NetBSD/gnu/dist/toolchain/gdb/lynx-nat.c

842 lines
20 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Native-dependent code for LynxOS.
Copyright 1993, 1994 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "target.h"
#include "gdbcore.h"
#include <sys/ptrace.h>
#include <sys/wait.h>
#include <sys/fpp.h>
static unsigned long registers_addr PARAMS ((int pid));
static void fetch_core_registers PARAMS ((char *, unsigned, int, CORE_ADDR));
#define X(ENTRY)(offsetof(struct econtext, ENTRY))
#ifdef I386
/* Mappings from tm-i386v.h */
static int regmap[] =
{
X (eax),
X (ecx),
X (edx),
X (ebx),
X (esp), /* sp */
X (ebp), /* fp */
X (esi),
X (edi),
X (eip), /* pc */
X (flags), /* ps */
X (cs),
X (ss),
X (ds),
X (es),
X (ecode), /* Lynx doesn't give us either fs or gs, so */
X (fault), /* we just substitute these two in the hopes
that they are useful. */
};
#endif /* I386 */
#ifdef M68K
/* Mappings from tm-m68k.h */
static int regmap[] =
{
X (regs[0]), /* d0 */
X (regs[1]), /* d1 */
X (regs[2]), /* d2 */
X (regs[3]), /* d3 */
X (regs[4]), /* d4 */
X (regs[5]), /* d5 */
X (regs[6]), /* d6 */
X (regs[7]), /* d7 */
X (regs[8]), /* a0 */
X (regs[9]), /* a1 */
X (regs[10]), /* a2 */
X (regs[11]), /* a3 */
X (regs[12]), /* a4 */
X (regs[13]), /* a5 */
X (regs[14]), /* fp */
offsetof (st_t, usp) - offsetof (st_t, ec), /* sp */
X (status), /* ps */
X (pc),
X (fregs[0 * 3]), /* fp0 */
X (fregs[1 * 3]), /* fp1 */
X (fregs[2 * 3]), /* fp2 */
X (fregs[3 * 3]), /* fp3 */
X (fregs[4 * 3]), /* fp4 */
X (fregs[5 * 3]), /* fp5 */
X (fregs[6 * 3]), /* fp6 */
X (fregs[7 * 3]), /* fp7 */
X (fcregs[0]), /* fpcontrol */
X (fcregs[1]), /* fpstatus */
X (fcregs[2]), /* fpiaddr */
X (ssw), /* fpcode */
X (fault), /* fpflags */
};
#endif /* M68K */
#ifdef SPARC
/* Mappings from tm-sparc.h */
#define FX(ENTRY)(offsetof(struct fcontext, ENTRY))
static int regmap[] =
{
-1, /* g0 */
X (g1),
X (g2),
X (g3),
X (g4),
-1, /* g5->g7 aren't saved by Lynx */
-1,
-1,
X (o[0]),
X (o[1]),
X (o[2]),
X (o[3]),
X (o[4]),
X (o[5]),
X (o[6]), /* sp */
X (o[7]), /* ra */
-1, -1, -1, -1, -1, -1, -1, -1, /* l0 -> l7 */
-1, -1, -1, -1, -1, -1, -1, -1, /* i0 -> i7 */
FX (f.fregs[0]), /* f0 */
FX (f.fregs[1]),
FX (f.fregs[2]),
FX (f.fregs[3]),
FX (f.fregs[4]),
FX (f.fregs[5]),
FX (f.fregs[6]),
FX (f.fregs[7]),
FX (f.fregs[8]),
FX (f.fregs[9]),
FX (f.fregs[10]),
FX (f.fregs[11]),
FX (f.fregs[12]),
FX (f.fregs[13]),
FX (f.fregs[14]),
FX (f.fregs[15]),
FX (f.fregs[16]),
FX (f.fregs[17]),
FX (f.fregs[18]),
FX (f.fregs[19]),
FX (f.fregs[20]),
FX (f.fregs[21]),
FX (f.fregs[22]),
FX (f.fregs[23]),
FX (f.fregs[24]),
FX (f.fregs[25]),
FX (f.fregs[26]),
FX (f.fregs[27]),
FX (f.fregs[28]),
FX (f.fregs[29]),
FX (f.fregs[30]),
FX (f.fregs[31]),
X (y),
X (psr),
X (wim),
X (tbr),
X (pc),
X (npc),
FX (fsr), /* fpsr */
-1, /* cpsr */
};
#endif /* SPARC */
#ifdef rs6000
static int regmap[] =
{
X (iregs[0]), /* r0 */
X (iregs[1]),
X (iregs[2]),
X (iregs[3]),
X (iregs[4]),
X (iregs[5]),
X (iregs[6]),
X (iregs[7]),
X (iregs[8]),
X (iregs[9]),
X (iregs[10]),
X (iregs[11]),
X (iregs[12]),
X (iregs[13]),
X (iregs[14]),
X (iregs[15]),
X (iregs[16]),
X (iregs[17]),
X (iregs[18]),
X (iregs[19]),
X (iregs[20]),
X (iregs[21]),
X (iregs[22]),
X (iregs[23]),
X (iregs[24]),
X (iregs[25]),
X (iregs[26]),
X (iregs[27]),
X (iregs[28]),
X (iregs[29]),
X (iregs[30]),
X (iregs[31]),
X (fregs[0]), /* f0 */
X (fregs[1]),
X (fregs[2]),
X (fregs[3]),
X (fregs[4]),
X (fregs[5]),
X (fregs[6]),
X (fregs[7]),
X (fregs[8]),
X (fregs[9]),
X (fregs[10]),
X (fregs[11]),
X (fregs[12]),
X (fregs[13]),
X (fregs[14]),
X (fregs[15]),
X (fregs[16]),
