NetBSD/sys/arch/hpc/stand/hpcboot/memory.cpp

382 lines
9.4 KiB
C++

/* $NetBSD: memory.cpp,v 1.4 2001/05/16 08:37:44 enami Exp $ */
/*-
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by UCHIYAMA Yasushi.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <memory.h>
#include <console.h>
MemoryManager::MemoryManager(Console *&cons, size_t pagesize)
: _cons(cons)
{
_debug = FALSE;
_page_size =pagesize;
int mask = _page_size;
for (_page_shift = 0; !(mask & 1); _page_shift++)
mask >>= 1;
_page_per_region = WCE_REGION_SIZE / _page_size;
_nbank = 0;
DPRINTF((TEXT("Page size %dbyte %dpages/region\n"),
_page_size , _page_per_region));
_addr_table_idx = 0;
_addr_table = 0;
_memory = 0;
}
MemoryManager::~MemoryManager(void)
{
if (_memory)
VirtualFree(LPVOID(_memory), 0, MEM_RELEASE);
}
void
MemoryManager::loadBank(paddr_t paddr, psize_t psize)
{
struct MemoryManager::bank *b = &_bank[_nbank++];
b->addr = paddr;
b->size = psize;
DPRINTF((TEXT("Bank#%d 0x%08x size 0x%08x\n"), _nbank - 1,
b->addr, b->size));
}
BOOL
MemoryManager::reservePage(vsize_t size, BOOL page_commit)
{
// My virtual memory space
vaddr_t vbase;
vsize_t vsize;
int i, npage;
if (size == 0)
return FALSE;
// reserve all virtual memory.
vsize = roundRegion(size);
npage = roundPage(size) / _page_size;
size_t tabsz = sizeof(struct AddressTranslationTable) * npage;
_addr_table = static_cast <struct AddressTranslationTable *>
(malloc(tabsz));
if (_addr_table == NULL) {
DPRINTF((TEXT("can't allocate memory for translation table.\n")));
return FALSE;
}
DPRINTF((TEXT("address translation table %d pages.(%d byte)\n"), npage,
tabsz));
if (page_commit)
vbase = vaddr_t(VirtualAlloc(0, vsize, MEM_RESERVE,
PAGE_NOACCESS));
else
vbase = vaddr_t(VirtualAlloc(0, vsize, MEM_COMMIT,
PAGE_READWRITE | PAGE_NOCACHE));
if (vbase == 0) {
DPRINTF((TEXT("can't allocate memory\n")));
return FALSE;
}
_memory = vbase;
// find physical address of allocated page.
AddressTranslationTable *tab = _addr_table;
_naddr_table = 0;
for (i = 0; i < npage; i++) {
vaddr_t vaddr;
paddr_t paddr = ~0;
if (page_commit)
// now map to physical page.
vaddr = vaddr_t(VirtualAlloc(
LPVOID(vbase + _page_size * i),
_page_size, MEM_COMMIT,
PAGE_READWRITE | PAGE_NOCACHE));
else
vaddr = vbase + _page_size * i;
paddr = searchPage(vaddr);
if (paddr == ~0) {
DPRINTF((TEXT("page#%d not found\n"), i));
break;
} else {
#ifdef MEMORY_MAP_DEBUG
DPRINTF((TEXT("page %d vaddr=0x%08x paddr=0x%08x\n"),
_naddr_table, vaddr, paddr));
#endif
tab->vaddr = vaddr;
tab->paddr = paddr;
++tab;
++_naddr_table;
}
}
#ifdef MEMORY_MAP_DEBUG
// dump virtual <-> physical address table
tab = _addr_table;
for (i = 0; i < _naddr_table;) {
for (int j = 0; j < 4; j++, i++, tab++)
DPRINTF((TEXT("%08x=%08x "), tab->vaddr, tab->paddr));
DPRINTF((TEXT("\n")));
}
#endif
DPRINTF((TEXT("allocated %d page. mapped %d page.\n"), npage,
_naddr_table));
return TRUE;
}
BOOL
MemoryManager::getPage(vaddr_t &vaddr, paddr_t &paddr)
{
/* get plain page from the top */
if (_addr_table_idx >= _naddr_table ||
_addr_table == NULL)
return FALSE;
int idx = --_naddr_table;
AddressTranslationTable *tab = &_addr_table[idx];
vaddr = tab->vaddr;
paddr = tab->paddr;
return TRUE;
}
BOOL
MemoryManager::getTaggedPage(vaddr_t &vaddr, paddr_t &paddr)
{
/* get tagged page from the bottom */
if (_addr_table_idx >= _naddr_table ||
_addr_table == NULL) {
DPRINTF((TEXT("page insufficient.\n")));
return FALSE;
}
AddressTranslationTable *tab =
&_addr_table[_addr_table_idx++];
vaddr = tab->vaddr;
paddr = tab->paddr;
return TRUE;
}
BOOL
MemoryManager::getTaggedPage(vaddr_t &v, paddr_t &p,
struct PageTag **pvec, paddr_t &pvec_paddr)
{
if (!getTaggedPage(v, p))
return FALSE;
