NetBSD/sys/arch/hp300/stand/if_le.c

680 lines
16 KiB
C

/* $NetBSD: if_le.c,v 1.8 1996/01/01 18:10:54 thorpej Exp $ */
/*
* Copyright (c) 1993 Adam Glass
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Adam Glass.
* 4. The name of the Author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Adam Glass ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <lib/libsa/netif.h>
#include <hp300/dev/device.h>
#include <hp300/stand/if_lereg.h>
#include "samachdep.h"
#ifndef NLE
#define NLE 1
#endif
#ifdef LE_DEBUG
int le_debug = 0;
#endif
#define ETHER_MIN_LEN 64
#define ETHER_MAX_LEN 1518
#define ETHER_ADDR_LEN 6
int le_probe();
int le_match();
void le_init();
int le_get();
int le_put();
void le_end();
struct le_sel {
int le_id;
int le_regs;
int le_mem;
int le_nvram;
int le_heat;
int le_bonus;
} le0conf[] = {
/* offsets for: ID REGS MEM NVRAM le_heat le_bonus*/
{ 0, 0x4000, 0x8000, 0xC008, 1, 10 }
};
extern struct netif_stats le_stats[];
struct netif_dif le_ifs[] = {
/* dif_unit dif_nsel dif_stats dif_private */
{ 0, NENTS(le0conf), &le_stats[0], le0conf, },
};
struct netif_stats le_stats[NENTS(le_ifs)];
struct netif_driver le_driver = {
"le", /* netif_bname */
le_match, /* netif_match */
le_probe, /* netif_probe */
le_init, /* netif_init */
le_get, /* netif_get */
le_put, /* netif_put */
le_end, /* netif_end */
le_ifs, /* netif_ifs */
NENTS(le_ifs) /* netif_nifs */
};
struct le_softc {
struct lereg0 *sc_r0; /* DIO registers */
struct lereg1 *sc_r1; /* LANCE registers */
void *sc_mem;
struct init_block *sc_init;
struct mds *sc_rd, *sc_td;
u_char *sc_rbuf, *sc_tbuf;
int sc_next_rd, sc_next_td;
u_char sc_addr[ETHER_ADDR_LEN];
} le_softc[NLE];
static inline void
lewrcsr(sc, port, val)
struct le_softc *sc;
register u_short port;
register u_short val;
{
register struct lereg0 *ler0 = sc->sc_r0;
register struct lereg1 *ler1 = sc->sc_r1;
do {
ler1->ler1_rap = port;
} while ((ler0->ler0_status & LE_ACK) == 0);
do {
ler1->ler1_rdp = val;
} while ((ler0->ler0_status & LE_ACK) == 0);
}
static inline u_short
lerdcsr(sc, port)
struct le_softc *sc;
register u_short port;
{
register struct lereg0 *ler0 = sc->sc_r0;
register struct lereg1 *ler1 = sc->sc_r1;
register u_short val;
do {
ler1->ler1_rap = port;
} while ((ler0->ler0_status & LE_ACK) == 0);
do {
val = ler1->ler1_rdp;
} while ((ler0->ler0_status & LE_ACK) == 0);
return (val);
}
leinit()
{
extern struct hp_hw sc_table[];
register struct hp_hw *hw;
struct le_softc *sc;
struct le_sel *sels;
register int i, n;
char *cp;
i = 0;
for (hw = sc_table; i < NLE && hw < &sc_table[MAXCTLRS]; hw++) {
#ifdef LE_DEBUG
if (le_debug)
printf("found type %x\n", hw->hw_type);
#endif
#if 0
if (!HW_ISDEV(hw, D_LAN))
continue;
#endif
sels = (struct le_sel *)le_ifs[i].dif_private;
sc = &le_softc[i];
sc->sc_r0 = (struct lereg0 *)(sels->le_id + (int)hw->hw_kva);
if (sc->sc_r0->ler0_id != LEID)
continue;
sc->sc_r1 = (struct lereg1 *)(sels->le_regs + (int)hw->hw_kva);
sc->sc_mem = (struct lereg2 *)(sels->le_mem + (int)hw->hw_kva);
#ifdef LE_DEBUG
if (le_debug)
printf("le%d: DIO=%x regs=%x mem=%x\n",
i, sc->sc_r0, sc->sc_r1, sc->sc_mem);
#endif
/*
* Read the ethernet address off the board, one nibble at a time.