X (fregs[17]),
X (fregs[18]),
X (fregs[19]),
X (fregs[20]),
X (fregs[21]),
X (fregs[22]),
X (fregs[23]),
X (fregs[24]),
X (fregs[25]),
X (fregs[26]),
X (fregs[27]),
X (fregs[28]),
X (fregs[29]),
X (fregs[30]),
X (fregs[31]),
X (srr0), /* IAR (PC) */
X (srr1), /* MSR (PS) */
X (cr), /* CR */
X (lr), /* LR */
X (ctr), /* CTR */
X (xer), /* XER */
X (mq) /* MQ */
};
#endif /* rs6000 */
#ifdef SPARC
/* This routine handles some oddball cases for Sparc registers and LynxOS.
In partucular, it causes refs to G0, g5->7, and all fp regs to return zero.
It also handles knows where to find the I & L regs on the stack. */
void
fetch_inferior_registers (regno)
int regno;
{
int whatregs = 0;
#define WHATREGS_FLOAT 1
#define WHATREGS_GEN 2
#define WHATREGS_STACK 4
if (regno == -1)
whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
whatregs = WHATREGS_STACK;
else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
whatregs = WHATREGS_FLOAT;
else
whatregs = WHATREGS_GEN;
if (whatregs & WHATREGS_GEN)
{
struct econtext ec; /* general regs */
char buf[MAX_REGISTER_RAW_SIZE];
int retval;
int i;
errno = 0;
retval = ptrace (PTRACE_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE) & ec,
0);
if (errno)
perror_with_name ("ptrace(PTRACE_GETREGS)");
memset (buf, 0, REGISTER_RAW_SIZE (G0_REGNUM));
supply_register (G0_REGNUM, buf);
supply_register (TBR_REGNUM, (char *) &ec.tbr);
memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &ec.g1,
4 * REGISTER_RAW_SIZE (G1_REGNUM));
for (i = G1_REGNUM; i <= G1_REGNUM + 3; i++)
register_valid[i] = 1;
supply_register (PS_REGNUM, (char *) &ec.psr);
supply_register (Y_REGNUM, (char *) &ec.y);
supply_register (PC_REGNUM, (char *) &ec.pc);
supply_register (NPC_REGNUM, (char *) &ec.npc);
supply_register (WIM_REGNUM, (char *) &ec.wim);
memcpy (&registers[REGISTER_BYTE (O0_REGNUM)], ec.o,
8 * REGISTER_RAW_SIZE (O0_REGNUM));
for (i = O0_REGNUM; i <= O0_REGNUM + 7; i++)
register_valid[i] = 1;
}
if (whatregs & WHATREGS_STACK)
{
CORE_ADDR sp;
int i;
sp = read_register (SP_REGNUM);
target_read_memory (sp + FRAME_SAVED_I0,
&registers[REGISTER_BYTE (I0_REGNUM)],
8 * REGISTER_RAW_SIZE (I0_REGNUM));
for (i = I0_REGNUM; i <= I7_REGNUM; i++)
register_valid[i] = 1;
target_read_memory (sp + FRAME_SAVED_L0,
&registers[REGISTER_BYTE (L0_REGNUM)],
8 * REGISTER_RAW_SIZE (L0_REGNUM));
for (i = L0_REGNUM; i <= L0_REGNUM + 7; i++)
register_valid[i] = 1;
}
if (whatregs & WHATREGS_FLOAT)
{
struct fcontext fc; /* fp regs */
int retval;
int i;
errno = 0;
retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) & fc,
0);
if (errno)
perror_with_name ("ptrace(PTRACE_GETFPREGS)");
memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fc.f.fregs,
32 * REGISTER_RAW_SIZE (FP0_REGNUM));
for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
register_valid[i] = 1;
supply_register (FPS_REGNUM, (char *) &fc.fsr);
}
}
/* This routine handles storing of the I & L regs for the Sparc. The trick
here is that they actually live on the stack. The really tricky part is
that when changing the stack pointer, the I & L regs must be written to
where the new SP points, otherwise the regs will be incorrect when the
process is started up again. We assume that the I & L regs are valid at
this point. */
void
store_inferior_registers (regno)
int regno;
{
int whatregs = 0;
if (regno == -1)
whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
whatregs = WHATREGS_STACK;
else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
whatregs = WHATREGS_FLOAT;
else if (regno == SP_REGNUM)
whatregs = WHATREGS_STACK | WHATREGS_GEN;
else
whatregs = WHATREGS_GEN;
