {
if ((ATACH_ST(tfd) & WDCS_DRQ) == 0) {
ata_c->flags |= AT_TIMEOU;
goto out;
}
wdc->datain_pio(chp, drive_flags, data, bcount);
/* at this point the drive should be in its initial state */
ata_c->flags |= AT_XFDONE;
/*
* XXX checking the status register again here cause some
* hardware to timeout.
*/
} else if (ata_c->flags & AT_WRITE) {
if ((ATACH_ST(tfd) & WDCS_DRQ) == 0) {
ata_c->flags |= AT_TIMEOU;
goto out;
}
wdc->dataout_pio(chp, drive_flags, data, bcount);
ata_c->flags |= AT_XFDONE;
if ((ata_c->flags & AT_POLL) == 0) {
chp->ch_flags |= ATACH_IRQ_WAIT; /* wait for interrupt */
callout_reset(&chp->c_timo_callout,
mstohz(ata_c->timeout), wdctimeout, chp);
ata_channel_unlock(chp);
return 1;
} else {
goto again;
}
}
out:
if (ATACH_ST(tfd) & WDCS_DWF)
ata_c->flags |= AT_DF;
if (ATACH_ST(tfd) & WDCS_ERR) {
ata_c->flags |= AT_ERROR;
ata_c->r_error = ATACH_ST(tfd);
}
ata_channel_unlock(chp);
__wdccommand_done(chp, xfer);
return 1;
}
static void
__wdccommand_done(struct ata_channel *chp, struct ata_xfer *xfer)
{
struct atac_softc *atac = chp->ch_atac;
struct wdc_softc *wdc = CHAN_TO_WDC(chp);
struct wdc_regs *wdr = &wdc->regs[chp->ch_channel];
struct ata_command *ata_c = &xfer->c_ata_c;
bool start = true;
ATADEBUG_PRINT(("__wdccommand_done %s:%d:%d flags 0x%x\n",
device_xname(atac->atac_dev), chp->ch_channel, xfer->c_drive,
ata_c->flags), DEBUG_FUNCS);
if (ata_waitdrain_xfer_check(chp, xfer)) {
start = false;
goto out;
}
if ((ata_c->flags & AT_READREG) != 0 &&
device_is_active(atac->atac_dev) &&
(ata_c->flags & (AT_ERROR | AT_DF)) == 0) {
ata_c->r_status = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_status], 0);
ata_c->r_error = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_error], 0);
ata_c->r_count = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_seccnt], 0);
ata_c->r_lba = (uint64_t)bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_sector], 0) << 0;
ata_c->r_lba |= (uint64_t)bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0) << 8;
ata_c->r_lba |= (uint64_t)bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_hi], 0) << 16;
ata_c->r_device = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_sdh], 0);
if ((ata_c->flags & AT_LBA48) != 0) {
if (! (wdc->cap & WDC_CAPABILITY_NO_AUXCTL)) {
if ((ata_c->flags & AT_POLL) != 0)
bus_space_write_1(wdr->ctl_iot,
wdr->ctl_ioh, wd_aux_ctlr,
WDCTL_HOB|WDCTL_4BIT|WDCTL_IDS);
else
bus_space_write_1(wdr->ctl_iot,
wdr->ctl_ioh, wd_aux_ctlr,
WDCTL_HOB|WDCTL_4BIT);
}
ata_c->r_count |= bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_seccnt], 0) << 8;
ata_c->r_lba |= (uint64_t)bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_sector], 0) << 24;
ata_c->r_lba |= (uint64_t)bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_lo], 0) << 32;
ata_c->r_lba |= (uint64_t)bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_cyl_hi], 0) << 40;
if (! (wdc->cap & WDC_CAPABILITY_NO_AUXCTL)) {
if ((ata_c->flags & AT_POLL) != 0)
bus_space_write_1(wdr->ctl_iot,
wdr->ctl_ioh, wd_aux_ctlr,
WDCTL_4BIT|WDCTL_IDS);
else
bus_space_write_1(wdr->ctl_iot,
wdr->ctl_ioh, wd_aux_ctlr,
WDCTL_4BIT);
}
} else {
ata_c->r_lba |=
(uint64_t)(ata_c->r_device & 0x0f) << 24;
}
ata_c->r_device &= 0xf0;
}
__wdccommand_done_end(chp, xfer);
ata_deactivate_xfer(chp, xfer);
out:
if (ata_c->flags & AT_POLL) {
/* enable interrupts */
if (! (wdc->cap & WDC_CAPABILITY_NO_AUXCTL))
bus_space_write_1(wdr->ctl_iot, wdr->ctl_ioh,
wd_aux_ctlr, WDCTL_4BIT);
delay(10); /* some drives need a little delay here */
}
if (start)
atastart(chp);
}
static void
__wdccommand_done_end(struct ata_channel *chp, struct ata_xfer *xfer)
{
struct ata_command *ata_c = &xfer->c_ata_c;
ata_c->flags |= AT_DONE;
}
static void
__wdccommand_kill_xfer(struct ata_channel *chp, struct ata_xfer *xfer,
int reason)
{
struct ata_command *ata_c = &xfer->c_ata_c;
bool deactivate = true;
switch (reason) {
case KILL_GONE_INACTIVE:
deactivate = false;
/* FALLTHROUGH */