*/
cp = (char *)(sels->le_nvram + (int)hw->hw_kva);
for (n = 0; n < sizeof(sc->sc_addr); n++) {
sc->sc_addr[n] = (*++cp & 0xF) << 4;
cp++;
sc->sc_addr[n] |= *++cp & 0xF;
cp++;
}
#ifdef LE_DEBUG
if (le_debug)
printf("le%d at sc%d physical address %s\n",
i, hw->hw_sc, ether_sprintf(sc->sc_addr));
#endif
hw->hw_pa = (caddr_t) i; /* XXX for autoconfig */
i++;
}
}
int
le_match(nif, machdep_hint)
struct netif *nif;
void *machdep_hint;
{
struct le_sel *sels;
char *name = machdep_hint;
int rv = 0;
if (nif->nif_sel < le_ifs[nif->nif_unit].dif_nsel) {
sels = (struct le_sel *)le_ifs[nif->nif_unit].dif_private;
rv = sels[nif->nif_sel].le_heat;
if (name && !strncmp(le_driver.netif_bname, name, 2))
rv += sels[nif->nif_sel].le_bonus;
}
#ifdef LE_DEBUG
if (le_debug)
printf("le%d: sel %d --> %d\n", nif->nif_unit, nif->nif_sel,
rv);
#endif
return rv;
}
le_probe(nif, machdep_hint)
struct netif *nif;
void *machdep_hint;
{
char *cp;
int i;
/* the set unit is the current unit */
#ifdef LE_DEBUG
if (le_debug)
printf("le%d.%d: le_probe called\n", nif->nif_unit, nif->nif_sel);
#endif
/* XXX reset controller */
return 0;
}
#ifdef MEM_SUMMARY
void le_mem_summary(unit)
{
struct lereg1 *ler1 = le_softc.sc_r1;
struct lereg2 *ler2 = le_softc.sc_r2;
register int i;
printf("le%d: ler1 = %x\n", unit, ler1);
printf("le%d: ler2 = %x\n", unit, ler2);
#if 0
ler1->ler1_rap = LE_CSR0;
ler1->ler1_rdp = LE_STOP;
printf("le%d: csr0 = %x\n", unit, ler1->ler1_rdp);
ler1->ler1_rap = LE_CSR1;
printf("le%d: csr1 = %x\n", unit, ler1->ler1_rdp);
ler1->ler1_rap = LE_CSR2;
printf("le%d: csr2 = %x\n", unit, ler1->ler1_rdp);
ler1->ler1_rap = LE_CSR3;
printf("le%d: csr3 = %x\n", unit, ler1->ler1_rdp);
#endif
printf("le%d: ladrf[0] = %x\n", unit, ler2->ler2_ladrf[0]);
printf("le%d: ladrf[1] = %x\n", unit, ler2->ler2_ladrf[1]);
printf("le%d: ler2_rdra = %x\n", unit, ler2->ler2_rdra);
printf("le%d: ler2_rlen = %x\n", unit, ler2->ler2_rlen);
printf("le%d: ler2_tdra = %x\n", unit, ler2->ler2_tdra);
printf("le%d: ler2_tlen = %x\n", unit, ler2->ler2_tlen);
for (i = 0; i < LERBUF; i++) {
printf("le%d: ler2_rmd[%d].rmd0 (ladr) = %x\n", unit, i,
ler2->ler2_rmd[i].rmd0);
printf("le%d: ler2_rmd[%d].rmd1 = %x\n", unit, i,
ler2->ler2_rmd[i].rmd1);
printf("le%d: ler2_rmd[%d].rmd2 (-bcnt) = %x\n", unit, i,
ler2->ler2_rmd[i].rmd2);
printf("le%d: ler2_rmd[%d].rmd3 (mcnt) = %x\n", unit, i,
ler2->ler2_rmd[i].rmd3);
printf("le%d: ler2_rbuf[%d] addr = %x\n", unit, i,
&ler2->ler2_rbuf[i]);
}
for (i = 0; i < LETBUF; i++) {