if (whatregs & WHATREGS_GEN)
{
struct econtext ec; /* general regs */
int retval;
ec.tbr = read_register (TBR_REGNUM);
memcpy (&ec.g1, &registers[REGISTER_BYTE (G1_REGNUM)],
4 * REGISTER_RAW_SIZE (G1_REGNUM));
ec.psr = read_register (PS_REGNUM);
ec.y = read_register (Y_REGNUM);
ec.pc = read_register (PC_REGNUM);
ec.npc = read_register (NPC_REGNUM);
ec.wim = read_register (WIM_REGNUM);
memcpy (ec.o, &registers[REGISTER_BYTE (O0_REGNUM)],
8 * REGISTER_RAW_SIZE (O0_REGNUM));
errno = 0;
retval = ptrace (PTRACE_SETREGS, inferior_pid, (PTRACE_ARG3_TYPE) & ec,
0);
if (errno)
perror_with_name ("ptrace(PTRACE_SETREGS)");
}
if (whatregs & WHATREGS_STACK)
{
int regoffset;
CORE_ADDR sp;
sp = read_register (SP_REGNUM);
if (regno == -1 || regno == SP_REGNUM)
{
if (!register_valid[L0_REGNUM + 5])
abort ();
target_write_memory (sp + FRAME_SAVED_I0,
&registers[REGISTER_BYTE (I0_REGNUM)],
8 * REGISTER_RAW_SIZE (I0_REGNUM));
target_write_memory (sp + FRAME_SAVED_L0,
&registers[REGISTER_BYTE (L0_REGNUM)],
8 * REGISTER_RAW_SIZE (L0_REGNUM));
}
else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
{
if (!register_valid[regno])
abort ();
if (regno >= L0_REGNUM && regno <= L0_REGNUM + 7)
regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM)
+ FRAME_SAVED_L0;
else
regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (I0_REGNUM)
+ FRAME_SAVED_I0;
target_write_memory (sp + regoffset,
&registers[REGISTER_BYTE (regno)],
REGISTER_RAW_SIZE (regno));
}
}
if (whatregs & WHATREGS_FLOAT)
{
struct fcontext fc; /* fp regs */
int retval;
/* We read fcontext first so that we can get good values for fq_t... */
errno = 0;
retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) & fc,
0);
if (errno)
perror_with_name ("ptrace(PTRACE_GETFPREGS)");
memcpy (fc.f.fregs, &registers[REGISTER_BYTE (FP0_REGNUM)],
32 * REGISTER_RAW_SIZE (FP0_REGNUM));
fc.fsr = read_register (FPS_REGNUM);
errno = 0;
retval = ptrace (PTRACE_SETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) & fc,
0);
if (errno)
perror_with_name ("ptrace(PTRACE_SETFPREGS)");
}
}
#endif /* SPARC */
#if defined (I386) || defined (M68K) || defined (rs6000)
/* Return the offset relative to the start of the per-thread data to the
saved context block. */
static unsigned long
registers_addr (pid)
int pid;
{
CORE_ADDR stblock;
int ecpoff = offsetof (st_t, ecp);
CORE_ADDR ecp;
errno = 0;
stblock = (CORE_ADDR) ptrace (PTRACE_THREADUSER, pid, (PTRACE_ARG3_TYPE) 0,
0);
if (errno)
perror_with_name ("ptrace(PTRACE_THREADUSER)");
ecp = (CORE_ADDR) ptrace (PTRACE_PEEKTHREAD, pid, (PTRACE_ARG3_TYPE) ecpoff,
0);
if (errno)
perror_with_name ("ptrace(PTRACE_PEEKTHREAD)");
return ecp - stblock;
}
/* Fetch one or more registers from the inferior. REGNO == -1 to get
them all. We actually fetch more than requested, when convenient,
marking them as valid so we won't fetch them again. */
void
fetch_inferior_registers (regno)
int regno;
{
int reglo, reghi;
int i;
unsigned long ecp;
if (regno == -1)
{
reglo = 0;
reghi = NUM_REGS - 1;
}
else
reglo = reghi = regno;
ecp = registers_addr (inferior_pid);
for (regno = reglo; regno <= reghi; regno++)
{
char buf[MAX_REGISTER_RAW_SIZE];
int ptrace_fun = PTRACE_PEEKTHREAD;
#ifdef M68K
ptrace_fun = regno == SP_REGNUM ? PTRACE_PEEKUSP : PTRACE_PEEKTHREAD;
#endif
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
{
unsigned int reg;
errno = 0;
reg = ptrace (ptrace_fun, inferior_pid,
(PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), 0);
if (errno)
perror_with_name ("ptrace(PTRACE_PEEKUSP)");
*(int *) &buf[i] = reg;
}
supply_register (regno, buf);
}
}
/* Store our register values back into the inferior.