case KILL_GONE:
ata_c->flags |= AT_GONE;
break;
case KILL_RESET:
ata_c->flags |= AT_RESET;
break;
default:
printf("__wdccommand_kill_xfer: unknown reason %d\n",
reason);
panic("__wdccommand_kill_xfer");
}
__wdccommand_done_end(chp, xfer);
if (deactivate)
ata_deactivate_xfer(chp, xfer);
}
/*
* Send a command. The drive should be ready.
* Assumes interrupts are blocked.
*/
void
wdccommand(struct ata_channel *chp, u_int8_t drive, u_int8_t command,
u_int16_t cylin, u_int8_t head, u_int8_t sector, u_int8_t count,
u_int8_t features)
{
struct wdc_softc *wdc = CHAN_TO_WDC(chp);
struct wdc_regs *wdr = &wdc->regs[chp->ch_channel];
ATADEBUG_PRINT(("wdccommand %s:%d:%d: command=0x%x cylin=%d head=%d "
"sector=%d count=%d features=%d\n",
device_xname(chp->ch_atac->atac_dev), chp->ch_channel, drive,
command, cylin, head, sector, count, features), DEBUG_FUNCS);
if (wdc->select)
wdc->select(chp,drive);
/* Select drive, head, and addressing mode. */
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh], 0,
WDSD_IBM | (drive << 4) | head);
/* Load parameters into the wd_features register. */
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_features], 0,
features);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_seccnt], 0, count);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sector], 0, sector);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_cyl_lo], 0, cylin);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_cyl_hi],
0, cylin >> 8);
/* Send command. */
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_command], 0, command);
return;
}
/*
* Send a 48-bit addressing command. The drive should be ready.
* Assumes interrupts are blocked.
*/
void
wdccommandext(struct ata_channel *chp, u_int8_t drive, u_int8_t command,
u_int64_t blkno, u_int16_t count, u_int16_t features, u_int8_t device)
{
struct wdc_softc *wdc = CHAN_TO_WDC(chp);
struct wdc_regs *wdr = &wdc->regs[chp->ch_channel];
ATADEBUG_PRINT(("wdccommandext %s:%d:%d: command=0x%02x "
"blkno=0x%012"PRIx64" count=0x%04x features=0x%04x "
"device=0x%02x\n", device_xname(chp->ch_atac->atac_dev),
chp->ch_channel, drive, command, blkno, count, features, device),
DEBUG_FUNCS);
KASSERT(drive < wdc->wdc_maxdrives);
if (wdc->select)
wdc->select(chp,drive);
/* Select drive, head, and addressing mode. */
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh], 0,
(drive << 4) | device);
if (wdc->cap & WDC_CAPABILITY_WIDEREGS) {
bus_space_write_2(wdr->cmd_iot, wdr->cmd_iohs[wd_features],
0, features);
bus_space_write_2(wdr->cmd_iot, wdr->cmd_iohs[wd_seccnt],
0, count);
bus_space_write_2(wdr->cmd_iot, wdr->cmd_iohs[wd_lba_lo],
0, (((blkno >> 16) & 0xff00) | (blkno & 0x00ff)));
bus_space_write_2(wdr->cmd_iot, wdr->cmd_iohs[wd_lba_mi],
0, (((blkno >> 24) & 0xff00) | ((blkno >> 8) & 0x00ff)));
bus_space_write_2(wdr->cmd_iot, wdr->cmd_iohs[wd_lba_hi],
0, (((blkno >> 32) & 0xff00) | ((blkno >> 16) & 0x00ff)));
} else {
/* previous */
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_features],
0, features >> 8);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_seccnt],
0, count >> 8);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_lba_lo],
0, blkno >> 24);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_lba_mi],
0, blkno >> 32);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_lba_hi],
0, blkno >> 40);
/* current */
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_features],
0, features);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_seccnt],
0, count);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_lba_lo],
0, blkno);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_lba_mi],
0, blkno >> 8);
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_lba_hi],
0, blkno >> 16);
}
/* Send command. */
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_command], 0, command);
return;
}
/*
* Simplified version of wdccommand(). Unbusy/ready/drq must be
* tested by the caller.