printf("le%d: ler2_tmd[%d].tmd0 = %x\n", unit, i,
ler2->ler2_tmd[i].tmd0);
printf("le%d: ler2_tmd[%d].tmd1 = %x\n", unit, i,
ler2->ler2_tmd[i].tmd1);
printf("le%d: ler2_tmd[%d].tmd2 (bcnt) = %x\n", unit, i,
ler2->ler2_tmd[i].tmd2);
printf("le%d: ler2_tmd[%d].tmd3 = %x\n", unit, i,
ler2->ler2_tmd[i].tmd3);
printf("le%d: ler2_tbuf[%d] addr = %x\n", unit, i,
&ler2->ler2_tbuf[i]);
}
}
#else
#define le_mem_summary(u)
#endif
void
le_error(unit, str, stat)
int unit;
char *str;
u_short stat;
{
if (stat & LE_BABL)
panic("le%d: been babbling, found by '%s'\n", unit, str);
if (stat & LE_CERR)
le_stats[unit].collision_error++;
if (stat & LE_MISS)
le_stats[unit].missed++;
if (stat & LE_MERR) {
printf("le%d: memory error in '%s'\n", unit, str);
le_mem_summary(unit);
panic("bye");
}
}
#define LANCE_ADDR(sc, a) \
((u_long)(a) - (u_long)sc->sc_mem)
/* LANCE initialization block set up. */
void
lememinit(sc)
register struct le_softc *sc;
{
int i;
void *mem;
u_long a;
/*
* At this point we assume that the memory allocated to the Lance is
* quadword aligned. If it isn't then the initialisation is going
* fail later on.
*/
mem = sc->sc_mem;
sc->sc_init = mem;
sc->sc_init->mode = LE_NORMAL;
for (i = 0; i < ETHER_ADDR_LEN; i++)
sc->sc_init->padr[i] = sc->sc_addr[i^1];
sc->sc_init->ladrf[0] = sc->sc_init->ladrf[1] = 0;
mem += sizeof(struct init_block);
sc->sc_rd = mem;
a = LANCE_ADDR(sc, mem);
sc->sc_init->rdra = a;
sc->sc_init->rlen = ((a >> 16) & 0xff) | (RLEN << 13);
mem += NRBUF * sizeof(struct mds);
sc->sc_td = mem;
a = LANCE_ADDR(sc, mem);
sc->sc_init->tdra = a;
sc->sc_init->tlen = ((a >> 16) & 0xff) | (TLEN << 13);
mem += NTBUF * sizeof(struct mds);
/*
* Set up receive ring descriptors.
*/
sc->sc_rbuf = mem;
for (i = 0; i < NRBUF; i++) {
a = LANCE_ADDR(sc, mem);
sc->sc_rd[i].addr = a;
sc->sc_rd[i].flags = ((a >> 16) & 0xff) | LE_OWN;
sc->sc_rd[i].bcnt = -BUFSIZE;
sc->sc_rd[i].mcnt = 0;
mem += BUFSIZE;
}
/*
* Set up transmit ring descriptors.
*/
sc->sc_tbuf = mem;
for (i = 0; i < NTBUF; i++) {
a = LANCE_ADDR(sc, mem);
sc->sc_td[i].addr = a;
sc->sc_td[i].flags = ((a >> 16) & 0xff);
sc->sc_td[i].bcnt = 0xf000;
sc->sc_td[i].mcnt = 0;
mem += BUFSIZE;
}
}
void
le_reset(unit, myea)
int unit;
u_char *myea;
{
struct le_softc *sc = &le_softc[unit];
u_long a;
int timo = 100000, stat, i;
#ifdef LE_DEBUG
if (le_debug) {
printf("le%d: le_reset called\n", unit);
printf(" r0=%x, r1=%x, mem=%x, addr=%x:%x:%x:%x:%x:%x\n",
sc->sc_r0, sc->sc_r1, sc->sc_mem,
sc->sc_addr[0], sc->sc_addr[1], sc->sc_addr[2],