*pvec =(struct PageTag *)v;
memset(*pvec, 0, sizeof(struct PageTag));
v += sizeof(struct PageTag);
pvec_paddr = p;
p += sizeof(struct PageTag);
return TRUE;
}
vaddr_t
MemoryManager::mapPhysicalPage(paddr_t paddr, psize_t size, u_int32_t flags)
{
paddr_t pstart = truncPage(paddr);
paddr_t pend = roundPage(paddr + size);
psize_t psize = pend - pstart;
LPVOID p = VirtualAlloc(0, psize, MEM_RESERVE, PAGE_NOACCESS);
int ok = VirtualCopy(p, LPVOID(pstart >> 8), psize,
flags | PAGE_NOCACHE | PAGE_PHYSICAL);
if (!ok) {
DPRINTF((TEXT("can't map physical address 0x%08x\n"), paddr));
return ~0;
}
#if 0
DPRINTF((TEXT("start=0x%08x end=0x%08x size=0x%08x return=0x%08x\n"),
pstart, pend, psize, vaddr_t(p) + vaddr_t(paddr - pstart)));
#endif
return vaddr_t(p) + vaddr_t(paddr - pstart);
}
void
MemoryManager::unmapPhysicalPage(vaddr_t vaddr)
{
int ok = VirtualFree(LPVOID(truncPage(vaddr)), 0, MEM_RELEASE);
if (!ok)
DPRINTF((TEXT("can't release memory\n")));
}
u_int32_t
MemoryManager::readPhysical4(paddr_t paddr)
{
vaddr_t v = mapPhysicalPage(paddr, 4, PAGE_READONLY);
u_int32_t val = *(u_int32_t *)v;
unmapPhysicalPage(v);
return val;
}
//
// Use LockPages()
//
MemoryManager_LockPages::MemoryManager_LockPages
(BOOL(*lock_pages)(LPVOID, DWORD, PDWORD, int),
BOOL(*unlock_pages)(LPVOID, DWORD),
Console *&cons, size_t pagesize, int shift)
: MemoryManager(cons, pagesize)
{
_lock_pages = lock_pages;
_unlock_pages = unlock_pages;
_shift = shift;
DPRINTF((TEXT("use LockPages method.\n")));
}
MemoryManager_LockPages::~MemoryManager_LockPages(void)
{
}
paddr_t
MemoryManager_LockPages::searchPage(vaddr_t vaddr)
{
paddr_t paddr = ~0;
if (!_lock_pages(LPVOID(vaddr), _page_size, PDWORD(&paddr), 1))
return paddr;
if (!_unlock_pages(LPVOID(vaddr), _page_size)) {
DPRINTF((TEXT("can't unlock pages\n")));
}
return(paddr >>(_page_shift - _shift)) << _page_shift;
}
//
// Use VirtualCopy()
//
MemoryManager_VirtualCopy::MemoryManager_VirtualCopy(Console *&cons,
size_t pagesize)
: MemoryManager(cons, pagesize)
{
_search_guess = 0;
DPRINTF((TEXT("use VirtualCopy method.\n")));
}
MemoryManager_VirtualCopy::~MemoryManager_VirtualCopy(void)
{
}
paddr_t
MemoryManager_VirtualCopy::searchPage(vaddr_t vaddr)
{
paddr_t paddr = ~0;
int i;
// search all D-RAM bank.
setMagic(vaddr);
retry:
for (i = 0; i < _nbank; i++) {
paddr = searchBank(i);
if (paddr != ~0)
break;
}
if (_search_guess != 0 && paddr == ~0) {
_search_guess = 0;
goto retry;
}
clearMagic();
return paddr;
}
paddr_t
MemoryManager_VirtualCopy::searchBank(int banknum)
{
LPVOID ref;
paddr_t paddr, pstart, pend, pfound = ~0;
paddr_t bstart, bend;
vaddr_t ofs;
bstart = _bank[banknum].addr;
bend = _bank[banknum].addr + _bank[banknum].size;
pstart = _search_guess ? _search_guess : bstart;
pend = bend;
if (pstart < bstart || pstart >= pend)
return pfound;
// reserve physical reference region
ref = VirtualAlloc(0, BLOCK_SIZE, MEM_RESERVE, PAGE_NOACCESS);
if (ref == 0) {
DPRINTF((TEXT("can't allocate virtual memory.\n")));
return pfound;
}
for (paddr = pstart; paddr < pend; paddr += BLOCK_SIZE) {
if (!VirtualCopy(ref, LPVOID(paddr >> 8), BLOCK_SIZE,
PAGE_READONLY | PAGE_NOCACHE | PAGE_PHYSICAL)) {
DPRINTF((TEXT("can't map physical addr 0x%08x(->0x%08x)\n"),
ref, paddr));
goto release;
}
// search magic in this region.
ofs = checkMagicRegion(vaddr_t(ref), BLOCK_SIZE, _page_size);
// decommit reference region.
if (!VirtualFree(ref, BLOCK_SIZE, MEM_DECOMMIT)) {
DPRINTF((TEXT("can't decommit addr 0x%08x(->0x%08x)\n"),
ref, paddr));
goto release;
}
if (ofs != ~0) {
pfound = paddr + ofs;
_search_guess = paddr;
break;
}
}
release:
if (!VirtualFree(ref, 0, MEM_RELEASE))
DPRINTF((TEXT("can't release memory\n")));
return pfound;
}