*/
void
wdccommandshort(struct ata_channel *chp, int drive, int command)
{
struct wdc_softc *wdc = CHAN_TO_WDC(chp);
struct wdc_regs *wdr = &wdc->regs[chp->ch_channel];
ATADEBUG_PRINT(("wdccommandshort %s:%d:%d command 0x%x\n",
device_xname(chp->ch_atac->atac_dev), chp->ch_channel, drive,
command), DEBUG_FUNCS);
if (wdc->select)
wdc->select(chp,drive);
/* Select drive. */
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_sdh], 0,
WDSD_IBM | (drive << 4));
bus_space_write_1(wdr->cmd_iot, wdr->cmd_iohs[wd_command], 0, command);
}
static void
__wdcerror(struct ata_channel *chp, const char *msg)
{
struct atac_softc *atac = chp->ch_atac;
struct ata_xfer *xfer = ata_queue_get_active_xfer(chp);
if (xfer == NULL)
aprint_error("%s:%d: %s\n", device_xname(atac->atac_dev),
chp->ch_channel, msg);
else
aprint_error("%s:%d:%d: %s\n", device_xname(atac->atac_dev),
chp->ch_channel, xfer->c_drive, msg);
}
/*
* the bit bucket
*/
void
wdcbit_bucket(struct ata_channel *chp, int size)
{
struct wdc_regs *wdr = CHAN_TO_WDC_REGS(chp);
for (; size >= 2; size -= 2)
(void)bus_space_read_2(wdr->cmd_iot, wdr->cmd_iohs[wd_data], 0);
if (size)
(void)bus_space_read_1(wdr->cmd_iot, wdr->cmd_iohs[wd_data], 0);
}
static void
wdc_datain_pio(struct ata_channel *chp, int flags, void *bf, size_t len)
{
struct wdc_regs *wdr = CHAN_TO_WDC_REGS(chp);
#ifndef __NO_STRICT_ALIGNMENT
if ((uintptr_t)bf & 1)
goto unaligned;
if ((flags & ATA_DRIVE_CAP32) && ((uintptr_t)bf & 3))
goto unaligned;
#endif
if (flags & ATA_DRIVE_NOSTREAM) {
if ((flags & ATA_DRIVE_CAP32) && len > 3) {
bus_space_read_multi_4(wdr->data32iot,
wdr->data32ioh, 0, bf, len >> 2);
bf = (char *)bf + (len & ~3);
len &= 3;
}
if (len > 1) {
bus_space_read_multi_2(wdr->cmd_iot,
wdr->cmd_iohs[wd_data], 0, bf, len >> 1);
bf = (char *)bf + (len & ~1);
len &= 1;
}
} else {
if ((flags & ATA_DRIVE_CAP32) && len > 3) {
bus_space_read_multi_stream_4(wdr->data32iot,
wdr->data32ioh, 0, bf, len >> 2);
bf = (char *)bf + (len & ~3);
len &= 3;
}
if (len > 1) {
bus_space_read_multi_stream_2(wdr->cmd_iot,
wdr->cmd_iohs[wd_data], 0, bf, len >> 1);
bf = (char *)bf + (len & ~1);
len &= 1;
}
}
if (len)
*((uint8_t *)bf) = bus_space_read_1(wdr->cmd_iot,
wdr->cmd_iohs[wd_data], 0);
return;
#ifndef __NO_STRICT_ALIGNMENT
unaligned:
if (flags & ATA_DRIVE_NOSTREAM) {