If REGNO is -1, do this for all registers.
Otherwise, REGNO specifies which register (so we can save time). */
/* Registers we shouldn't try to store. */
#if !defined (CANNOT_STORE_REGISTER)
#define CANNOT_STORE_REGISTER(regno) 0
#endif
void
store_inferior_registers (regno)
int regno;
{
int reglo, reghi;
int i;
unsigned long ecp;
if (regno == -1)
{
reglo = 0;
reghi = NUM_REGS - 1;
}
else
reglo = reghi = regno;
ecp = registers_addr (inferior_pid);
for (regno = reglo; regno <= reghi; regno++)
{
int ptrace_fun = PTRACE_POKEUSER;
if (CANNOT_STORE_REGISTER (regno))
continue;
#ifdef M68K
ptrace_fun = regno == SP_REGNUM ? PTRACE_POKEUSP : PTRACE_POKEUSER;
#endif
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
{
unsigned int reg;
reg = *(unsigned int *) &registers[REGISTER_BYTE (regno) + i];
errno = 0;
ptrace (ptrace_fun, inferior_pid,
(PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), reg);
if (errno)
perror_with_name ("ptrace(PTRACE_POKEUSP)");
}
}
}
#endif /* defined (I386) || defined (M68K) || defined (rs6000) */
/* Wait for child to do something. Return pid of child, or -1 in case
of error; store status through argument pointer OURSTATUS. */
int
child_wait (pid, ourstatus)
int pid;
struct target_waitstatus *ourstatus;
{
int save_errno;
int thread;
union wait status;
while (1)
{
int sig;
set_sigint_trap (); /* Causes SIGINT to be passed on to the
attached process. */
pid = wait (&status);
save_errno = errno;
clear_sigint_trap ();
if (pid == -1)
{
if (save_errno == EINTR)
continue;
fprintf_unfiltered (gdb_stderr, "Child process unexpectedly missing: %s.\n",
safe_strerror (save_errno));
/* Claim it exited with unknown signal. */
ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
return -1;
}
if (pid != PIDGET (inferior_pid)) /* Some other process?!? */
continue;
thread = status.w_tid; /* Get thread id from status */
/* Initial thread value can only be acquired via wait, so we have to
resort to this hack. */
if (TIDGET (inferior_pid) == 0 && thread != 0)
{
inferior_pid = BUILDPID (inferior_pid, thread);
add_thread (inferior_pid);
}
pid = BUILDPID (pid, thread);
/* We've become a single threaded process again. */
if (thread == 0)
inferior_pid = pid;
/* Check for thread creation. */
if (WIFSTOPPED (status)
&& WSTOPSIG (status) == SIGTRAP
&& !in_thread_list (pid))
{
int realsig;
realsig = ptrace (PTRACE_GETTRACESIG, pid, (PTRACE_ARG3_TYPE) 0, 0);
if (realsig == SIGNEWTHREAD)
{
/* It's a new thread notification. We don't want to much with
realsig -- the code in wait_for_inferior expects SIGTRAP. */
ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
ourstatus->value.sig = TARGET_SIGNAL_0;
return pid;
}
else
error ("Signal for unknown thread was not SIGNEWTHREAD");
}
/* Check for thread termination. */
else if (WIFSTOPPED (status)
&& WSTOPSIG (status) == SIGTRAP
&& in_thread_list (pid))
{
int realsig;
realsig = ptrace (PTRACE_GETTRACESIG, pid, (PTRACE_ARG3_TYPE) 0, 0);
if (realsig == SIGTHREADEXIT)
{
ptrace (PTRACE_CONT, PIDGET (pid), (PTRACE_ARG3_TYPE) 0, 0);
continue;
}
}
#ifdef SPARC
/* SPARC Lynx uses an byte reversed wait status; we must use the
host macros to access it. These lines just a copy of
store_waitstatus. We can't use CHILD_SPECIAL_WAITSTATUS
because target.c can't include the Lynx <sys/wait.h>. */
if (WIFEXITED (status))
{
ourstatus->kind = TARGET_WAITKIND_EXITED;
ourstatus->value.integer = WEXITSTATUS (status);
}
else if (!WIFSTOPPED (status))
{
ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
ourstatus->value.sig =