sc->sc_addr[3], sc->sc_addr[4], sc->sc_addr[5]);
}
#endif
lewrcsr(sc, 0, LE_STOP);
for (timo = 1000; timo; timo--);
sc->sc_next_rd = sc->sc_next_td = 0;
/* Set up LANCE init block. */
lememinit(sc);
if (myea)
bcopy(sc->sc_addr, myea, ETHER_ADDR_LEN);
/* Turn on byte swapping. */
lewrcsr(sc, 3, LE_BSWP);
/* Give LANCE the physical address of its init block. */
a = LANCE_ADDR(sc, sc->sc_init);
lewrcsr(sc, 1, a);
lewrcsr(sc, 2, (a >> 16) & 0xff);
#ifdef LE_DEBUG
if (le_debug)
printf("le%d: before init\n", unit);
#endif
/* Try to initialize the LANCE. */
lewrcsr(sc, 0, LE_INIT);
/* Wait for initialization to finish. */
for (timo = 100000; timo; timo--)
if (lerdcsr(sc, 0) & LE_IDON)
break;
if (lerdcsr(sc, 0) & LE_IDON) {
/* Start the LANCE. */
lewrcsr(sc, 0, LE_INEA | LE_STRT | LE_IDON);
} else
printf("le%d: card failed to initialize\n", unit);
#ifdef LE_DEBUG
if (le_debug)
printf("le%d: after init\n", unit);
#endif
le_mem_summary(unit);
}
int
le_poll(desc, pkt, len)
struct iodesc *desc;
void *pkt;
int len;
{
struct netif *nif = desc->io_netif;
int unit = /*nif->nif_unit*/0;
struct le_softc *sc = &le_softc[unit];
volatile struct lereg0 *ler0 = sc->sc_r0;
volatile struct lereg1 *ler1 = sc->sc_r1;
int length;
volatile struct mds *cdm;
register int stat;
#ifdef LE_DEBUG
if (/*le_debug*/0)
printf("le%d: le_poll called. next_rd=%d\n", unit, sc->sc_next_rd);
#endif
stat = lerdcsr(sc, 0);
lewrcsr(sc, 0, stat & (LE_BABL | LE_MISS | LE_MERR | LE_RINT));
cdm = &sc->sc_rd[sc->sc_next_rd];
if (cdm->flags & LE_OWN)
return 0;
#ifdef LE_DEBUG
if (le_debug) {
printf("next_rd %d\n", sc->sc_next_rd);
printf("cdm->flags %x\n", cdm->flags);
printf("cdm->bcnt %x, cdm->mcnt %x\n", cdm->bcnt, cdm->mcnt);
printf("cdm->rbuf msg %d buf %d\n", cdm->mcnt, -cdm->bcnt );
}
#endif
if (stat & (LE_BABL | LE_CERR | LE_MISS | LE_MERR))
le_error(unit, "le_poll", stat);
if (cdm->flags & (LE_FRAM | LE_OFLO | LE_CRC | LE_RBUFF)) {
printf("le%d_poll: rmd status 0x%x\n", unit, cdm->flags);
length = 0;
goto cleanup;
}
if ((cdm->flags & (LE_STP|LE_ENP)) != (LE_STP|LE_ENP))
panic("le_poll: chained packet\n");
length = cdm->mcnt;
#ifdef LE_DEBUG
if (le_debug)
printf("le_poll: length %d\n", length);
#endif
if (length >= BUFSIZE) {
length = 0;
panic("csr0 when bad things happen: %x\n", stat);
goto cleanup;
}
if (!length)
goto cleanup;
length -= 4;
if (length > 0) {
/*
* If the length of the packet is greater than the size of the
* buffer, we have to truncate it, to avoid Bad Things.
* XXX Is this the right thing to do?