if (flags & ATA_DRIVE_CAP32) {
while (len > 3) {
uint32_t val;
val = bus_space_read_4(wdr->data32iot,
wdr->data32ioh, 0);
memcpy(bf, &val, 4);
bf = (char *)bf + 4;
len -= 4;
}
}
while (len > 1) {
uint16_t val;
val = bus_space_read_2(wdr->cmd_iot,
wdr->cmd_iohs[wd_data], 0);
memcpy(bf, &val, 2);
bf = (char *)bf + 2;
len -= 2;
}
} else {
if (flags & ATA_DRIVE_CAP32) {
while (len > 3) {
uint32_t val;
val = bus_space_read_stream_4(wdr->data32iot,
wdr->data32ioh, 0);
memcpy(bf, &val, 4);
bf = (char *)bf + 4;
len -= 4;
}
}
while (len > 1) {
uint16_t val;
val = bus_space_read_stream_2(wdr->cmd_iot,
wdr->cmd_iohs[wd_data], 0);
memcpy(bf, &val, 2);
bf = (char *)bf + 2;
len -= 2;
}
}
#endif
}
static void
wdc_dataout_pio(struct ata_channel *chp, int flags, void *bf, size_t len)
{
struct wdc_regs *wdr = CHAN_TO_WDC_REGS(chp);
#ifndef __NO_STRICT_ALIGNMENT
if ((uintptr_t)bf & 1)
goto unaligned;
if ((flags & ATA_DRIVE_CAP32) && ((uintptr_t)bf & 3))
goto unaligned;
#endif
if (flags & ATA_DRIVE_NOSTREAM) {
if (flags & ATA_DRIVE_CAP32) {
bus_space_write_multi_4(wdr->data32iot,
wdr->data32ioh, 0, bf, len >> 2);
bf = (char *)bf + (len & ~3);
len &= 3;
}
if (len) {
bus_space_write_multi_2(wdr->cmd_iot,
wdr->cmd_iohs[wd_data], 0, bf, len >> 1);
}
} else {
if (flags & ATA_DRIVE_CAP32) {
bus_space_write_multi_stream_4(wdr->data32iot,
wdr->data32ioh, 0, bf, len >> 2);
bf = (char *)bf + (len & ~3);
len &= 3;
}
if (len) {
bus_space_write_multi_stream_2(wdr->cmd_iot,
wdr->cmd_iohs[wd_data], 0, bf, len >> 1);
}
}
return;
#ifndef __NO_STRICT_ALIGNMENT
unaligned:
if (flags & ATA_DRIVE_NOSTREAM) {
if (flags & ATA_DRIVE_CAP32) {
while (len > 3) {
uint32_t val;
memcpy(&val, bf, 4);
bus_space_write_4(wdr->data32iot,
wdr->data32ioh, 0, val);
bf = (char *)bf + 4;
len -= 4;
}
}
while (len > 1) {
uint16_t val;
memcpy(&val, bf, 2);
bus_space_write_2(wdr->cmd_iot,
wdr->cmd_iohs[wd_data], 0, val);
bf = (char *)bf + 2;
len -= 2;
}
} else {
if (flags & ATA_DRIVE_CAP32) {
while (len > 3) {
uint32_t val;
memcpy(&val, bf, 4);
bus_space_write_stream_4(wdr->data32iot,
wdr->data32ioh, 0, val);
bf = (char *)bf + 4;
len -= 4;
}
}
while (len > 1) {
uint16_t val;
memcpy(&val, bf, 2);
bus_space_write_stream_2(wdr->cmd_iot,
wdr->cmd_iohs[wd_data], 0, val);
bf = (char *)bf + 2;
len -= 2;
}
}
#endif
}