target_signal_from_host (WTERMSIG (status));
}
else
{
ourstatus->kind = TARGET_WAITKIND_STOPPED;
ourstatus->value.sig =
target_signal_from_host (WSTOPSIG (status));
}
#else
store_waitstatus (ourstatus, status.w_status);
#endif
return pid;
}
}
/* Return nonzero if the given thread is still alive. */
int
child_thread_alive (pid)
int pid;
{
/* Arggh. Apparently pthread_kill only works for threads within
the process that calls pthread_kill.
We want to avoid the lynx signal extensions as they simply don't
map well to the generic gdb interface we want to keep.
All we want to do is determine if a particular thread is alive;
it appears as if we can just make a harmless thread specific
ptrace call to do that. */
return (ptrace (PTRACE_THREADUSER, pid, 0, 0) != -1);
}
/* Resume execution of the inferior process.
If STEP is nonzero, single-step it.
If SIGNAL is nonzero, give it that signal. */
void
child_resume (pid, step, signal)
int pid;
int step;
enum target_signal signal;
{
int func;
errno = 0;
/* If pid == -1, then we want to step/continue all threads, else
we only want to step/continue a single thread. */
if (pid == -1)
{
pid = inferior_pid;
func = step ? PTRACE_SINGLESTEP : PTRACE_CONT;
}
else
func = step ? PTRACE_SINGLESTEP_ONE : PTRACE_CONT_ONE;
/* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
it was. (If GDB wanted it to start some other way, we have already
written a new PC value to the child.)
If this system does not support PT_STEP, a higher level function will
have called single_step() to transmute the step request into a
continue request (by setting breakpoints on all possible successor
instructions), so we don't have to worry about that here. */
ptrace (func, pid, (PTRACE_ARG3_TYPE) 1, target_signal_to_host (signal));
if (errno)
perror_with_name ("ptrace");
}
/* Convert a Lynx process ID to a string. Returns the string in a static
buffer. */
char *
child_pid_to_str (pid)
int pid;
{
static char buf[40];
sprintf (buf, "process %d thread %d", PIDGET (pid), TIDGET (pid));
return buf;
}
/* Extract the register values out of the core file and store
them where `read_register' will find them.
CORE_REG_SECT points to the register values themselves, read into memory.
CORE_REG_SIZE is the size of that area.
WHICH says which set of registers we are handling (0 = int, 2 = float
on machines where they are discontiguous).
REG_ADDR is the offset from u.u_ar0 to the register values relative to
core_reg_sect. This is used with old-fashioned core files to
locate the registers in a large upage-plus-stack ".reg" section.
Original upage address X is at location core_reg_sect+x+reg_addr.
*/
static void
fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
char *core_reg_sect;
unsigned core_reg_size;
int which;
CORE_ADDR reg_addr;
{
struct st_entry s;
unsigned int regno;
for (regno = 0; regno < NUM_REGS; regno++)
if (regmap[regno] != -1)
supply_register (regno, core_reg_sect + offsetof (st_t, ec)
+ regmap[regno]);
#ifdef SPARC
/* Fetching this register causes all of the I & L regs to be read from the
stack and validated. */
fetch_inferior_registers (I0_REGNUM);
#endif
}
/* Register that we are able to handle lynx core file formats.
FIXME: is this really bfd_target_unknown_flavour? */
static struct core_fns lynx_core_fns =
{
bfd_target_unknown_flavour, /* core_flavour */
default_check_format, /* check_format */
default_core_sniffer, /* core_sniffer */
fetch_core_registers, /* core_read_registers */
NULL /* next */
};
void
_initialize_core_lynx ()
{
add_core_fns (&lynx_core_fns);
}