*/
if (length > len)
length = len;
bcopy(sc->sc_rbuf + (BUFSIZE * sc->sc_next_rd), pkt, length);
}
cleanup:
cdm->mcnt = 0;
cdm->flags |= LE_OWN;
if (++sc->sc_next_rd >= NRBUF)
sc->sc_next_rd = 0;
#ifdef LE_DEBUG
if (le_debug)
printf("new next_rd %d\n", sc->sc_next_rd);
#endif
return length;
}
int
le_put(desc, pkt, len)
struct iodesc *desc;
void *pkt;
int len;
{
struct netif *nif = desc->io_netif;
int unit = /*nif->nif_unit*/0;
struct le_softc *sc = &le_softc[unit];
volatile struct lereg0 *ler0 = sc->sc_r0;
volatile struct lereg1 *ler1 = sc->sc_r1;
volatile struct mds *cdm;
int timo, i, stat;
le_put_loop:
timo = 100000;
#ifdef LE_DEBUG
if (le_debug)
printf("le%d: le_put called. next_td=%d\n", unit, sc->sc_next_td);
#endif
stat = lerdcsr(sc, 0);
lewrcsr(sc, 0, stat & (LE_BABL | LE_MISS | LE_MERR | LE_TINT));
if (stat & (LE_BABL | LE_CERR | LE_MISS | LE_MERR))
le_error(unit, "le_put(way before xmit)", stat);
cdm = &sc->sc_td[sc->sc_next_td];
i = 0;
#if 0
while (cdm->flags & LE_OWN) {
if ((i % 100) == 0)
printf("le%d: output buffer busy - flags=%x\n",
unit, cdm->flags);
if (i++ > 500) break;
}
if (cdm->flags & LE_OWN)
getchar();
#else
while (cdm->flags & LE_OWN);
#endif
bcopy(pkt, sc->sc_tbuf + (BUFSIZE * sc->sc_next_td), len);
if (len < ETHER_MIN_LEN)
cdm->bcnt = -ETHER_MIN_LEN;
else
cdm->bcnt = -len;
cdm->mcnt = 0;
cdm->flags |= LE_OWN | LE_STP | LE_ENP;
stat = lerdcsr(sc, 0);
if (stat & (LE_BABL | LE_CERR | LE_MISS | LE_MERR))
le_error(unit, "le_put(before xmit)", stat);
lewrcsr(sc, 0, LE_TDMD);
stat = lerdcsr(sc, 0);
if (stat & (LE_BABL | LE_CERR | LE_MISS | LE_MERR))
le_error(unit, "le_put(after xmit)", stat);
do {
if (--timo == 0) {
printf("le%d: transmit timeout, stat = 0x%x\n",
unit, stat);
if (stat & LE_SERR)
le_error(unit, "le_put(timeout)", stat);
if (stat & LE_INIT) {
printf("le%d: reset and retry packet\n");
lewrcsr(sc, 0, LE_TINT); /* sanity */
le_init();
goto le_put_loop;
}
break;
}
stat = lerdcsr(sc, 0);
} while ((stat & LE_TINT) == 0);
lewrcsr(sc, 0, LE_TINT);
if (stat & (LE_BABL |/* LE_CERR |*/ LE_MISS | LE_MERR)) {
printf("le_put: xmit error, buf %d\n", sc->sc_next_td);
le_error(unit, "le_put(xmit error)", stat);
}
if (++sc->sc_next_td >= NTBUF)
sc->sc_next_td = 0;
if (cdm->flags & LE_DEF)
le_stats[unit].deferred++;
if (cdm->flags & LE_ONE)
le_stats[unit].collisions++;
if (cdm->flags & LE_MORE)
le_stats[unit].collisions+=2;
if (cdm->flags & LE_ERR) {
printf("le%d: transmit error, error = 0x%x\n", unit,
cdm->mcnt);
return -1;
}
#ifdef LE_DEBUG
if (le_debug) {
printf("le%d: le_put() successful: sent %d\n", unit, len);
printf("le%d: le_put(): flags: %x mcnt: %x\n", unit,
(unsigned int) cdm->flags,
(unsigned int) cdm->mcnt);
}
#endif
return len;
}
int
le_get(desc, pkt, len, timeout)
struct iodesc *desc;
void *pkt;
int len;
time_t timeout;
{
time_t t;
int cc;
t = getsecs();
cc = 0;
while (((getsecs() - t) < timeout) && !cc) {
cc = le_poll(desc, pkt, len);
}
return cc;
}
void
le_init(desc, machdep_hint)
struct iodesc *desc;
void *machdep_hint;
{
struct netif *nif = desc->io_netif;
int unit = nif->nif_unit;
/* Get machine's common ethernet interface. This is done in leinit() */
/* machdep_common_ether(myea); */
leinit();
#ifdef LE_DEBUG
if (le_debug)
printf("le%d: le_init called\n", unit);
#endif
unit = 0;
le_reset(unit, desc->myea);
}
void
le_end(nif)
struct netif *nif;
{
int unit = nif->nif_unit;
#ifdef LE_DEBUG
if (le_debug)
printf("le%d: le_end called\n", unit);
#endif
lewrcsr(&le_softc[unit], 0, LE_STOP);
}